National Lung Screening Trial Research Team, Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365:395–409.
Article
Google Scholar
de Koning HJ, van der Aalst CM, de Jong PA, Scholten ET, Nackaerts K, Heuvelmans MA, et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N Engl J Med. 2020;382:503–13. https://doi.org/10.1056/NEJMoa1911793.
Article
Google Scholar
Oudkerk M, Liu S, Heuvelmans MA, Walter JE, Field JK. Lung cancer LDCT screening and mortality reduction—evidence, pitfalls and future perspectives. Nat Rev Clin Oncol. 2021;18:135–51.
Article
Google Scholar
National Lung Screening Trial Research Team, Church TR, Black WC, Aberle DR, Berg CD, Clingan KL, et al. Results of initial low-dose computed tomographic screening for lung cancer. N Engl J Med. 2013;368:1980–91.
Article
Google Scholar
Seidelman JL, Myers JL, Quint LE. Incidental, subsolid pulmonary nodules at CT: etiology and management. Cancer Imaging. 2013;13:365–73.
Article
Google Scholar
Mazzone PJ, Lam L. Evaluating the patient with a pulmonary nodule: a review. JAMA. 2022;327:264–73.
Article
Google Scholar
Tanoue LT, Tanner NT, Gould MK, Silvestri GA. Lung cancer screening. Am J Respir Crit Care Med. 2015;191:19–33.
Article
Google Scholar
Tailor TD, Bell S, Fendrick AM, Carlos RC. Total and out-of-pocket costs of procedures after lung cancer screening in a national commercially insured population: estimating an episode of care. J Am Coll Radiol. 2022;19:35–46.
Article
Google Scholar
Black WC, Gareen IF, Soneji SS, Sicks JD, Keeler EB, Aberle DR, et al. Cost-effectiveness of CT screening in the National Lung Screening Trial. N Engl J Med. 2014;371:1793–802.
Article
CAS
Google Scholar
Huo J, Xu Y, Sheu T, Volk RJ, Shih Y-CT. Complication rates and downstream medical costs associated with invasive diagnostic procedures for lung abnormalities in the community setting. JAMA Intern Med. 2019;179:324–32.
Article
Google Scholar
Gaga M, Chorostowska-Wynimko J, Horváth I, Tammemagi MC, Shitrit D, Eisenberg VH, et al. Validation of lung EpiCheck, a novel methylation-based blood assay, for the detection of lung cancer in European and Chinese high-risk individuals. Eur Respir J. 2021;57:2002682.
Article
CAS
Google Scholar
Tanner NT, Springmeyer SC, Porter A, Jett JR, Mazzone P, Vachani A, et al. Assessment of integrated classifier’s ability to distinguish benign from malignant lung nodules: extended analyses and 2-year follow-up results of the PANOPTIC (Pulmonary Nodule Plasma Proteomic Classifier) trial. Chest. 2021;159:1283–7.
Article
Google Scholar
Sullivan FM, Mair FS, Anderson W, Armory P, Briggs A, Chew C, et al. Earlier diagnosis of lung cancer in a randomised trial of an autoantibody blood test followed by imaging. Eur Respir J. 2021;57:2000670.
CAS
Google Scholar
Belda J, Leigh R, Parameswaran K, O’Byrne PM, Sears MR, Hargreave FE. Induced sputum cell counts in healthy adults. Am J Respir Crit Care Med. 2000;161:475–8.
Article
CAS
Google Scholar
Neumann T, Meyer M, Patten FW, Johnson FL, Erozan YS, Frable WJ, et al. Premalignant and malignant cells in sputum from lung cancer patients. Cancer. 2009;117:473–81.
Google Scholar
Patriquin L, Merrick DT, Hill D, Holcomb RG, Lemieux ME, Bennett G, et al. Early detection of lung cancer with meso tetra (4-carboxyphenyl) porphyrin-labeled sputum. J Thorac Oncol. 2015;10:1311–8.
Article
CAS
Google Scholar
Montante S, Brinkman RR. Flow cytometry data analysis: recent tools and algorithms. Int J Lab Hematol. 2019;41(Suppl 1):56–62.
Article
Google Scholar
Pedreira CE, da Costa ES, Lecrevise Q, Grigore G, Fluxa R, Verde J, et al. From big flow cytometry datasets to smart diagnostic strategies: the EuroFlow approach. J Immunol Methods. 2019;475: 112631.
Article
CAS
Google Scholar
Wang S, Brinkman RR. Data-driven flow cytometry analysis. Methods Mol Biol. 2019;1989:245–65.
Article
CAS
Google Scholar
Conrad VK, Dubay CJ, Malek M, Brinkman RR, Koguchi Y, Redmond WL. Implementation and validation of an automated flow cytometry analysis pipeline for human immune profiling. Cytometry A. 2019;95:183–91. https://doi.org/10.1002/cyto.a.23664.
Article
Google Scholar
Brinkman RR. Improving the rigor and reproducibility of flow cytometry-based clinical research and trials through automated data analysis. Cytometry A. 2020;97:107–12.
Article
Google Scholar
Monaghan SA, Li J-L, Liu Y-C, Ko M-Y, Boyiadzis M, Chang T-Y, et al. A machine learning approach to the classification of acute leukemias and distinction from nonneoplastic cytopenias using flow cytometry data. Am J Clin Pathol. 2021;157: aqab148.
Google Scholar
Botta C, Maia CDS, Garcés J-J, Termini R, Perez C, Manrique I, et al. FlowCT for the analysis of large immunophenotypic datasets and biomarker discovery in cancer immunology. Blood Adv. 2022;6(2):690–703.
Article
CAS
Google Scholar
Gibson BR, Rogers TT, Zhu X. Human semi-supervised learning. Top. Cogn Sci. 2013;5:132–72.
Article
Google Scholar
Grayson M, Lai S-C, Bederka LH, Araujo P, Sanchez J, Reveles XT, et al. Quality-controlled sputum analysis by flow cytometry. J Vis Exp. 2021. https://doi.org/10.3791/62785.
Article
Google Scholar
Bederka LH, Sanchez JR, Rebeles J, Araujo PR, Grayson MH, Lai S-C, et al. Sputum analysis by flow cytometry; an effective platform to analyze the lung environment. PLoS ONE. 2022;17: e0272069.
Article
CAS
Google Scholar
Kasai Y, Sugiyama H, Takagi R, Kondo M, Owaki T, Namiki H, et al. Brush biopsy of human oral mucosal epithelial cells as a quality control of the cell source for fabrication of transplantable epithelial cell sheets for regenerative medicine. Regen Ther. 2016;4:71–7.
Article
Google Scholar
El-Far M, Pimstone N. A comparative study of 28 porphyrins and their abilities to localize in mammary mouse carcinoma: uroporphyrin I superior to hematoporphyrin derivative. Prog Clin Biol Res. 1984;170:661–72.
CAS
Google Scholar
Tzur A, Moore JK, Jorgensen P, Shapiro HM, Kirschner MW. Optimizing optical flow cytometry for cell volume-based sorting and analysis. PLoS ONE. 2011;6: e16053.
Article
CAS
Google Scholar
Cossarizza A, Chang H-D, Radbruch A, Acs A, Adam D, Adam-Klages S, et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur J Immunol. 2019;49:1457–973.
Article
CAS
Google Scholar
Fixable Viability Stain 510. https://www.bdbiosciences.com/en-us/products/reagents/flow-cytometry-reagents/research-reagents/single-color-antibodies-ruo/fixable-viability-stain-510.564406
Altorki NK, Markowitz GJ, Gao D, Port JL, Saxena A, Stiles B, et al. The lung microenvironment: an important regulator of tumour growth and metastasis. Nat Rev Cancer. 2019;19:9–31.
Article
CAS
Google Scholar
Bowdish DME. The aging lung: is lung health good health for older adults? Chest. 2019;155:391–400.
Article
Google Scholar
Watson JV. Time, a quality-control parameter in flow cytometry. Cytometry. 1987;8:646–9.
Article
CAS
Google Scholar
Parks DR, Roederer M, Moore WA. A new “Logicle” display method avoids deceptive effects of logarithmic scaling for low signals and compensated data. Cytometry A. 2006;69:541–51.
Article
Google Scholar
Liegeois M, Legrand C, Desmet CJ, Marichal T, Bureau F. The interstitial macrophage: a long-neglected piece in the puzzle of lung immunity. Cell Immunol. 2018;330:91–6.
Article
CAS
Google Scholar
Pepe MS, Janes H, Li CI, Bossuyt PM, Feng Z, Hilden J. Early-phase studies of biomarkers: what target sensitivity and specificity values might confer clinical utility? Clin Chem. 2016;62:737–42.
Article
CAS
Google Scholar
Signorell A, et mult. al. DescTools: tools for descriptive statistics. R package version 0.99.47. 2022. https://cran.r-project.org/package=DescTools. Accessed 26 Jan 2023
Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77.
Article
Google Scholar
Schaarschmidt F. bdpv: Inference and Design for Predictive Values in Diagnostic Tests. 2019. https://CRAN.R-project.org/package=bdpv. Accessed 18 Feb 2022
Mercaldo ND, Lau KF, Zhou XH. Confidence intervals for predictive values with an emphasis to case-control studies. Stat Med. 2007;26:2170–83.
Article
Google Scholar
White MC, Holman DM, Boehm JE, Peipins LA, Grossman M, Henley SJ. Age and cancer risk: a potentially modifiable relationship. Am J Prev Med. 2014;46:S7-15.
Article
Google Scholar
Li G, Guillaud M, LeRiche J, McWilliams A, Gazdar A, Lam S, et al. Automated sputum cytometry for detection of Intraepithelial neoplasias in the lung. Anal Cell Pathol. 2012;35:187–201.
Article
Google Scholar
Trinchieri G. Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu Rev Immunol. 2012;30:677–706.
Article
CAS
Google Scholar
Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 2018;32:1267–84.
Article
CAS
Google Scholar
Katz RL, Zaidi TM, Fernandez RL, Zhang J, He W, Acosta C, et al. Automated detection of genetic abnormalities combined with cytology in sputum is a sensitive predictor of lung cancer. Mod Pathol. 2008;21:950–60.
Article
CAS
Google Scholar
Su Y, Fang H, Jiang F. Integrating DNA methylation and microRNA biomarkers in sputum for lung cancer detection. Clin Epigenet. 2016;8:109.
Article
Google Scholar
US Preventive Services Task Force, Krist AH, Davidson KW, Mangione CM, Barry MJ, Cabana M, et al. Screening for lung cancer: US Preventive Services Task Force recommendation statement. JAMA. 2021;325:962–70.
Article
Google Scholar
Gierada DS, Pinsky P, Nath H, Chiles C, Duan F, Aberle DR. Projected outcomes using different nodule sizes to define a positive CT lung cancer screening examination. J Natl Cancer Inst. 2014;106: dju284.
Article
Google Scholar
Mazzone PJ, Sears CR, Arenberg DA, Gaga M, Gould MK, Massion PP, et al. Evaluating molecular biomarkers for the early detection of lung cancer: when is a biomarker ready for clinical use? An official American Thoracic Society policy statement. Am J Respir Crit Care Med. 2017;196:e15-29.
Article
Google Scholar
MacRosty CR, Rivera MP. Lung cancer in women: a modern epidemic. Clin Chest Med. 2020;41:53–65.
Article
Google Scholar
Prosper A, Brown K, Schussel B, Aberle D. Lung cancer screening in African Americans: the time to act is now. Radiol Imaging Cancer. 2020;2: e200107.
Article
Google Scholar