World Health Organization: WHO report on the global tobacco epidemic 2019: offer help to quit tobacco use. https://www.who.int/teams/health-promotion/tobacco-control/who-report-on-the-global-tobacco-epidemic-2019&publication=9789241516204; 2019.
Rennard SI, Vestbo J. COPD: the dangerous underestimate of 15%. Lancet. 2006;367:1216–9.
Article
PubMed
Google Scholar
Løkke A, Lange P, Scharling H, Fabricius P, Vestbo J. Developing COPD: a 25 year follow up study of the general population. Thorax. 2006;61:935.
Article
PubMed
PubMed Central
Google Scholar
Borgerding M, Klus H. Analysis of complex mixtures–cigarette smoke. Exp Toxicol Pathol. 2005;57(Suppl 1):43–73.
Article
CAS
PubMed
Google Scholar
Pryor WA, Stone K. Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann N Y Acad Sci. 1993;686:12–27.
Article
CAS
PubMed
Google Scholar
Ghio AJ, Hilborn ED, Stonehuerner JG, Dailey LA, Carter JD, Richards JH, Crissman KM, Foronjy RF, Uyeminami DL, Pinkerton KE. Particulate matter in cigarette smoke alters iron homeostasis to produce a biological effect. Am J Respir Crit Care Med. 2008;178:1130–8.
Article
CAS
PubMed
Google Scholar
Colombo G, Clerici M, Giustarini D, Portinaro NM, Aldini G, Rossi R, Milzani A, Dalle-Donne I. Pathophysiology of tobacco smoke exposure: recent insights from comparative and redox proteomics. Mass Spectrom Rev. 2014;33:183–218.
Article
CAS
PubMed
Google Scholar
Steiling K, Kadar AY, Bergerat A, Flanigon J, Sridhar S, Shah V, Ahmad QR, Brody JS, Lenburg ME, Steffen M, Spira A. Comparison of proteomic and transcriptomic profiles in the bronchial airway epithelium of current and never smokers. PLoS ONE. 2009;4:12.
Article
CAS
Google Scholar
Titz B, Sewer A, Schneider T, Elamin A, Martin F, Dijon S, Luettich K, Guedj E, Vuillaume G, Ivanov NV, et al. Alterations in the sputum proteome and transcriptome in smokers and early-stage COPD subjects. J Proteomics. 2015;128:306–20.
Article
CAS
PubMed
Google Scholar
Mossina A, Lukas C, Merl-Pham J, Uhl FE, Mutze K, Schamberger A, Staab-Weijnitz C, Jia J, Yildirim AÖ, Königshoff M, et al. Cigarette smoke alters the secretome of lung epithelial cells. Proteomics. 2017;17:1600243.
Article
CAS
Google Scholar
Sun S, Wang H, Zhao G, An Y, Guo Y, Du L, Song H, Qiao F, Yu H, Wu X, et al. Complement inhibition alleviates paraquat-induced acute lung injury. Am J Respir Cell Mol Biol. 2011;45:834–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pandya PH, Wilkes DS. Complement system in lung disease. Am J Respir Cell Mol Biol. 2014;51:467–73.
Article
PubMed
PubMed Central
CAS
Google Scholar
Marc MM, Korosec P, Kosnik M, Kern I, Flezar M, Suskovic S, Sorli J. Complement factors C3a, C4a, and C5a in chronic obstructive pulmonary disease and asthma. Am J Respir Cell Mol Biol. 2004;31:216–9.
Article
CAS
PubMed
Google Scholar
Strunk RC, Eidlen DM, Mason RJ. Pulmonary alveolar type II epithelial cells synthesize and secrete proteins of the classical and alternative complement pathways. J Clin Invest. 1988;81:1419–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ekdahl KN, Mohlin C, Adler A, Aman A, Manivel VA, Sandholm K, Huber-Lang M, Fromell K, Nilsson B. Is generation of C3(H2O) necessary for activation of the alternative pathway in real life? Mol Immunol. 2019;114:353–61.
Article
CAS
PubMed
Google Scholar
Kew RR, Ghebrehiwet B, Janoff A. Cigarette smoke can activate the alternative pathway of complement in vitro by modifying the third component of complement. J Clin Investig. 1985;75:1000–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Lee JJ, Tang H, Fan Y-H, Xiao L, Ren H, Kurie J, Morice RC, Hong WK, Mao L. Impact of smoking cessation on global gene expression in the bronchial epithelium of chronic smokers. Cancer Prev Res (Philadelphia, PA). 2008;1:112–8.
Article
CAS
Google Scholar
Beane J, Sebastiani P, Liu G, Brody JS, Lenburg ME, Spira A. Reversible and permanent effects of tobacco smoke exposure on airway epithelial gene expression. Genome Biol. 2007;8:R201.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hijazi K, Malyszko B, Steiling K, Xiao X, Liu G, Alekseyev YO, Dumas Y-M, Hertsgaard L, Jensen J, Hatsukami D, et al. Tobacco-related alterations in airway gene expression are rapidly reversed within weeks following smoking-cessation. Sci Rep. 2019;9:6978.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang M, Kohler M, Heyder T, Forsslund H, Garberg HK, Karimi R, Grunewald J, Berven FS, Nyrén S, Magnus Sköld C, Wheelock ÅM. Proteomic profiling of lung immune cells reveals dysregulation of phagocytotic pathways in female-dominated molecular COPD phenotype. Respir Res. 2018;19:39.
Article
PubMed
PubMed Central
CAS
Google Scholar
Naz S, Bhat M, Ståhl S, Forsslund H, Sköld CM, Wheelock ÅM, Wheelock CE. Dysregulation of the tryptophan pathway evidences gender differences in COPD. Metabolites. 2019;9:212.
Article
CAS
PubMed Central
Google Scholar
Naz S, Kolmert J, Yang M, Reinke SN, Kamleh MA, Snowden S, Heyder T, Levänen B, Erle DJ, Sköld CM, et al. Metabolomics analysis identifies sex-associated metabotypes of oxidative stress and the autotaxin-lysoPA axis in COPD. Eur Respir J. 2017;49:6.
Article
CAS
Google Scholar
Kohler M, Sandberg A, Kjellqvist S, Thomas A, Karimi R, Nyrén S, Eklund A, Thevis M, Sköld CM, Wheelock ÅM. Gender differences in the bronchoalveolar lavage cell proteome of patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2013;131:743–51.
Article
CAS
PubMed
Google Scholar
Sansores RH, Ramírez-Venegas A. COPD in women: susceptibility or vulnerability? Eur Respir J. 2016;47:19–22.
Article
PubMed
CAS
Google Scholar
Gan WQ, Man SFP, Postma DS, Camp P, Sin DD. Female smokers beyond the perimenopausal period are at increased risk of chronic obstructive pulmonary disease: a systematic review and meta-analysis. Respir Res. 2006;7:52.
Article
PubMed
PubMed Central
Google Scholar
Prescott E, Bjerg AM, Andersen PK, Lange P, Vestbo J. Gender difference in smoking effects on lung function and risk of hospitalization for COPD: results from a Danish longitudinal population study. Eur Respir J. 1997;10:822–7.
Article
CAS
PubMed
Google Scholar
Ohar J, Fromer L, Donohue JF. Reconsidering sex-based stereotypes of COPD. Prim Care Respir J. 2011;20:370–8.
Article
PubMed
PubMed Central
Google Scholar
Silverman EK, Weiss ST, Drazen JM, Chapman HA, Carey V, Campbell EJ, Denish P, Silverman RA, Celedon JC, Reilly JJ, et al. Gender-related differences in severe, early-onset chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2000;162:2152–8.
Article
CAS
PubMed
Google Scholar
Han MK, Postma D, Mannino DM, Giardino ND, Buist S, Curtis JL, Martinez FJ. Gender and chronic obstructive pulmonary disease: why it matters. Am J Respir Crit Care Med. 2007;176:1179–84.
Article
PubMed
PubMed Central
Google Scholar
Sin DD, Cohen SB, Day A, Coxson H, Paré PD. Understanding the biological differences in susceptibility to chronic obstructive pulmonary disease between men and women. Proc Am Thorac Soc. 2007;4:671–4.
Article
CAS
PubMed
Google Scholar
Hogg JC, Pare PD, Hackett TL. The contribution of small airway obstruction to the pathogenesis of chronic obstructive pulmonary disease. Physiol Rev. 2017;97:529–52.
Article
PubMed
PubMed Central
Google Scholar
Larstad M, Almstrand AC, Larsson P, Bake B, Larsson S, Ljungstrom E, Mirgorodskaya E, Olin AC. Surfactant protein A in exhaled endogenous particles is decreased in chronic obstructive pulmonary disease (COPD) patients: a pilot study. PLoS ONE. 2015;10:e0144463.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bredberg A, Gobom J, Almstrand AC, Larsson P, Blennow K, Olin AC, Mirgorodskaya E. Exhaled endogenous particles contain lung proteins. Clin Chem. 2012;58:431–40.
Article
CAS
PubMed
Google Scholar
Behndig AF, Mirgorodskaya E, Blomberg A, Olin A-C. Surfactant Protein A in particles in exhaled air (PExA), bronchial lavage and bronchial wash - a methodological comparison. Respir Res. 2019;20:214.
Article
PubMed
PubMed Central
CAS
Google Scholar
Almstrand AC, Bake B, Ljungstrom E, Larsson P, Bredberg A, Mirgorodskaya E, Olin AC. Effect of airway opening on production of exhaled particles. J Appl Physiol. 1985;2010(108):584–8.
Google Scholar
Larsson P, Bake B, Wallin A, Hammar O, Almstrand A-C, Lärstad M, Ljungström E, Mirgorodskaya E, Olin A-C. The effect of exhalation flow on endogenous particle emission and phospholipid composition. Respir Physiol Neurobiol. 2017;243:39–46.
Article
CAS
PubMed
Google Scholar
Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten CP, Gustafsson P, et al. Standardisation of spirometry. Eur Respir J. 2005;26:319–38.
Article
CAS
PubMed
Google Scholar
Brisman J, Kim JL, Olin AC, Toren K, Bake B. Spirometric reference equations for Swedish adults. Clin Physiol Funct Imaging. 2017;37:640–5.
Article
PubMed
Google Scholar
Almstrand AC, Ljungstrom E, Lausmaa J, Bake B, Sjovall P, Olin AC. Airway monitoring by collection and mass spectrometric analysis of exhaled particles. Anal Chem. 2009;81:662–8.
Article
CAS
PubMed
Google Scholar
Holmgren H, Gerth E, Ljungstrom E, Larsson P, Almstrand AC, Bake B, Olin AC. Effects of breath holding at low and high lung volumes on amount of exhaled particles. Respir Physiol Neurobiol. 2013;185:228–34.
Article
PubMed
Google Scholar
Gold L, Ayers D, Bertino J, Bock C, Bock A, Brody EN, Carter J, Dalby AB, Eaton BE, Fitzwater T, et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS ONE. 2010;5:e15004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Candia J, Cheung F, Kotliarov Y, Fantoni G, Sellers B, Griesman T, Huang J, Stuccio S, Zingone A, Ryan BM, et al. Assessment of variability in the SOMAscan assay. Sci Rep. 2017;7:14248.
Article
PubMed
PubMed Central
CAS
Google Scholar
DeBoer EM, Wagner BD, Popler J, Harris JK, Zemanick ET, Accurso FJ, Sagel SD, Deterding RR. Novel application of aptamer proteomic analysis in cystic fibrosis bronchoalveolar lavage fluid. Proteomics. 2019;13:1800085.
Google Scholar
Iwamoto H, Gao J, Pulkkinen V, Toljamo T, Nieminen P, Mazur W. Soluble receptor for advanced glycation end-products and progression of airway disease. BMC Pulm Med. 2014;14:68.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pouwels SD, Klont F, Kwiatkowski M, Wiersma VR, Faiz A, van den Berge M, Horvatovich P, Bischoff R, ten Hacken NHT. Cigarette smoking acutely decreases serum levels of the chronic obstructive pulmonary disease biomarker sRAGE. Am J Respir Crit Care Med. 2018;198:1456–8.
Article
PubMed
Google Scholar
Smith DJ, Yerkovich ST, Towers MA, Carroll ML, Thomas R, Upham JW. Reduced soluble receptor for advanced glycation end-products in COPD. Eur Respir J. 2011;37:516.
Article
CAS
PubMed
Google Scholar
Verhamme FM, Bracke KR, Amatngalim GD, Verleden GM, Van Pottelberge GR, Hiemstra PS, Joos GF, Brusselle GG. Role of activin-A in cigarette smoke-induced inflammation and COPD. Eur Respir J. 2014;43:1028.
Article
CAS
PubMed
Google Scholar
Liu G, Ren F, Song Y. Upregulation of SPOCK2 inhibits the invasion and migration of prostate cancer cells by regulating the MT1-MMP/MMP2 pathway. PeerJ. 2019;7:e7163.
Article
PubMed
PubMed Central
CAS
Google Scholar
Churg A, Zhou S, Wright JL. Matrix metalloproteinases in COPD. Eur Respir J. 2012;39:197.
Article
CAS
PubMed
Google Scholar
Mahor D, Kumari V, Vashisht K, Galgalekar R, Samarth RM, Mishra PK, Banerjee N, Dixit R, Saluja R, De S, Pandey KC. Elevated serum matrix metalloprotease (MMP-2) as a candidate biomarker for stable COPD. BMC Pulm Med. 2020;20:302.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baraldo S, Bazzan E, Zanin ME, Turato G, Garbisa S, Maestrelli P, Papi A, Miniati M, Fabbri LM, Zuin R, Saetta M. Matrix metalloproteinase-2 protein in lung periphery is related to COPD progression. Chest. 2007;132:1733–40.
Article
CAS
PubMed
Google Scholar
Chen Y, Chen P, Hanaoka M, Droma Y, Kubo K. Enhanced levels of prostaglandin E2 and matrix metalloproteinase-2 correlate with the severity of airflow limitation in stable COPD. Respirology. 2008;13:1014–21.
PubMed
Google Scholar
Gosselink JV, Hayashi S, Elliott WM, Xing L, Chan B, Yang L, Wright C, Sin D, Paré PD, Pierce JA, et al. Differential expression of tissue repair genes in the pathogenesis of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;181:1329–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yun JH, Henson PM, Tuder RM. Phagocytic clearance of apoptotic cells: role in lung disease. Expert Rev Respir Med. 2008;2:753–65.
Article
PubMed
PubMed Central
Google Scholar
Martin M, Leffler J, Smolag KI, Mytych J, Bjork A, Chaves LD, Alexander JJ, Quigg RJ, Blom AM. Factor H uptake regulates intracellular C3 activation during apoptosis and decreases the inflammatory potential of nucleosomes. Cell Death Differ. 2016;23:903–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noris M, Remuzzi G. Overview of complement activation and regulation. Semin Nephrol. 2013;33:479–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thurman JM, Holers VM. The central role of the alternative complement pathway in human disease. J Immunol. 2006;176:1305.
Article
CAS
PubMed
Google Scholar
Marcu MG, Doyle M, Bertolotti A, Ron D, Hendershot L, Neckers L. Heat shock protein 90 modulates the unfolded protein response by stabilizing IRE1alpha. Mol Cell Biol. 2002;22:8506–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelsen SG, Duan X, Ji R, Perez O, Liu C, Merali S. Cigarette smoke induces an unfolded protein response in the human lung: a proteomic approach. Am J Respir Cell Mol Biol. 2008;38:541–50.
Article
CAS
PubMed
Google Scholar
Jorgensen E, Stinson A, Shan L, Yang J, Gietl D, Albino AP. Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells. BMC Cancer. 2008;8:229.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pinkaew D, Chattopadhyay A, King MD, Chunhacha P, Liu Z, Stevenson HL, Chen Y, Sinthujaroen P, McDougal OM, Fujise K. Fortilin binds IRE1α and prevents ER stress from signaling apoptotic cell death. Nat Commun. 2017;8:18.
Article
PubMed
PubMed Central
CAS
Google Scholar
Somborac-Bačura A, Rumora L, Novak R, Rašić D, Dumić J, Čepelak I, Žanić-Grubišić T. Differential expression of heat shock proteins and activation of mitogen-activated protein kinases in A549 alveolar epithelial cells exposed to cigarette smoke extract. Exp Physiol. 2018;103:1666–78.
Article
PubMed
CAS
Google Scholar
Hodge S, Hodge G, Ahern J, Jersmann H, Holmes M, Reynolds PN. Smoking alters alveolar macrophage recognition and phagocytic ability: implications in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2007;37:748–55.
Article
CAS
PubMed
Google Scholar
Liew FY, Pitman NI, McInnes IB. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat Rev Immunol. 2010;10:103–10.
Article
CAS
PubMed
Google Scholar
Liew FY. Cigarette smoke resets the Alarmin IL-33 in COPD. Immunity. 2015;42:401–3.
Article
CAS
PubMed
Google Scholar
Yang M, Kohler M, Heyder T, Forsslund H, Garberg HK, Karimi R, Grunewald J, Berven FS, Magnus Sköld C, Wheelock ÅM. Long-term smoking alters abundance of over half of the proteome in bronchoalveolar lavage cell in smokers with normal spirometry, with effects on molecular pathways associated with COPD. Respir Res. 2018;19:40.
Article
PubMed
PubMed Central
CAS
Google Scholar
Robinson AB, Stogsdill JA, Lewis JB, Wood TT, Reynolds PR. RAGE and tobacco smoke: insights into modeling chronic obstructive pulmonary disease. Front Physiol. 2012;3:89.
Article
CAS
Google Scholar
Ahn N, Kim WJ, Kim N, Park HW, Lee SW, Yoo JY. The Interferon-inducible proteoglycan testican-2/SPOCK2 functions as a protective barrier against virus infection of lung epithelial cells. J Virol. 2019;93:1.
Article
Google Scholar
Bartholin L, Guindon S, Martel S, Corbo L, Rimokh R. Identification of NF-kappaB responsive elements in follistatin related gene (FLRG) promoter. Gene. 2007;393:153–62.
Article
CAS
PubMed
Google Scholar
Webb JH, Blom AM, Dahlbäck B. Vitamin K-dependent protein S localizing complement regulator C4b-binding protein to the surface of apoptotic cells. J Immunol. 2002;169:2580–6.
Article
CAS
PubMed
Google Scholar
Kask L, Trouw LA, Dahlbäck B, Blom AM. The C4b-binding protein-protein S complex inhibits the phagocytosis of apoptotic cells. J Biol Chem. 2004;279:23869–73.
Article
CAS
PubMed
Google Scholar
Ali Assad N, Sood A. Leptin, adiponectin and pulmonary diseases. Biochimie. 2012;94:2180–9.
Article
CAS
PubMed
Google Scholar
Gao N, Wang Y, Zheng C-M, Gao Y-L, Li H, Li Y, Fu T-T, Xu L-L, Wang W, Ying S, Huang K. β(2)-Microglobulin participates in development of lung emphysema by inducing lung epithelial cell senescence. Am J Physiol Lung Cell Mol Physiol. 2017;312:L669–77.
Article
PubMed
PubMed Central
Google Scholar
Picard D. Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci. 2002;59:1640–8.
Article
CAS
PubMed
Google Scholar
Lee CH, Goag EK, Lee SH, Chung KS, Jung JY, Park MS, Kim YS, Kim SK, Chang J, Song JH. Association of serum ferritin levels with smoking and lung function in the Korean adult population: analysis of the fourth and fifth Korean National Health and Nutrition Examination Survey. Int J Chron Obstruct Pulmon Dis. 2016;11:3001–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamasaki K. Eeden SFv: lung macrophage phenotypes and functional responses: role in the pathogenesis of COPD. Int J Mol Sci. 2018;19:582.
Article
PubMed Central
CAS
Google Scholar
Kambara K, Ohashi W, Tomita K, Takashina M, Fujisaka S, Hayashi R, Mori H, Tobe K, Hattori Y. In vivo depletion of CD206+ M2 macrophages exaggerates lung injury in endotoxemic mice. Am J Pathol. 2015;185:162–71.
Article
CAS
PubMed
Google Scholar