Morin FC, Egan EA, Ferguson W, Lundgren CE: Development of pulmonary vascular response to oxygen. Am J Physiol. 1988, 254: H542-H546.
PubMed
Google Scholar
Kinsella JP, Ivy DD, Abman SH: Ontogeny of NO activity and response to inhaled NO in the developing ovine pulmonary circulation. Am J Physiol. 1994, 267: H1955-H1961.
PubMed
Google Scholar
Storme L, Rairigh RL, Parker TA, Kinsella JP, Abman SH: In vivo evidence for a myogenic response in the fetal pulmonary circulation. Pediatr Res. 1999, 45: 425-431.
Article
PubMed
Google Scholar
McQueston JA, Cornfield DN, McMurtry IF, Abman SH: Effects of oxygen and exogenous L-arginine on EDRF activity in fetal pulmonary circulation. Am J Physiol. 1993, 264: H865-H871.
PubMed
Google Scholar
Brannon TS, MacRitchie AN, Jaramillo MA, Sherman TS, Yuhanna IS, Margraf LR, Shaul P: Ontogeny of cyclooxygenase-1 and cyclooxygenase-2 gene expression in ovine lung. Am J Physiol. 1998, 274: L66-L71.
PubMed
Google Scholar
Tod ML, Cassin S: Thromboxane synthase inhibition and perinatal pulmonary response to arachidonic acid. J Appl Physiol. 1985, 58: 710-716.
PubMed
Google Scholar
Soifer SJ, Loitz RD, Roman C, Heymann MA: Leukotriene end organ antagonists increase pulmonary blood flow in fetal lambs. Am J Physiol. 1985, 249: H570-H576.
PubMed
Google Scholar
Cassin S: Role of prostaglandins, thromboxanes, and leukotrienes in the control of the pulmonary circulation in the fetus and newborn. Semin Perinatol. 1987, 11: 53-63.
PubMed
Google Scholar
Ivy D, Kinsella J, Abman S: Endothelin blockade augments pulmonary vasodilation in the ovine fetus. J Appl Physiol. 1996, 81: 2481-2487.
PubMed
Google Scholar
Ivy D, LeCras T, Parker T, Zenge J, Jakkula M, Markham N, Kinsella J, Abman S: Developmental changes in endothelin expression and activity in the ovine fetal lung. Am J Physiol. 2000, 278: L785-L793.
Google Scholar
Saqueton CB, Miller RB, Porter VA, Milla CE, Cornfield DN: NO causes perinatal pulmonary vasodilation through K+-channel activation and intracellular Ca2+ release. Am J Physiol. 1999, 276: L925-L932.
PubMed
Google Scholar
Yuan XJ, Tod ML, Rubin LJ, Blaustein MP: NO hyperpolarizes pulmonary artery smooth muscle cells and decreases the intracellular Ca2+ concentration by activating voltage-gated K+ channels. Proc Nat Acad Sci USA. 1996, 93: 10489-10494. 10.1073/pnas.93.19.10489.
Article
PubMed
PubMed Central
Google Scholar
Halbower AC, Tuder RM, Franklin WA, Pollock JS, Förstermann U, Abman SH: Maturation-related changes in endothelial nitric oxide synthase immunolocalization in developing ovine lung. Am J Physiol. 1994, 267: L585-L591.
PubMed
Google Scholar
Kawai N, Bloch DB, Filippov G, Rabkina D, Suen HC, Losty PD, Janssens SP, Zapol WM, de la Monte S, Bloch KD: Constitutive endothelial nitric oxide synthase gene expression is regulated during lung development. Am J Physiol. 1995, 268: L589-L595.
PubMed
Google Scholar
Shaul PW, Farrar MA, Magness RR: Pulmonary endothelial nitric oxide production is developmentally regulated in the fetus and newborn. Am J Physiol. 1993, 265: H1056-H1063.
PubMed
Google Scholar
Tod ML, Cassin S: Endothelin-1-induced pulmonary arterial dilation is reduced by Nω-nitro-L-arginine in fetal lambs. J Appl Physiol. 1992, 72: 1730-1734.
PubMed
Google Scholar
Gao Y, Zhou H, Raj JU: Heterogeneity in role of endothelium-derived NO in pulmonary arteries and veins of full-term fetal lambs. Am J Physiol. 1995, 268: H1586-H1592.
PubMed
Google Scholar
Abman SH, Chatfield BA, Rodman DM, Hall SL, McMurtry IF: Maturational changes in endothelium-derived relaxing factor activity of ovine pulmonary arteries in vitro. Am J Physiol. 1991, 260: L280-L285.
PubMed
Google Scholar
Abman SH, Chatfield BA, Hall SL, McMurtry IF: Role of endothelium-derived relaxing factor during transition of pulmonary circulation at birth. Am J Physiol. 1990, 259: H1921-H1927.
PubMed
Google Scholar
Rairigh RL, Storme L, Parker TA, le Cras TD, Kinsella JP, Jakkula M, Abman S: Inducible NO synthase inhibition attenuates shear stress-induced pulmonary vasodilation in the ovine fetus. Am J Physiol. 1999, 276: L513-L521.
PubMed
Google Scholar
Schubert R, Serebryakow V: Iloprost dilates rat small arteries: role of KATP- and KCa-channel activation by cAMP-dependent protein kinase. Am J Physiol. 1997, 272: H1147-H1156.
PubMed
Google Scholar
Shaul PW, Farrar MA, Magness RR: Oxygen modulation of pulmonary arterial prostacyclin synthesis is developmentally regulated. Am J Physiol. 1993, 265: H621-H628.
PubMed
Google Scholar
Frantz E, Soifer SJ, Clyman RI, Heymann MA: Bradykinin produces pulmonary vasodilation in fetal lambs: role of prostaglandin production. J Appl Physiol. 1989, 67: 1512-1517.
PubMed
Google Scholar
Morin FC, Egan EA, Norfleet WT: Indomethacin does not diminish the pulmonary vascular response of the fetus to increased oxygen tension. Pediatr Res. 1988, 24: 696-699.
Article
PubMed
Google Scholar
Cooke JP, Rossitch E, Andon NA, Loscalzo J, Dzau VJ: Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator. J Clin Invest. 1991, 88: 1663-1671.
Article
PubMed
PubMed Central
Google Scholar
Theis JG, Liu Y, Coceani F: ATP-gated potassium channel activity of pulmonary resistance vessels in the lamb. Can J Physiol Pharmacol. 1997, 75: 1241-1248. 10.1139/cjpp-75-10-11-1241.
Article
PubMed
Google Scholar
Cornfield D, Saqueton C, Porter V, Herron J, Resnik E, Haddad IY, Reeve HL: Voltage-gated K+ channel activity in ovine pulmonary vasculature is developmentally regulated. Am J Physiol. 2000, 278: L1297-L1304.
Google Scholar
Cassin S, Dawes GS, Mott JC, Ross BB, Strang LB: The vascular resistance of the fetal and newly ventilated lung of the lamb. J Physiol (Lond). 1964, 171: 61-79.
Article
Google Scholar
Leffler CW, Hessler JR, Green RS: The onset of breathing stimulates pulmonary vascular prostacyclin synthesis. Pediatr Res. 1984, 18: 938-942.
Article
PubMed
Google Scholar
Tod ML, Yoshimura K, Rubin LJ: Indomethacin prevents ventilation-induced decreases in pulmonary vascular resistance of the middle region in fetal lambs. Pediatr Res. 1991, 29: 449-454.
Article
PubMed
Google Scholar
Velvis H, Moore PK, Heymann MA: Prostaglandin inhibition prevents the fall in pulmonary vascular resistance as a result of rhythmic distension of the lungs in fetal lambs. Pediatr Res. 1991, 30: 62-68.
Article
PubMed
Google Scholar
Cornfield DN, Chatfield BA, McQueston JA, McMurtry IF, Abman SH: Effects of birth-related stimuli on L-arginine-dependent pulmonary vasodilation in ovine fetus. Am J Physiol. 1992, 262: H1474-H1481.
PubMed
Google Scholar
Tristani-Firouzi M, Martin E, Tolarova S, Weir EK, Archer SL, Cornfield DN: Ventilation-induced pulmonary vasodilation at birth is modulated by potassium channel activity. Am J Physiol. 1996, 271: H2353-H2359.
PubMed
Google Scholar
Weir EK, Archer SL: The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels. FASEB J. 1995, 9: 183-189.
PubMed
Google Scholar
Sham JS, Crenshaw BR, Deng LH, Shimoda LA, Sylvester JT: Effects of hypoxia in porcine pulmonary arterial myocytes: roles of K(V) channel and endothelin-1. Am J Physiol. 2000, 279: L262-L272.
Google Scholar
Cornfield D, Reeve H, Tolarova S, Weir E, Archer S: Oxygen causes fetal pulmonary vasodilation through activation of a calcium-dependent potassium channel. Proc Natl Acad Sci USA. 1996, 93: 8089-8094. 10.1073/pnas.93.15.8089.
Article
PubMed
PubMed Central
Google Scholar
Haworth SG, Hall SM, Chew M, Allen KM: Thinning of fetal pulmonary arterial wall and postnatal remodelling: ultrastructural studies on the respiratory unit arteries of the pig. Virchows Arch Pathol Anat Histopathol. 1987, 411: 161-171.
Article
Google Scholar
Michel RP, Gordon JB, Chu K: Development of the pulmonary vasculature in newborn lambs: structure-function relationships. J Appl Physiol. 1991, 70: 1255-1264.
PubMed
Google Scholar
Haworth SG, Hislop AA: Normal structural and functional adaptation to extra-uterine life. J Pediatr. 1981, 98: 915-918.
Article
PubMed
Google Scholar
Owen-Thomas JB, Reeves JT: Hypoxia and pulmonary artery pressure in the rabbit. J Physiol (Lond). 1969, 201: 665-672.
Article
Google Scholar
Durmowicz AG, Orton EC, Stenmark KR: Progressive loss of vasodilator responsive component of pulmonary hypertension in neonatal calves exposed to 4,570 m. Am J Physiol. 1993, 265: H2175-H2183.
PubMed
Google Scholar
Clement de Clety S, Decell M, Tod M, Sirois P, Gordon J: Developmental changes in synthesis of and responsiveness to prostaglandins I2 and E2 in hypoxic lamb lungs. Can J Physiol Pharmacol. 1998, 76: 764-771. 10.1139/cjpp-76-7-8-764.
Article
Google Scholar
Gordon JB, Hortop J, Hakim TS: Developmental effects of hypoxia and indomethacin on distribution of vascular resistances in lamb lungs. Pediatr Res. 1989, 26: 325-329.
Article
PubMed
Google Scholar
Belik J, Halayko A, Rao K, Stephens NL: Pulmonary vascular smooth muscle: biochemical and mechanical developmental changes. J Appl Physiol. 1991, 71: 1129-1135.
PubMed
Google Scholar
Liu SF, Hislop AA, Haworth SG, Barnes PJ: Developmental changes in endothelium-dependent pulmonary vasodilatation in pigs. Br J Pathol. 1992, 106: 324-330.
Google Scholar
O'Donnell DC, Tod ML, Gordon JB: Developmental changes in endothelium-dependent relaxation of pulmonary arteries: role of EDNO and prostanoids. J Appl Physiol. 1996, 81: 2013-2019.
PubMed
Google Scholar
Gordon JB, Martinez FR, O'Donnell DC, Tod ML: Effects of hypoxia and vascular tone on endothelium-dependent and -independent responses in developing lungs. J Appl Physiol. 1995, 79: 824-830.
PubMed
Google Scholar
Perreault T, De Marte J: Maturational changes in endothelium-derived relaxations in newborn piglet pulmonary circulation. Am J Physiol. 1993, 264: H302-H309.
PubMed
Google Scholar
Levin DL: Effects of inhibition of prostaglandin synthesis on fetal development, oxygenation, and the fetal circulation. Semin Perinatol. 1980, 4: 35-44.
PubMed
Google Scholar
Fineman JR, Wong J, Morin FC, Wild LM, Soifer SJ: Chronic nitric oxide inhibition in utero produces persistent pulmonary hypertension in newborn lambs. J Clin Invest. 1994, 93: 2675-2683.
Article
PubMed
PubMed Central
Google Scholar
Ivy D, Parker T, Abman S: Prolonged endothelin B receptor blockade causes pulmonary hypertension in the ovine fetus. Am J Physiol. 2000, 279: L758-L765.
Google Scholar
Storme L, Rairigh RL, Parker TA, Kinsella JP, Abman SH: Acute intrauterine pulmonary hypertension impairs endothelium-dependent vasodilation in the ovine fetus. Pediatr Res. 1999, 45: 575-581.
Article
PubMed
Google Scholar
McQueston JA, Kinsella JP, Ivy DD, McMurtry IF, Abman SH: Chronic pulmonary hypertension in utero impairs endothelium-dependent vasodilation. Am J Physiol. 1995, 268: H288-H294.
PubMed
Google Scholar
Cornfield D, Resnick E, Herron J, Abman S: Chronic intra-uterine pulmonary hypertension decreases calcium-sensitive potassium channel mRNA expression. Am J Physiol. 2000, 297: L857-L862.
Google Scholar
Fike C, Kaplowitz M, Thomas C, Nelin L: Chronic hypoxia decreases nitric oxide production and endothelial nitric oxide synthase in newborn pig lungs. Am J Physiol. 1998, 274: L517-L526.
PubMed
Google Scholar
Tulloh RM, Hislop AA, Boels PJ, Deutsch J, Haworth SG: Chronic hypoxia inhibits postnatal maturation of porcine intrapulmonary artery relaxation. Am J Physiol. 1997, 272: H2436-H2445.
PubMed
Google Scholar
Stenmark KR, James SL, Voelkel NF, Toews WH, Reeves JT, Murphy RC: Leukotriene C4 and D4 in neonates with hypoxemia and pulmonary hypertension. N Engl J Med. 1983, 309: 77-80.
Article
PubMed
Google Scholar
Abman SH, Stenmark KR: Changes in lung eicosanoid content during normal and abnormal transition in perinatal lambs. Am J Physiol. 1992, 262: L214-L222.
PubMed
Google Scholar
Allen SW, Chatfield BA, Koppenhafer SA, Schaffer MS, Wolfe RR, Abman SH: Circulating immunoreactive endothelin-1 in children with pulmonary hypertension. Am Rev Respir Dis. 1993, 148: 519-522.
Article
PubMed
Google Scholar
Steinhorn RH, Morin FC, Gugino SF, Giese EC, Russell JA: Developmental differences in endothelium-dependent responses in isolated ovine pulmonary arteries and veins. Am J Physiol. 1993, 264: H2162-H2167.
PubMed
Google Scholar