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Abstract 

Background:  Respiratory infections such as influenza account for significant global mortality each year. Generating 
lipid profiles is a novel and emerging research approach that may provide new insights regarding the development 
and progression of priority respiratory infections. We hypothesized that select clusters of lipids in human sputum 
would be associated with specific viral infections (Influenza (H1N1, H3N2) or Rhinovirus).

Methods:  Lipid identification and semi-quantitation was determined with liquid chromatography and high-resolu‑
tion mass spectrometry in induced sputum from individuals with confirmed respiratory infections (influenza (H1N1, 
H3N2) or rhinovirus). Clusters of lipid species and associations between lipid profiles and the type of respiratory viral 
agent was determined using Bayesian profile regression and multinomial logistic regression.

Results:  More than 600 lipid compounds were identified across the sputum samples with the most abundant lipid 
classes identified as triglycerides (TG), phosphatidylethanolamines (PE), phosphatidylcholines (PC), Sphingomyelins 
(SM), ether-PC, and ether-PE. A total of 12 lipid species were significantly different when stratified by infection type 
and included acylcarnitine (AcCar) (10:1, 16:1, 18:2), diacylglycerols (DG) (16:0_18:0, 18:0_18:0), Lysophosphatidylcho‑
line (LPC) (12:0, 20:5), PE (18:0_18:0), and TG (14:1_16:0_18:2, 15:0_17:0_19:0, 16:0_17:0_18:0, 19:0_19:0_19:0). Cluster 
analysis yielded three clusters of lipid profiles that were driven by just 10 lipid species (TGs and DGs). Cluster 1 had 
the highest levels of each lipid species and the highest prevalence of influenza A H3 infection (56%, n = 5) whereas 
cluster 3 had lower levels of each lipid species and the highest prevalence of rhinovirus (60%; n = 6). Using cluster 3 as 
the reference group, the crude odds of influenza A H3 infection compared to rhinovirus in cluster 1 was significantly 
(p = 0.047) higher (OR = 15.00 [95% CI: 1.03, 218.29]). After adjustment for confounders (smoking status and pulmo‑
nary comorbidities), the odds ratio (OR) became only marginally significant (p = 0.099), but the magnitude of the 
effect estimate was similar (OR = 16.00 [0.59, 433.03]).

Conclusions:  In this study, human sputum lipid profiles were shown to be associated with distinct types of viral 
infection. Better understanding the relationship between respiratory infections of global importance and lipids 
contributes to advancing knowledge of pathogenesis of infections including identifying populations with increased 
susceptibility and  developing effective therapeutics and biomarkers of health status.
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Background
Respiratory infections are a major public health issue 
and are among the top ten leading causes of death 
worldwide [1]. Just in the U.S., more than 500 million 
infections occur annually at a loss of 40 billion dol-
lars and up to 100 million school and work days lost 

Open Access

*Correspondence:  sabo@phhp.ufl.edu

1 Department of Environmental and Global Health, Center for Environmental 
and Human Toxicology, Emerging Pathogens Institute, University of Florida, 
Gainesville, Florida 32611, USA
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12931-022-02091-w&domain=pdf


Page 2 of 13Humes et al. Respiratory Research          (2022) 23:177 

[2]. The Centers for Disease Control and Prevention 
(CDC) estimates that each year influenza virus infec-
tions account for up to 35.6 million cases of illness, 
710,000 hospitalizations, and 56,000 deaths [3]. In 
response to the tremendous economic and health bur-
den, the World Health Organization (WHO) has set 
a research agenda for influenza, which addresses the 
need to reduce the risk of pandemic emergence, limit 
spread, minimize disease burden, optimize treatment, 
and promote development of new public health tools 
[4]. To address these areas, it is imperative that we bet-
ter understand individual factors that impact suscepti-
bility to infection or severity of infection, and with that 
knowledge, develop ways to improve prognosis and 
therapeutic interventions.

A growing area of research is centered on the role of 
lipids in modulating host–pathogen interactions and the 
host immune response. The discovery that lipids play 
important roles in the context of lung infections is not 
new, although the vast number of lipids, particularly at 
the species level, have challenged our ability to define 
their specific roles. More recent technological advance-
ments, such as mass spectrometry, have improved our 
ability to search for and identify lipid profiles and spe-
cific lipid classes or species that vary with  disease condi-
tions. For example, data from recent ‘omic’ studies have 
emphasized possible links between lipids and the innate 
immune response to viral respiratory infections that spe-
cifically include viral sensing and modulation of immune 
signaling pathways  [5–9] which both enhances the viral 
lifecycle and assists the host immune response [10].

Studies have provided evidence that lipids and their 
metabolites can be used to differentiate between disease 
states such as community acquired and non-community 
acquired pneumonia cases [13] and between healthy con-
trols and asthmatic patients [14]. Few studies, however, 
have investigated a role for lipids in respiratory infections 
using sputum samples, and no studies have investigated 
associations between sputum lipid profiles and respira-
tory infections.

Sputum is routinely collected in a relatively noninva-
sive manner and has been shown to reflect the contents 
of BALF and epithelial lining fluid [12, 16]. Several stud-
ies have also demonstrated that sputum is as good or 
better than nasal swabs/aspirates for detection of influ-
enza viruses, bacterial pneumonia, and other respiratory 
infections [17–19] that may colonize the lower airways.

Therefore, the objective of this study was to examine 
the associations between lipid profiles of sputum and the 
type of respiratory viral agent. We hypothesized that lipid 
profiles would cluster together based on specific causa-
tive viral agents of infection.

Methods
Sample collection and processing
The sputum samples for this study were collected from 
University of Florida (UF) Health Shands Hospital 
over a six-month period (January-June 2019), which 
included the typical peak of flu season defined by the 
CDC (https://​www.​cdc.​gov/​flu/​about/​season/​flu-​sea-
son.​htm). Sputum samples were collected as part of 
routine care for diagnostic testing by the UF Health 
Shands Clinical Microbiology Laboratory. After col-
lection, the samples were processed for requested tests 
and any leftover sample was eligible for inclusion in the 
study and stored at 4 °C.

Sputum samples were excluded if they contained > 10 
squamous epithelial cells after gram stain and under 
bright-field microscopy (10X), defined as few or none 
(on a scale of none, few, moderate, many) as they had 
a high likelihood of saliva contamination. Because the 
sputum came from patients with moderate to severe 
respiratory infections the samples likely contained 
moderate  to many (> 25) leukocytes. The study popula-
tion was limited to patients for which a nasopharyngeal 
(NP) swab was also tested for pathogen identification 
using the BioFire FilmArray® system, a multiplex PCR 
capable of identifying 20 respiratory pathogens. Sam-
ples for this study were collected from children and 
adults irrespective of mechanical ventilation status, 
however those with suspected tuberculosis infection 
(acid-fast bacilli testing by Clinical Laboratory) and 
those who were pregnant or otherwise immunocom-
promised (if known at time of sample collection) were 
excluded.

Once an eligible sample was identified via surveil-
lance of Clinical Laboratory records, it was obtained 
and given a unique identifier. The results from the Bio-
Fire FilmArray® tests of NP swabs in the Clinical Lab-
oratory were used to determine the causative agent of 
infection for each patient. If there was sufficient sam-
ple volume (at least four mL), the sputum was tested 
using the BioFire FilmArray® 1.5 Classic Respiratory 
Panel to examine concordance with the same test but 
different sample type (sputum vs. NP swab, Additional 
file 1: Table S2). Since the BioFire FilmArray® 1.5 Clas-
sic Respiratory Panel is optimized for use with NP swab 
samples, we had to optimize preparation of sputum 
samples, which requires incubation with a mucolytic 
agent, in this case Dithiothreitol (DTT). Details of this 
experiment are described in the supplemental section 
(Additional file  1: Table  S1) confirming that the DTT 
did not interfere with the BioFire assay. The remaining 
sputum was aliquoted and stored at -80 °C pending lipi-
domic analyses.

https://www.cdc.gov/flu/about/season/flu-season.htm
https://www.cdc.gov/flu/about/season/flu-season.htm
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Lipidomics
Once all the samples were collected, one aliquot of 
each sample was thawed and inactivated with metha-
nol before being transferred to the Mass Spectrometry 
Core of the Southeast Center for Integrated Metabo-
lomics (SECIM) for further extraction and analysis.

Samples were normalized to a sample protein con-
centration of 500  μg/mL, as measured by the Qubit™ 
Protein Assay Kit (ThermoFisher Scientific). Red Cross 
Plasma (RCP) was extracted with the samples as a 
control. Both the samples and RCP were spiked wtih 
10 × dilution of lipid internal standard solution. An 
extraction blank (saline without internal standards) 
was also included. The lipids were extracted using a 
methanol-chloroform extraction, following the Folch 
method [20]. Pooled samples from each group (by 
infection type) were prepared by combining a small 
volume of each sample within a group. Mobile phase 
blank (2-propanol) and Neat QC (2:2:196 (v/v/v) lipid 
internal standards solution/ lipid injection standards 
solution/2-propanol) were also included.

Untargeted LC–MS lipidomics profiling was per-
formed on a Thermo Q-Exactive Orbitrap mass spec-
trometer with Dionex UHPLC and autosampler 
(Thermo Scientific, San Jose, CA). All samples, blanks, 
and controls were analyzed in positive and negative 
heated electrospray ionization with a mass resolu-
tion of 35,000 at m/z 200 as separate injections. Sepa-
ration was achieved on an Acquity BEH C18 1.7  µm, 
50 × 2.1  mm, 1.7  µm column with mobile phase A as 
60:40 Acetonitrile:Water containing 10  mM Ammo-
nium formate with 0.1% formic acid and mobile phase 
B as 90:8:2 2-propanol: acetonitrile:water containing 
10 mM ammonium formate with 0.1% formic acid. The 
flow rate was 500 µL/min with a column temperature 
of 50  °C. 5 µL was injected for negative ions and 3 µL 
for positive ions. The samples were randomized and 
analyzed following an injection sequence consisting of 
3 mobile phase, Neat QC, RCP, extraction blank and 10 
samples. Every 10 samples were bracketed by a mobile 
phase blank, Neat QC, RCP and extraction blank injec-
tions. Full Scan MS was acquired from individual and 
pooled samples in order to compare lipid intensities 
across groups. MS/MS spectra from data-dependent 
(ddMS2-top10) and all-ion fragmentation (AIF) were 
acquired on RCP, pooled samples, and/or representa-
tive samples from each group for lipid identification 
purposes. Only lipids that were identified by MS/MS 
were included in the statistical analyses due to the pres-
ence of polyethylene glycol (PEG) at the early elution 
times.

Retrospective chart review
After all sputum samples were obtained and coded, 
retrospective chart review was conducted to abstract 
key patient characteristics. Electronic medical records 
were searched for the following information: (1) Demo-
graphics (gender, age range, body mass index (BMI), 
occupation); (2) Smoking status, current medications 
(specifically antibiotics, statins, steroids), travel history, 
flu vaccine status; (3) Comorbidities (cardiovascular dis-
ease, malignancy, immunodeficiency, pulmonary diseases 
such as asthma, COPD, recent upper respiratory infec-
tion, fibrosis); (4) Date of sample collection, microbiology 
lab results, chest x-ray results; (5) Any physician diagno-
sis coinciding with sputum collection; (6) Any pulmonary 
interventions performed prior to sputum collection (such 
as mechanical ventilation, nebulizer treatment, support-
ive oxygen).

Statistical analyses
Data from positive and negative ion modes were analyzed 
separately using in-house LipidMatch Flow software. 
LipidMatch Flow was used for file conversion (MSCon-
vert, Proteowizard), peak picking (MzMine 2.26), blank 
feature filtering, and identification [21]. Data analysis 
was performed on the three sample groups (stratified 
by infection type—Influenza A H1-2009, Influenza A 
H3, and Rhinovirus) using MetaboAnalyst 3.0. We uti-
lized LION, a lipid ontology enrichment web-based tool 
(http://​www.​lipid​ontol​ogy.​com/) to generate informa-
tion on pathways that our lists of lipids enriched for using 
both target list modes for all lipids and ranking mode for 
comparisons between infection types.

Further analysis using Bayesian Profile Regression 
method [22, 23] was utilized to first identify clusters of 
individuals with similar patterns of lipid expression (i.e. 
similar lipid phenotypes). In our implementation of 
Bayesian profile regression, we leveraged a novel variable 
selection method in order to identify which lipid species 
were driving the observed clustering pattern. Prior to 
Bayesian profile regression, we first screened for candi-
date lipid species using the Kruskal–Wallis statistical test 
to determine if lipid species levels varied significantly by 
the type of respiratory viral infection. Given the limita-
tions of the small sample size in our study, adjustment 
of p-values is overly conservative. We therefore applied 
a variable selection cut-off whereby those lipid species 
with a p-value ≤ 0.2 from the Kruskal–Wallis test were 
included  for further clustering analyses. We emphasize 
that this step is for screening candidate lipid species for 
cluster analysis and that statistical inference in our study 
is based strictly on regression analysis (described below). 
For the cluster analysis with Bayesian profile regression, 

http://www.lipidontology.com/
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the peak height of each selected lipid species was first 
categorized into tertiles because of the highly skewed dis-
tributions of lipid quantities. We note that while Bayesian 
profile regression can be a type of supervised algorithm 
when including the outcome, in our study the clustering 
algorithm was unsupervised in that the outcome was not 
included in the model to inform the clustering alloca-
tion. After individual sputum samples were allocated to 
a cluster, we computed Z-scores of median peak height 
of the different lipid species in order to visualize with a 
heat map how the individuals’ levels of lipid species were 
jointly distributed within each cluster.

Finally, crude and adjusted multinomial logistic regres-
sion were performed to test the relationship between 
cluster and prevalence of type of infection. In these final 
models, the clusters were fit as three-level factor vari-
ables and the type of respiratory viral agent was set as 
the outcome (influenza A H1-2009, influenza A H3, rhi-
novirus [reference]). A causal diagram or directed acy-
clic graph (DAG; DAGitty version 2.3) was constructed 
to visualize and identify the confounding variables that 
may be influencing the relationship between lung lipids 
(exposure) and viral respiratory infection (outcome) 
(Additional file 1: Figure S1). Our review of the literature, 
in addition to our construction of a DAG, indicated that 
age, BMI, smoking status, and presence of pulmonary 
comorbidities such as asthma or COPD could act as pos-
sible confounders in our study. We then included only 
those covariates for adjustment in multinomial regres-
sion if they showed a significant association (p < 0.05) 
with infection type in bivariate analyses. We emphasize 
that one important benefit of basing inference in our 
study using a dimension reduction technique is that we 
avoid multiple tests of association, which would other-
wise require adjustment of p-values that would be overly 
conservative in our study with such a small sample size.

Results
Subject characteristics
Thirty-five sputum samples were collected between 
January and June of 2019 for the study. Of those thirty-
five samples, five were excluded from analysis in order 
to conduct more meaningful comparisons due to age 
(three total samples from children), pregnancy (one 
sample; patient’s pregnancy status identified after sam-
ple collection), and viral agent type (one patient posi-
tive for parainfluenza). The remaining thirty samples 
were used for lipidomic analyses and retrospective chart 
review. The study population consisted of 16 males and 
14 females with 9 positives for influenza A H1-2009, 11 
positives for influenza A H3, and 10 positives for rhinovi-
rus. Other study population characteristics, such as age, 
body mass index (BMI), smoking status, and pulmonary 

comorbidities, are summarized in Table 1. Concordance 
of viral status between NP swab and sputum samples was 
performed on seven samples using the BioFire FilmAr-
ray® 1.5 Classic Respiratory Panel and results showed 
100% agreement between sample types (Additional file 1: 
Table S2).

Identification and classification of sputum lipids by class 
and species
Across all samples, 27 and 23 lipid classes were identified 
in the positive (Fig.  1A), and negative modes (Fig.  1B), 
respectively. The most abundant lipid classes identified 
were TG, PE, PC, SM, ether-PC, and ether-PE. Evaluat-
ing the level of lipids at the class level across respiratory 

Table 1  Description of patient characteristics

Population characteristics Number 
(%)

Total 30

Sex

Male 16 (53.33)

Female 14 (46.67)

Age

18-29 0 (0.00)

30-39 2 (6.67)

40-49 3 (10.00)

50-59 5 (16.67)

60-69 10 (33.33)

70-79 2 (6.67)

80-89 7 (23.33)

≥90 1 (3.33)

BMI

Underweight (<18.5) 2 (6.67)

Normal (18.5 to <25) 9 (30.00)

Overweight (25 to <30) 11 (36.67)

Obese (≥30) 8 (26.67)

Smoking Status

Never 11 (36.67)

Former 10 (33.33)

Current 9 (30.00)

Pulmonary Comorbidities

None 17 (56.67)

Asthma or COPD 13 (43.33)

Mechanical Ventilation

None 21 (70.00)

Required 9 (30.00)

Infection Present

Influenza A H1-2009 9 (30.00)

Influenza A H3 11 (36.67)

Rhinovirus 10 (33.33)
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infection type yielded profiles that were similar (Fig.  2). 
Only two lipid classes showed significant differences 
by infection type, DG and FAHFA (Fig.  3), that were 
lower in sputum samples from patients that tested posi-
tive for Rhinovirus compared to Influenza H3N2. Other 
lipid classes for which no significant differences were 
noted are presented in Additional file  1: Figure S2. At 
the species level, 392 lipid species in the positive mode 
and 237 lipid species in the negative mode were iden-
tified. Kruskal–Wallis tests showed that the levels of 
12 lipid species, mostly saturated lipids, were signifi-
cantly different when stratified by infection type and 
included AcCar (10:1), AcCar (16:1), AcCar (18:2), DG 
(16:0_18:0), DG (18:0_18:0), LPC (12:0), LPC (20:5), PE 
(18:0_18:0), TG (14:1_16:0_18:2), TG (15:0_17:0_19:0), 
TG (16:0_17:0_18:0), TG (19:0_19:0_19:0) (Fig. 4).

Lipid ontology enrichment analysis was performed to 
associate lipids by infection type to chemical and bio-
logical features. Using the ranking mode, input lipids are 
ranked by numeric values and compared between two 
groups. Figure 5 shows the enriched pathways/functions 
for (H1 vs H3, H1 vs Rhino, and Rhino vs H3). In general, 
the H3 samples were enriched for lipids associated with 
neutral intrinsic curvature and diacylglycerols (compared 
to H1); Rhinovirus samples were enriched for processes 
associated with temperature transitions, triacylglycer-
ols, lipid storage, and lipid droplet formation (compared 
to H1); H3 showed the most significant association with 
fatty acids (compared to Rhinovirus).

Lipid profile cluster and regression analyses
Lipids with a p-value of < 0.2 in a Kruskal–Wallis analy-
sis comparing the lipid expression level for each infection 
type were selected for Bayesian profile regression cluster-
ing (35 lipids in the positive mode, 9 lipids in the nega-
tive mode). To get a sense for the functional role of these 
lipids, lipid ontology enrichment analysis was performed 
using the target-list mode where this subset of 35 lipids 
was compared to the total set of lipids. Results show 
the most significantly enriched pathways are related to 
glycerolipids, lipids that have headgroups with neutral 
charges, and triacylglycerols which collectively represent 
DGs and TGs (Fig. 5D).

Cluster analysis (omitting infection type) with Bayes-
ian profile regression was used as a variable selection 
step prior to multinomial logistic regression, so only 
those lipid species driving the clustering (median > 0.5) 
were included in the final regression model. Clustering 
with variable selection yielded three clusters of lipid pro-
files in the positive mode and two clusters in the nega-
tive mode. In the positive mode, those three clusters were 
driven by just 10 of the 35 selected lipid species. In the 
negative mode, only 9 lipids were selected for clustering, 

and the two yielded clusters were not driven by any spe-
cific species, suggesting that the lipids identified in the 
negative mode are more similar across the patient sam-
ples. Because of this, no further analyses were conducted 
with the negative mode lipids. Heat maps (using Z-scores 
to put median peak lipid values on the same numeric 
scale) are presented for each lipid species in each cluster 
(Fig. 6). In the positive mode, cluster 1 has higher levels 
of each lipid species and the highest prevalence of influ-
enza A H3 infection (56%, n = 5) (Fig. 6). Cluster 3, over-
all, has lower levels of each lipid species and the highest 
prevalence of rhinovirus (60%; n = 6). Cluster 2 has 
roughly median levels of each lipid species with 36% of 
the individuals positive for Influenza A H1-2009 (n = 4), 
36% positive for Influenza A H3 (n = 4), and 27% positive 
for Rhinovirus (n = 3). Cluster 3 was set as the reference 
group for the crude and adjusted multinomial regres-
sion models. The crude odds of influenza A H3 infec-
tion compared to rhinovirus in cluster 1 (with cluster 3 
as reference group) was significantly (p = 0.047) higher 
(OR = 15.00 [95% CI: 1.03, 218.29])  (Table  2). After 
adjustment for confounders (smoking status [never, ever, 
or current], and pulmonary comorbidities), the odds 
ratio (OR) became only marginally significant (p = 0.099), 
but the magnitude of the effect estimate was similar 
(OR = 16.00 [0.59, 433.03]) (Table 2).

Discussion
In order to investigate associations between sputum lipid 
profiles and viral respiratory infections, thirty sputum 
samples from patients with active viral respiratory infec-
tions (influenza A H1-2009, influenza A H3, rhinovirus) 
underwent lipidomics analyses. Statistical analysis was 
performed to identify differences in the abundance of 
lipid species between viral infection status, and Bayes-
ian Profile Regression coupled with multinomial logistic 
regression was then utilized to group similar lipid profiles 
and examine the association of these profiles with infec-
tion type. This is the first study, to our knowledge, that 
examines potential links between a variety of viral res-
piratory pathogens and several different classes of lipids, 
at the species level, in sputum. Another unique strength 
of this work is the use of both conventional multivariate 
analyses and a dimension reduction clustering technique 
(Bayesian Profile Regression) to analyze the lipidomic 
data.

The lipidomics analyses identified more than 600 
unique lipid species in our sputum samples, with TG, 
PC, and PE as some of the most abundant species. This 
lipid coverage is similar to sputum profiling reported 
by Brandsma and colleagues who identified about 
100 known species of lipids in sputum, with PC and 
PE presenting as the most abundant classes [24], and 
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Dushianthan and colleagues who reported PC as the 
most abundant lipid class in sputum [16]. Work by Tel-
enga, t’Kindt, and colleagues profiled over 1,500 lipids 
in sputum samples, which is substantially more than 
our work. However they still identified PC as the most 

abundant lipid, along with TG [12, 25], which is very sim-
ilar to the profiles identified here.

Much of the previously published work on lipids in 
sputum focuses on either healthy populations, smokers, 
or patients with cystic fibrosis, asthma, or COPD. In our 
study, we did not have any healthy controls (because 

Fig. 1  Number of lipid species identified by mass spectrometry across all sputum samples (N = 30) for each lipid class identified in both the A 
positive and B negative modes
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Fig. 2  Percent of lipid classes identified by mass spectrometry and stratified by infection type, influenza A H1 (N = 9), Influenza A H3 (N = 11) and 
Rhinovirus (N = 10), in the positive (upper panel) and negative (lower panel) modes. Note that only lipid classes that make up greater than 5% of the 
total lipid profile are labeled

Fig. 3  Mean intensity based on peak height of spectra for Diacylglycerols (DG) and Fatty Acid ester of Hydroxyl Fatty Acid (FAHFA) for each infection 
type, influenza A H1 (N = 9), Influenza A H3 (N = 11) and Rhinovirus (N = 10). Significant differences in intensity were determined by Kruskal–Wallis 
(P < 0.05) and marked with asterisks
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we were using sputum samples that are part of routine 
diagnostic care for those with respiratory illnesses), and 
we excluded patients with cystic fibrosis. However, we 
did collect information from medical records regard-
ing smoking status, asthma, and COPD. We observed 
that about 30% of our population were current smokers 
(> national average of 15.5% in 2016 [26]) and 43% of 
our population had asthma, COPD, or both. This rate 
of pulmonary comorbidities is high compared to other 
published data which suggests the prevalence of COPD 
in working adults ages 40 to 70 years is 4.2% [27], and 
the prevalence of asthma, COPD, or both in those 
65 years and older is 9.9%, 9.7%, and 3.0%, respectively 
[28]. These differences are important to note because 
there is substantial evidence that smoking, asthma, and 
COPD can increase a person’s risk of respiratory infec-
tions and subsequent complications [29–36]. Addi-
tionally, lipidomic studies of sputum or BALF have 
revealed increased sphingolipid levels in smokers with 
COPD compared to smokers without COPD and never-
smokers [12, 25]; increased levels of lyso-PC (LPC), 
PC, phosphatidylglycerols (PG), phosphatidylserines 
(PS), SM, and TG in asthmatics compared to healthy 
controls [14]; and increased leukotriene and decreased 

prostaglandin levels in smokers with asthma compared 
to never smokers with asthma [37].

Using a multifaceted statistical approach, we identified 
several lipid species that were differentially expressed 
based on infection type. While we do not fully under-
stand the functional significance of these results, we 
found that DGs and TGs were strongly upregulated in 
patients with Influenza H3N2 and clustered together as 
shown in the heat map in Fig.  7. Of note, multinomial 
regression showed the odds of influenza A H3 infection 
relative to odds of rhinovirus were 15 times higher when 
comparing cluster 1 and cluster 3 (OR = 15.00 [1.03, 
218.29]). Interestingly, TG content has been shown to 
be critical to lipid droplet formation, a process that may 
be beneficial to viral replication, but may also serve to 
enhance the host immune system [38]. These results sug-
gest that a profile of increased TG and DG lipids could be 
associated with influenza A H3 infection and are excel-
lent candidates for future research.

Others have reported higher lipid levels concurrent 
with infection that are similar to what is observed in this 
population. For example, To and colleagues observed 
higher SM, Hex-Cer, and LPC species and lower lyso-PE 
(LPE) species in community-acquired compared to non-
community acquired pneumonia patients [13]. Although 

Fig. 4  Lipid species that showed significantly different intensity levels in sputum based on infection type for lipids identified in the positive mode, 
influenza A H1 (N = 9), Influenza A H3 (N = 11) and Rhinovirus (N = 10). All lipids showed significant differences in intensity based on Kruskal–Wallis 
analysis (p < 0.05). These are a subset of the lipids that were identified in the variable selection step prior to clustering (see “Methods” section for 
details)
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we did not observe increases in the exact same species, 
we did detect changes in species from those classes (i.e. 
LPC), which were selected during our initial variable 
selection step. It is interesting that LPC 12:0 is higher 
in sputum from patients with influenza (H1N1 and 

H3N2) whereas the greatest levels of LPC 20:5 occurred 
in individuals infected with RV. LPC has been shown 
to  enhance inflammatory pathways through production 
of arachidonic acid and downstream eicosanoids or by 
inhibition of viral fusion with host cell membranes [39]. 
LPC(20:0) has been positively associated with patrolling 

Fig. 5  Lipid ontology enrichment analysis (LION) was performed to associate lipids by infection type to chemical and biological features. Using the 
ranking mode, input lipids are ranked by numeric values and compared between two groups which included; A H1 vs H3; B H1 vs Rhino; C Rhino vs 
H3. D Enrichment analysis was also performed using the target-list mode where the subset of 35 lipids (N = 30) identified as driving the clustering 
was compared to the total set of lipids Significant enrichments based on p < 0.05 are shown for each analysis with the gray vertical lines indicating 
the cut-off value of significant enrichments based on q < 0.05. Bar colors are scaled with the enrichment (− log q-values)
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monocytes in patients with HIV [40] but the exact role of 
these particular LPC species in the host response to res-
piratory viruses remains to be determined. Other studies 
have reported significant increases in SM in the BALF 
of influenza-infected mice [41] and fatty acid elongation 
and desaturation during rhinovirus infection of human 
bronchial epithelial cells [42]. They suggested that these 
changes in FA metabolism play a role in supporting Rhi-
novirus replication since DG can activate protein kinase 
D, the inhibition of which has been previously shown 
to reduce rhinovirus replication [42]. In our study, we 
observed lower levels for several TG species that drove 
the clustering pattern, including those with up to 24 
carbons in their acyl chains. Our results, coupled with 

other reports from the literature, suggest that these links 
between changes in lipid levels and respiratory infections 
may have mechanistic validity and thus potentially diag-
nostic, prognostic, or therapeutic implications.

We acknowledge that this study is not without limita-
tions. First and foremost, it was a small study with fairly 
low sample size and did not include a control group (i.e. 
those known to be without a respiratory infection or high 
sputum conditions without respiratory infection). How-
ever, despite the small sample size, we were able to logi-
cally compare our results to other studies where lipids 
from control individuals were reported. Importantly, we 
were also able to observe significant associations, which 
emphasizes the need to continue this line of research 

Fig. 6  Heat map showing the ten lipid species driving the clusters and their association with infection type determined by Bayesian profile 
regression and multinomial logistic regression. Z-scores for each of the lipid species were calculated from the data (N = 30) and then median values 
of Z-scores within each cluster were calculated. Darker red colors indicate higher lipid levels and lighter colors represent lower lipid levels for each 
species for each infection type influenza A H1 (N = 9), Influenza A H3 (N = 11) and Rhinovirus (N = 10)
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with a larger sample size and control group in order to 
better characterize and substantiate these interesting and 
novel findings. Because this is a cross-sectional study, 
there was also no way to determine the temporality of 
these lipid changes from onset to progression of infec-
tion. Therefore, we acknowledge it is equally possible that 
the patients had perturbed lipid profiles prior to infection 
and were therefore more susceptible to infection or that 
the lipid profiles were perturbed as a result of the infec-
tion. Prospective cohort studies are needed to tease out 
the temporal component of these lipid changes. Finally, 
we are aware that the sputum likely contained leukocytes 
which contributed to the overall lipid profiles generated. 
The contribution of leukocytes is important as the spu-
tum of  individuals with health conditions such as infec-
tions will commonly contain leukocytes. Despite these 
limitations, this cross-sectional study  was successful in 
examining possible associations between lipid profiles 
of sputum and viral respiratory infections that have both 
mechanistic and clinical importance.

Conclusions
This study identified a significant association for a novel 
cluster of lipid profiles from the positive ionization mode, 
and the odds of influenza A H3 infection compared to 
rhinovirus were 15 times higher when comparing cluster 
1 and cluster 3 (OR = 15.00 [1.03, 218.29]). Despite the 
lack of statistical significance after adjustment, this large 
effect size, the magnitude of which did not substantially 
change after adjustment, supports our hypothesis that 
different lipid profiles are associated with different types 
of viral infection, and strongly endorses the continuation 
of this work with larger sample sizes in order to better 

characterize these novel findings. Work such as this can 
contribute to the growing body of literature on the role 
of lipids in respiratory infection pathogenesis, perhaps 
as a molecular initiating event that results in increased 
susceptibility or for potential use as therapeutics or 
biomarkers.

Abbreviations
CDC: Centers for Disease Control and Prevention; WHO: World Health Organi‑
zation; Cer: Ceramides; SM: Sphingomyelins; PE: Phosphatidylethanolamines; 
PC: Phosphatidylcholines; BALF: Bronchoalveolar lavage fluid; COPD: Chronic 
obstructive pulmonary disease; UF: University of Florida; DTT: Dithiothreitol; 
SECIM: Southeast Center for Integrated Metabolomics; RCP: Red Cross Plasma; 
PEG: Polyethylene glycol; BMI: Body mass index; DAG: Directed acyclic graph; 
DG: Diacylglycerol; FAHFA: Fatty Acid ester of Hydroxyl Fatty Acid; AcCar: 
Acylcarnitine; LPC: Lysophosphatidylcholine; TG: Triglycerides; OR: Odds ratio; 
PG: Phosphatidylglycerols; PS: Phosphatidylserines.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12931-​022-​02091-w.

Additional file 1: Table S1. Optimization of the BioFire FilmArray® 
platform for sputum samples. Table S2. Concordance of pathogen 
identification between nasalpharyngeal (NP) swab and sputum samples. 
Table S3. Number of lipids identified in each class and percent of total 
lipids for positive and negative mode. Figure S1. Causal diagram, also 
known as directed acyclic graph (DAG), that presents a visualization of the 
other variables that may play a role in the relationship between lung lipids 
(exposure) and viral respiratory infection (outcome). Figure S2. Intensity 
of all lipids identified in the positive (S1A) and negative (S1B) modes.

Acknowledgements
Not applicable.

Author contributions
STH conceived and designed the study, performed sample processing for 
pathogen ID, analyzed results, performed retrospective chart review, drafted 
the manuscript, and critically reviewed and approved the final version of the 

Table 2  Odds ratios for lipid clusters expressed as crude and adjusted for confounders

*p-value = 0.047
† p-value = 0.099

OR Crude (95% CI)

Clusters

1 2 3

Influenza A H1-2009 9.00 (0.56, 143.88) 4.00 (0.45, 35.79) Ref.

Influenza A H3 15.00 (1.03, 218.29)* 4.00 (0.45, 35.79) Ref.

Rhinovirus Ref. Ref. –

OR Crude (95% CI)

Clusters

1 2 3

Influenza A H1-2009 7.96 (0.36, 173.88) 2.36 (0.16, 35.43) Ref.

Influenza A H3 16.00 (0.59, 433.03)† 3.38 (0.19, 60.41) Ref.

Rhinovirus Ref. Ref. –

https://doi.org/10.1186/s12931-022-02091-w
https://doi.org/10.1186/s12931-022-02091-w


Page 12 of 13Humes et al. Respiratory Research          (2022) 23:177 

manuscript. NI and CP assisted with IRB protocols, identification of sputum 
samples with positive respiratory infection testing, and approved the final ver‑
sion of the manuscript. TJG performed the lipidomics profiling, data analysis, 
drafted the manuscript, and approved the final version of the manuscript. 
JAL assisted with optimization of pathogen identification in sputum samples 
using the Biofire array system and critically reviewed and approved the final 
version of the manuscript. ESC performed the clustering with Bayesian Profile 
Regression coupled with multinomial logistic regression, drafted the manu‑
script, and approved the final version of the manuscript. TSA conceived and 
designed the study, analyzed results, drafted the manuscript. All authors read 
and approved the final manuscript.

Funding
This research was supported by a pilot Grant from the UF Clinical Translational 
Science Institute which supported study design, collection, analysis, and 
interpretation of data and in writing the manuscript.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethics Statement
This study was reviewed and approved with a HIPAA Waiver of Consent by the 
University of Florida Institutional Review Board (IRB201703082; IRB201800108).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Environmental and Global Health, Center for Environmental 
and Human Toxicology, Emerging Pathogens Institute, University of Florida, 
Gainesville, Florida 32611, USA. 2 Division of Infectious Diseases & Global 
Medicine, University of Florida, Gainesville, Florida 32611, USA. 3 Department 
of Epidemiology, University of Florida, Gainesville, Florida 32611, USA. 4 Depart‑
ment of Pathology, Immunology and Laboratory Medicine and Southeast 
Center for Integrated Metabolomics, University of Florida, Gainesville, Florida 
32611, USA. 

Received: 24 February 2022   Accepted: 13 June 2022

References
	1.	 WHO | The top 10 causes of death. WHO/entity/mediacentre/factsheets/

fs310/en/index.html.
	2.	 Arbex MA, Santiago SL, Moyses EP, Pereira LA, Saldiva PH, Braga ALF. 

Impact of Urban Air Pollution on Acute Upper Respiratory Tract 
Infections. In: Moldoveanu A, editor. Adv Top Environ Health Air Pollut 
Case Stud InTech; 2011. http://​www.​intec​hopen.​com/​books/​advan​
ced-​topic​sin- environmental-health-and-air-pollution-case-studies/
impact-of-urban-air-pollution-on-acute-upperrespiratory- tract-infections.

	3.	 Disease Burden of Influenza | Seasonal Influenza (Flu) | CDC. 2017. https://​
www.​cdc.​gov/​flu/​about/​disea​se/​burden.​htm.

	4.	 World Health Organization. WHO Public Health Research Agenda for 
Influenza. 2017.

	5.	 Köberlin MS, Snijder B, Heinz LX, Baumann CL, Fauster A, Vladimer GI, 
Gavin A-C, Superti-Furga G. A conserved circular network of coregulated 
lipids modulates innate immune responses. Cell. 2015;162:170–83.

	6.	 Tisoncik-Go J, Gasper DJ, Kyle JE, Eisfeld AJ, Selinger C, Hatta M, Morrison 
J, Korth MJ, Zink EM, Kim Y-M, Schepmoes AA, Nicora CD, Purvine SO, 
Weitz KK, Peng X, Green RR, Tilton SC, Webb-Robertson B-J, Waters KM, 
Metz TO, Smith RD, Kawaoka Y, Suresh M, Josset L, Katze MG. Integrated 
omics analysis of pathogenic host responses during pandemic h1n1 

influenza virus infection: the crucial role of lipid metabolism. Cell Host 
Microbe. 2016;19:254–66.

	7.	 Tanner LB, Chng C, Guan XL, Lei Z, Rozen SG, Wenk MR. Lipidomics 
identifies a requirement for peroxisomal function during influenza virus 
replication. J Lipid Res. 2014;55:1357–65.

	8.	 Morita M, Kuba K, Ichikawa A, Nakayama M, Katahira J, Iwamoto R, 
Watanebe T, Sakabe S, Daidoji T, Nakamura S, Kadowaki A, Ohto 
T, Nakanishi H, Taguchi R, Nakaya T, Murakami M, Yoneda Y, Arai H, 
Kawaoka Y, Penninger JM, Arita M, Imai Y. The lipid mediator protectin d1 
inhibits influenza virus replication and improves severe influenza. Cell. 
2013;153:112–25.

	9.	 Tam VC. Lipidomic profiling of bioactive lipids by mass spectrometry dur‑
ing microbial infections. Semin Immunol. 2013;25:240–8.

	10.	 Köberlin MS, Heinz LX, Superti-Furga G. Functional crosstalk between 
membrane lipids and TLR biology. Curr Opin Cell Biol. 2016;39:28–36.

	11.	 Zhao Y-Y, Cheng X-L, Lin R-C, Wei F. Lipidomics applications for disease 
biomarker discovery in mammal models. Biomark Med. 2015;9:153–68.

	12.	 Kindt R, Telenga ED, Jorge L, Van Oosterhout AJM, Sandra P, TenHacken 
NHT, Sandra K. Profiling over 1500 Lipids in Induced Lung Sputum and 
the Implications in Studying Lung Diseases. Anal Chem. 2015;87:4957–64.

	13.	 To KKW, Lee K-C, Wong SSY, Sze K-H, Ke Y-H, Lui Y-M, Tang BSF, Li IWS, Lau 
SKP, Hung IFN, Law C-Y, Lam C-W, Yuen K-Y. Lipid metabolites as potential 
diagnostic and prognostic biomarkers for acute community acquired 
pneumonia. Diagn Microbiol Infect Dis. 2016;85:249–54.

	14.	 Kang YP, Lee WJ, Hong JY, Lee SB, Park JH, Kim D, Park S, Park C-S, Park 
S-W, Kwon SW. Novel Approach for Analysis of Bronchoalveolar Lavage 
Fluid (BALF) Using HPLC-QTOF-MS-based lipidomics: lipid levels in 
asthmatics and corticosteroid-treated asthmatic patients. J Proteome Res. 
2014;13:3919–29.

	15.	 Wheelock CE, Goss VM, Balgoma D, Nicholas B, Brandsma J, Skipp PJ, 
Snowden S, Burg D, D’Amico A, Horvath I, Chaiboonchoe A, Ahmed 
H, Ballereau S, Rossios C, Chung KF, Montuschi P, Fowler SJ, Adcock IM, 
Postle AD, Dahlén S-E, Rowe A, Sterk PJ, Auffray C, Djukanović R. Applica‑
tion of ’omics technologies to biomarker discovery in inflammatory lung 
diseases. Eur Respir J. 2013;42:802–25.

	16.	 Dushianthan A, Goss V, Cusack R, Grocott MP, Postle AD. Phospholipid 
composition and kinetics in different endobronchial fractions from 
healthy volunteers. BMC Pulm Med. 2014;14:10.

	17.	 Cho M-C, Kim H, An D, Lee M, Noh S-A, Kim M-N, Chong YP, Woo JH. Com‑
parison of Sputum and Nasopharyngeal Swab Specimens for Molecular 
Diagnosis of Mycoplasma pneumoniae, Chlamydophila pneumoniae, 
and Legionella pneumophila. Ann Lab Med. 2012;32:133.

	18.	 Jeong JH, Kim KH, Jeong SH, Park JW, Lee SM, Seo YH. Comparison of 
sputum and nasopharyngeal swabs for detection of respiratory viruses. J 
Med Virol. 2014;86:2122–7.

	19.	 Covalciuc KA, Webb KH, Carlson CA. Comparison of four clinical specimen 
types for detection of influenza A and B viruses by optical immunoassay 
(FLU OIA test) and cell culture methods. J Clin Microbiol. 1999;37:3971–4.

	20.	 Folch J, Lees M, Stanley GS. A simple method for the isolation and purifi‑
cation of total lipides from animal tissues. J Biol Chem. 1957;226:497–509.

	21.	 Koelmel JP, Kroeger NM, Ulmer CZ, Bowden JA, Patterson RE, Cochran JA, 
Beecher CWW, Garrett TJ, Yost RA. LipidMatch: an automated workflow for 
rule-based lipid identification using untargeted high-resolution tandem 
mass spectrometry data. BMC Bioinformatics. 2017;18:331.

	22.	 Coker E, Gunier R, Bradman A, Harley K, Kogut K, Molitor J, Eskenazi B. 
Association between pesticide profiles used on agricultural fields near 
maternal residences during pregnancy and IQ at age 7 years. Int J Environ 
Res Public Health. 2017;14:506.

	23.	 Coker E, Liverani S, Su JG, Molitor J. Multi-pollutant modeling through 
examination of susceptible subpopulations using profile regression. Curr 
Environ Health Rep. 2018;5:59–69.

	24.	 Brandsma J, Goss VM, Yang X, Bakke PS, Caruso M, Chanez P, Dahlén S-E, 
Fowler SJ, Horvath I, Krug N. Lipid phenotyping of lung epithelial lining 
fluid in healthy human volunteers. Metabolomics. 2018;14:123.

	25.	 Telenga ED, Hoffmann RF, Kindt R, Hoonhorst SJ, Willemse BW, van 
Oosterhout AJ, Heijink IH, van Berge M, Jorge L, Sandra P. Untargeted 
lipidomic analysis in chronic obstructive pulmonary disease Uncovering 
sphingolipids. Am J Respir Crit Care Med. 2014;190:155–64.

	26.	 Jamal A, Phillips E, Gentzke AS, Homa DM, Babb SD, King BA, Neff LJ. Cur‑
rent cigarette smoking among adults—United States, 2016. Morb Mortal 
Wkly Rep. 2018;67:53.

http://www.intechopen.com/books/advanced-topicsin
http://www.intechopen.com/books/advanced-topicsin
https://www.cdc.gov/flu/about/disease/burden.htm
https://www.cdc.gov/flu/about/disease/burden.htm


Page 13 of 13Humes et al. Respiratory Research          (2022) 23:177 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	27.	 Doney B, Hnizdo E, Syamlal G, Kullman G, Burchfiel C, Martin CJ, Mujuru P. 
Prevalence of chronic obstructive pulmonary disease among US working 
adults aged 40 to 70 years: National Health Interview Survey Data 2004 to 
2011. J Occup Environ Med Coll Occup Environ Med. 2014;56:1088.

	28.	 Oraka E, Kim HJE, King ME, Callahan DB. Asthma prevalence among US 
elderly by age groups: age still matters. J Asthma. 2012;49:593–9.

	29.	 Bouneb R, Mellouli M, Bensoltane H, Baroudi J, Chouchene I, Boussarsar 
M. Characteristics and outcome of ill critical patients with influenza A 
infection. Pan Afr Med J. 2018;29:1–8.

	30.	 Gorse GJ, Donovan MM, Patel GB, Balasubramanian S, Lusk RH. Corona‑
virus and other respiratory illnesses comparing older with young adults. 
Am J Med. 2015;128:1251-e11.

	31.	 Greenberg SB. Viral respiratory infections in elderly patients and 
patients with chronic obstructive pulmonary disease. Am J Med. 
2002;112:28S-32S.

	32.	 Monto AS, Fendrick AM, Sarnes MW. Respiratory illness caused 
by picornavirus infection: a review of clinical outcomes. Clin Ther. 
2001;23:1615–27.

	33.	 Kalil AC, Thomas PG. Influenza virus-related critical illness: pathophysiol‑
ogy and epidemiology. Crit Care. 2019;23:258.

	34.	 Kwak HJ, Park DW, Kim JE, Park MK, Koo GW, Park TS, Moon J-Y, Kim TH, 
Sohn JW, Yoon HJ. Prevalence and risk factors of respiratory viral infec‑
tions in exacerbations of chronic obstructive pulmonary disease. Tohoku 
J Exp Med. 2016;240:131–9.

	35.	 Miller EK, Linder J, Kraft D, Johnson M, Lu P, Saville BR, Williams JV, Griffin 
MR, Talbot HK. Hospitalizations and Outpatient Visits for Rhinovirus-
Associated Acute Respiratory Illness in Adults. J Allergy Clin Immunol. 
2016;137:734–43.

	36.	 Nicholson KG, Kent J, Hammersley V, Cancio E. Risk factors for lower 
respiratory complications of rhinovirus infections in elderly people living 
in the community: prospective cohort study. BMJ. 1996;313:1119–23.

	37.	 Thomson NC, Chaudhuri R, Spears M, Messow CM, Jelinsky S, Miele G, 
Nocka K, Takahashi E, Hilmi OJ, Shepherd MC, Miller DK, McSharry C. Ara‑
chidonic acid metabolites and enzyme transcripts in asthma are altered 
by cigarette smoking. Allergy. 2014;69:527–36.

	38.	 Monson EA, Trenerry AM, Laws JL, Mackenzie JM, Helbig KJ. Lipid droplets 
and lipid mediators in viral infection and immunity. FEMS Microbiol Rev. 
2021. https://​doi.​org/​10.​1093/​femsre/​fuaa0​66.

	39.	 Günther-Ausborn S, Praetor A, Stegmann T. Inhibition of Influenza-
induced Membrane Fusion by Lysophosphatidylcholine. J Biol Chem. 
1995;270:29279–85.

	40.	 Bowman ER, Kulkarni M, Gabriel J, Cichon MJ, Riedl K, Belury MA, Lake JE, 
Richardson B, Cameron C, Cameron M, Koletar SL, Lederman MM, Sieg 
SF, Funderburg NT. Altered Lipidome Composition Is Related to Markers 
of Monocyte and Immune Activation in Antiretroviral Therapy Treated 
Human Immunodeficiency Virus (HIV) Infection and in Uninfected Per‑
sons. Front Immunol. 2019;10:785.

	41.	 Woods PS, Doolittle LM, Rosas LE, Joseph LM, Calomeni EP, Davis IC. 
Lethal H1N1 influenza A virus infection alters the murine alveolar 
type II cell surfactant lipidome. Am J Physiol-Lung Cell Mol Physiol. 
2016;311:L1160–9.

	42.	 Nguyen A, Guedán A, Mousnier A, Swieboda D, Zhang Q, Horkai D, Le 
Novere N, Solari R, Wakelam MJ. Host lipidome analysis during rhinovirus 
replication in HBECs identifies potential therapeutic targets. J Lipid Res. 
2018;59:1671–84.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1093/femsre/fuaa066

	Association between lipid profiles and viral respiratory infections in human sputum samples
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Sample collection and processing
	Lipidomics
	Retrospective chart review
	Statistical analyses

	Results
	Subject characteristics
	Identification and classification of sputum lipids by class and species
	Lipid profile cluster and regression analyses

	Discussion
	Conclusions
	Acknowledgements
	References


