Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir Med. 2020;8(6):585–96. https://doi.org/10.1016/s2213-2600(20)30105-3.
Macklem PT, Mead J. Resistance of central and peripheral airways measured by a retrograde catheter. J Appl Physiol. 1967;22(3):395–401. https://doi.org/10.1152/jappl.1967.22.3.395.
Article
CAS
PubMed
Google Scholar
Mead J. The lung’s “quiet zone.” N Engl J Med. 1970;282(23):1318–9. https://doi.org/10.1056/nejm197006042822311.
Article
CAS
PubMed
Google Scholar
Baraldo S, Turato G, Saetta M. Pathophysiology of the small airways in chronic obstructive pulmonary disease. Respiration. 2012;84(2):89–97. https://doi.org/10.1159/000341382.
Article
PubMed
Google Scholar
Postma DS, Brightling C, Baldi S, et al. Exploring the relevance and extent of small airways dysfunction in asthma (ATLANTIS): baseline data from a prospective cohort study. Lancet Respir Med. 2019;7(5):402–16. https://doi.org/10.1016/s2213-2600(19)30049-9.
Article
PubMed
Google Scholar
Higham A, Quinn AM, Cancado JED, et al. The pathology of small airways disease in COPD: historical aspects and future directions. Respir Res. 2019;20(1):49. https://doi.org/10.1186/s12931-019-1017-y.
Article
PubMed
PubMed Central
Google Scholar
Hogg JC, Chu F, Utokaparch S, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004;350(26):2645–53. https://doi.org/10.1056/NEJMoa032158.
Article
CAS
PubMed
Google Scholar
Pompe E, Moore CM, Mohamed Hoesein FAA, et al. Progression of emphysema and small airways disease in cigarette smokers. Chronic Obstr Pulm Dis. 2021;8(2):198–212. https://doi.org/10.15326/jcopdf.2020.0140.
Article
PubMed
PubMed Central
Google Scholar
Konstantinos Katsoulis K, Kostikas K, Kontakiotis T. Techniques for assessing small airways function: possible applications in asthma and COPD. Respir Med. 2016;119:e2–9. https://doi.org/10.1016/j.rmed.2013.05.003.
Article
CAS
PubMed
Google Scholar
McFadden ER Jr, Linden DA. A reduction in maximum mid-expiratory flow rate. A spirographic manifestation of small airway disease. Am J Med. 1972;52(6):725–37. https://doi.org/10.1016/0002-9343(72)90078-2.
Article
PubMed
Google Scholar
Hoesterey D, Das N, Janssens W, et al. Spirometric indices of early airflow impairment in individuals at risk of developing COPD: spirometry beyond FEV(1)/FVC. Respir Med. 2019;156:58–68. https://doi.org/10.1016/j.rmed.2019.08.004.
Article
PubMed
PubMed Central
Google Scholar
Hansen JE, Porszasz J, Casaburi R, et al. Re-defining lower limit of normal for FEV1/FEV6, FEV1/FVC, FEV3/FEV6 and FEV3/FVC to improve detection of airway obstruction. Chronic Obstr Pulm Dis-J Copd Foundation. 2015;2(2):94–102. https://doi.org/10.15326/jcopdf.2.2.2014.0144.
Article
Google Scholar
Xiao D, Chen Z, Wu S, et al. Prevalence and risk factors of small airway dysfunction, and association with smoking, in China: findings from a national cross-sectional study. Lancet Respir Med. 2020;8(11):1081–93. https://doi.org/10.1016/s2213-2600(20)30155-7.
Article
PubMed
Google Scholar
Nemoto T, Shibata Y, Osaka D, et al. Impact of cigarette smoking on maximal expiratory flows in a general population: the Takahata study. Intern Med. 2011;50(21):2547–55. https://doi.org/10.2169/internalmedicine.50.5948.
Article
PubMed
Google Scholar
Quanjer PH, Weiner DJ, Pretto JJ, et al. Measurement of FEF25-75% and FEF75% does not contribute to clinical decision making. Eur Respir J. 2014;43(4):1051–8. https://doi.org/10.1183/09031936.00128113.
Article
PubMed
Google Scholar
Gove K, Wilkinson T, Jack S, et al. Systematic review of evidence for relationships between physiological and CT indices of small airways and clinical outcomes in COPD. Respir Med. 2018;139:117–25. https://doi.org/10.1016/j.rmed.2018.05.005.
Article
PubMed
Google Scholar
Chen YS, Li XQ, Li HR, et al. Risk factors for small airway obstruction among Chinese island residents: a case-control study. PLoS ONE. 2013;8(7): e68556. https://doi.org/10.1371/journal.pone.0068556.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwon DS, Choi YJ, Kim TH, et al. FEF(25–75%) values in patients with normal lung function can predict the development of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2020;15:2913–21. https://doi.org/10.2147/copd.S261732.
Article
PubMed
PubMed Central
Google Scholar
Knox-Brown B, Mulhern O, Amaral AFS. Spirometry parameters used to define small airways obstruction in population-based studies: systematic review protocol. BMJ Open. 2021;11(10): e052931. https://doi.org/10.1136/bmjopen-2021-052931.
Article
PubMed
PubMed Central
Google Scholar
Wells G SB, O’Connell D, Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp2013.
Detels R, Tashkin DP, Sayre JW, et al. The UCLA population studies of chronic obstructive respiratory disease. 9. Lung function changes associated with chronic exposure to photochemical oxidants; a cohort study among never-smokers. Chest. 1987;92(4):594–603. https://doi.org/10.1378/chest.92.4.594.
Article
CAS
PubMed
Google Scholar
Behera D. An analysis of effect of common domestic fuels on respiratory function. Indian J Chest Dis Allied Sci. 1997;39(4):235–43.
CAS
PubMed
Google Scholar
Cullinan P, Acquilla S, Dhara VR. Respiratory morbidity 10 years after the Union Carbide gas leak at Bhopal: a cross sectional survey. Bmj-Br Med J. 1997;314(7077):338–42. https://doi.org/10.1136/bmj.314.7077.338.
Article
CAS
Google Scholar
Matheson MC, Ellis JA, Raven J, et al. Association of ILS, CXCR2 and TNF-alpha polymorphisms and airway disease. J Hum Genet. 2006;51(3):196–203. https://doi.org/10.1007/s10038-005-0344-7.
Article
CAS
PubMed
Google Scholar
Curjuric I, Imboden M, Schindler C, et al. HMOX1 and GST variants modify attenuation of FEF25–75% decline due to PM10 reduction. Eur Respir J. 2010;35(3):505–14.
Article
CAS
PubMed
Google Scholar
Downs SH, Schindler C, Liu LJ, et al. Reduced exposure to PM10 and attenuated age-related decline in lung function. N Engl J Med. 2007;357(23):2338–47. https://doi.org/10.1056/NEJMoa073625.
Article
CAS
PubMed
Google Scholar
Abdel-Hamid HEM. Impulse oscillometry may be of value in detecting early effects of obesity on airway resistance. Egypt J Chest Dis Tuberc. 2019;68(1):96–101. https://doi.org/10.4103/ejcdt.ejcdt_106_18.
Article
Google Scholar
Al Khathlan N, Salem AM. The effect of adiposity markers on fractional exhaled nitric oxide (FeNO) and pulmonary function measurements. Int J General Med. 2020;13:955–62. https://doi.org/10.2147/ijgm.S280395.
Article
CAS
Google Scholar
Detels R, Rokaw SN, Coulson AH, et al. The UCLA population studies of chronic obstructive respiratory disease. I. Methodology and comparison of lung function in areas of high and low pollution. Am J Epidemiol. 1979;109(1):33–58. https://doi.org/10.1093/oxfordjournals.aje.a112658.
Article
CAS
PubMed
Google Scholar
Tashkin DP, Clark VA, Coulson AH, et al. The UCLA population studies of chronic obstructive respiratory disease. VIII. Effects of smoking cessation on lung function: a prospective study of a free-living population. Am Rev Respir Dis. 1984;130(5):707–15. https://doi.org/10.1164/arrd.1984.130.5.707.
Article
CAS
PubMed
Google Scholar
White JR, Froeb HF. Small-airways dysfunction in nonsmokers chronically exposed to tobacco smoke. N Engl J Med. 1980;302(13):720–3. https://doi.org/10.1056/nejm198003273021304.
Article
CAS
PubMed
Google Scholar
Marazzini L, Cavigioli G, Mastropasqua B, et al. FEV1 decline in asymptomatic young adults: relationships with some tests of small airways function. Eur Respir J. 1989;2(9):817–21.
CAS
PubMed
Google Scholar
Kiter G, Uçan ES, Ceylan E, et al. Water-pipe smoking and pulmonary functions. Respir Med. 2000;94(9):891–4. https://doi.org/10.1053/rmed.2000.0859.
Article
CAS
PubMed
Google Scholar
Havet A, Hulo S, Cuny D, et al. Residential exposure to outdoor air pollution and adult lung function, with focus on small airway obstruction. Environ Res. 2020;183: 109161. https://doi.org/10.1016/j.envres.2020.109161.
Article
CAS
PubMed
Google Scholar
Wipf R, Stinghe R, Perrin J. First results of a longitudinal survey upon the small airways disease. Poumon Coeur. 1982;38(2):85–90.
CAS
PubMed
Google Scholar
Tager IB, Balmes J, Lurmann F, et al. Chronic exposure to ambient ozone and lung function in young adults. Epidemiology. 2005;16(6):751–9. https://doi.org/10.1097/01.ede.0000183166.68809.b0.
Article
PubMed
Google Scholar
Cox CA, Vonk JM, Kerstjens HAM, et al. Predicted values for the forced expiratory flow adjusted for forced vital capacity, a descriptive study. Erj Open Res. 2020. https://doi.org/10.1183/23120541.00426-2020.
Article
PubMed
PubMed Central
Google Scholar
Chen YS, Li XQ, Li HR, et al. Risk factors for small airway obstruction among Chinese island residents: a case-control study. PLoS ONE. 2013. https://doi.org/10.1371/journal.pone.0068556.
Article
PubMed
PubMed Central
Google Scholar
Marrero O, Beck GJ, Schachter EN. Discriminating power of measurements from maximum expiratory flow-volume curves. Respiration. 1986;49(4):263–73. https://doi.org/10.1159/000194889.
Article
CAS
PubMed
Google Scholar
Lam DCL, Fong DYT, Yu WC, et al. FEV3, FEV6 and their derivatives for detecting airflow obstruction in adult Chinese. Int J Tuberc Lung Dis. 2012;16(5):681–6.
Article
CAS
PubMed
Google Scholar
Brown LK, Miller A, Pilipski M, et al. Forced midexpiratory time: reference values and the effect of cigarette smoking. Lung. 1995;173(1):35–46. https://doi.org/10.1007/bf00167599.
Article
CAS
PubMed
Google Scholar
Johns DP, Das A, Toelle BG, et al. Improved spirometric detection of small airway narrowing: concavity in the expiratory flow-volume curve in people aged over 40 years. Int J Chron Obstruct Pulmon Dis. 2017;12:3567–77. https://doi.org/10.2147/copd.S150280.
Article
PubMed
PubMed Central
Google Scholar
Knudson RJ, Lebowitz MD. Maximal mid-expiratory flow (FEF25-75%): normal limits and assessment of sensitivity. Am Rev Respir Dis. 1978;117(3):609–10. https://doi.org/10.1164/arrd.1978.117.3.609.
Article
CAS
PubMed
Google Scholar
Miller MR, Quanjer PH, Swanney MP, et al. Interpreting lung function data using 80% predicted and fixed thresholds misclassifies more than 20% of patients. Chest. 2011;139(1):52–9. https://doi.org/10.1378/chest.10-0189.
Article
PubMed
Google Scholar
Usmani OS, Singh D, Spinola M, et al. The prevalence of small airways disease in adult asthma: a systematic literature review. Respir Med. 2016;116:19–27. https://doi.org/10.1016/j.rmed.2016.05.006.
Article
PubMed
Google Scholar
Aaron SD, Gershon AS, Gao Y, et al. Influence of country-level differences on COPD prevalence. Int J Chron Obstruct Pulmon Dis. 2016;11:2305–13. https://doi.org/10.2147/copd.S113868.
Article
PubMed
PubMed Central
Google Scholar
Hansen JE, Sun XG, Wasserman K. Discriminating measures and normal values for expiratory obstruction. Chest. 2006;129(2):369–77. https://doi.org/10.1378/chest.129.2.369.
Article
PubMed
Google Scholar
Morris ZQ, Coz A, Starosta D. An isolated reduction of the FEV3/FVC ratio is an indicator of mild lung injury. Chest. 2013;144(4):1117–23. https://doi.org/10.1378/chest.12-2816.
Article
PubMed
Google Scholar
Burney P, Patel J, Minelli C, et al. Prevalence and population attributable risk for chronic airflow obstruction in a large multinational study. Am J Respir Crit Care Med. 2020. https://doi.org/10.1164/rccm.202005-1990OC.
Article
PubMed
PubMed Central
Google Scholar
Amaral AFS, Patel J, Kato BS, et al. Airflow obstruction and use of solid fuels for cooking or heating: BOLD results. Am J Respir Crit Care Med. 2018;197(5):595–610. https://doi.org/10.1164/rccm.201701-0205OC.
Article
PubMed
PubMed Central
Google Scholar
Amaral AFS, Burney PGJ, Patel J, et al. Chronic airflow obstruction and ambient particulate air pollution. Thorax. 2021. https://doi.org/10.1136/thoraxjnl-2020-216223.
Article
PubMed
Google Scholar
Graham BL, Steenbruggen I, Miller MR, et al. Standardization of spirometry 2019 update. An Official American Thoracic Society and European Respiratory Society Technical statement. Am J Respir Crit Care Med. 2019;200(8):e70–88. https://doi.org/10.1164/rccm.201908-1590ST.
Article
PubMed
PubMed Central
Google Scholar
Guyatt G, Oxman AD, Akl EA, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64(4):383–94. https://doi.org/10.1016/j.jclinepi.2010.04.026.
Article
PubMed
Google Scholar