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Abstract 

Background:  Interstitial lung abnormalities (ILA) are radiologic findings that may progress to idiopathic pulmo‑
nary fibrosis (IPF). Blood gene expression profiles can predict IPF mortality, but whether these same genes associate 
with ILA and ILA outcomes is unknown. This study evaluated if a previously described blood gene expression profile 
associated with IPF mortality is associated with ILA and all-cause mortality.

Methods:  In COPDGene and ECLIPSE study participants with visual scoring of ILA and gene expression data, we 
evaluated the association of a previously described IPF mortality score with ILA and mortality. We also trained 
a new ILA score, derived using genes from the IPF score, in a subset of COPDGene. We tested the association 
with ILA and mortality on the remainder of COPDGene and ECLIPSE.

Results:  In 1469 COPDGene (training n = 734; testing n = 735) and 571 ECLIPSE participants, the IPF score was not 
associated with ILA or mortality. However, an ILA score derived from IPF score genes was associated with ILA (meta-
analysis of test datasets OR 1.4 [95% CI: 1.2–1.6]) and mortality (HR 1.25 [95% CI: 1.12–1.41]). Six of the 11 genes in 
the ILA score had discordant directions of effects compared to the IPF score. The ILA score partially mediated the 
effects of age on mortality (11.8% proportion mediated).

Conclusions:  An ILA gene expression score, derived from IPF mortality-associated genes, identified genes with con‑
cordant and discordant effects on IPF mortality and ILA. These results suggest shared, and unique biologic processes, 
amongst those with ILA, IPF, aging, and death.
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Introduction
Interstitial lung abnormalities (ILA) are specific radio-
logic findings detected on computed tomography (CT) 
scans [1–3] and, in some instances, may represent, or 
progress to, pulmonary fibrosis [4, 5]. Both ILA and idi-
opathic pulmonary fibrosis (IPF) are associated with pul-
monary symptoms [2, 6], diminished lung function [1, 2, 
4, 5, 7, 8], and mortality [9]. Despite these clinical simi-
larities, genetic analyses reveal that these entities have 
both overlapping and distinct genetic risk alleles [10, 11]. 
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Taken together, the clinical and genetic evidence sug-
gests that ILA and IPF possess both shared and unique 
pathobiology.

The risk of IPF and IPF mortality are not due to genetic 
variants alone [12]. Gene expression data can reflect the 
combination of both genetic variation and environmental 
factors that contribute to IPF pathogenesis (e.g. cigarette 
smoking) [13]. Herazo-Maya et al. [14] used blood micro-
array data to develop a 52-gene IPF risk score that pre-
dicted mortality in multiple IPF cohorts [15]. Whether 
this IPF mortality risk score, or the specific genes in 
this risk score, are associated with ILA or ILA mortality 
in current and former smokers is not known. A periph-
eral blood signature that predicted ILA and mortality 
in ILA could be important for identifying early disease 
and those at risk for worse outcomes. In addition, shared 
gene expression features of IPF progression and ILA risk 
would highlight important biologic processes associated 
with the spectrum of interstitial lung disease from pre-
cursor lesions to irreversible fibrosis to death.

Therefore, we hypothesized that the IPF risk score 
would be associated with ILA and ILA-associated mor-
tality, and that this risk would be driven by a subset of 
the genes in the IPF mortality risk score; this subset of 
genes may also lend insight into the biologic mechanisms 
relating ILA to fibrosis and death. Briefly, the original 
IPF risk score applied the scoring algorithm of molecular 
subphenotypes (SAMS) to 52 genes expressed in periph-
eral blood mononuclear cells to predict transplant-free 
survival [14]. The SAMS method classifies participants 
into high- or low-risk groups based on the proportion of 
genes expected to have increased or decreased expres-
sion levels. This score suggested several immune altera-
tions that may be contributing to poor IPF outcomes, 
including CD4 + T cells with CD28 downregulation and 
T cell exhaustion, activation of mast cells and fibroblasts. 
This score was able to improve survival prediction when 
added to clinical factors in six independent cohorts [14, 
15].

Methods
Study populations
All study participants provided written informed con-
sent. Each study center obtained institutional review 
board approval.

COPDGene
We included participants from the Genetic Epidemiology 
of COPD (COPDGene) study [16] who had a 5-year fol-
low up visit with blood RNA-sequencing (RNA-seq) data 
and computed tomography (CT) scans that were assessed 
for the presence ILA [9]. Details of the COPDGene study 
have been previously described [16]. Briefly, COPDGene 

is a prospective cohort study of non-Hispanic white 
(NHW) and African American (AA) smokers (≥ 10 pack-
years of smoking), aged 45–80  years at study initiation, 
with and without COPD. The study was originally con-
ceived of as a case–control study and has been extended 
into a longitudinal study with 5- and 10-year follow up 
visits. Whole blood samples, as well as anthropometric, 
spirometry, and CT imaging data were collected at each 
visit.

ECLIPSE
We included Evaluation of COPD Longitudinally to Iden-
tify Predictive Surrogate End-points (ECLIPSE) study 
[17] participants with microarray gene expression data 
and chest CT scans that were assessed for the presence of 
ILA [9]. ECLIPSE participants were smokers (≥ 10 pack-
years of smoking) aged 45–75 years at study enrollment. 
Baseline questionnaire, spirometry, CT imaging and 
blood samples were collected. In ECLIPSE, COPD par-
ticipants, but not controls, were followed longitudinally 
for 3 years.

ILA phenotyping
In both COPDGene and ECLIPSE, thoracic CT scans 
were assessed for ILA using a sequential method by three 
readers as previously described [10, 11]. The definition of 
ILA included in this manuscript conforms to the updated 
definition utilized by the Fleischner society [3, 18–20].

Preparation of gene expression data
RNA sequencing
COPDGene whole blood RNA-seq data was available at 
the 5-year follow up visit, and data generation was pre-
viously described [13]. Briefly, PAXgene Blood RNA 
tubes were used to collect whole blood samples, and the 
Qiagen PreAnalytiX PAXgene Blood miRNA Kit (Qia-
gen, Valencia, CA) was used to extract total RNA. Sam-
ples with concentrations > 25 ug/uL and RNA integrity 
number (RIN) > 6 were eligible for sequencing. TruSeq 
Stranded Total RNA with Ribo-Zero Globin kit (Illumina, 
Inc., San Diego, CA) were used for globin-reduction and 
cDNA library preparation. The Illumina HiSeq 2500 
sequencer was used to generate 75 bp reads with a mean 
of 20 million reads per sample. Skewer [21] was used to 
trim TruSeq adapter sequences.

Additional quality control was performed using 
FASTQC (https://​www.​bioin​forma​tics.​babra​ham.​ac.​
uk/​proje​cts/​fastqc/) and RNA-SeQC [22]. Reads were 
aligned to the human GRCh38 reference genome using 
STAR 2.5 [23]. Count data were adjusted for library depth 
and batch effects were removed using the limma remove-
BatchEffects function [24].

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Microarray gene expression data
ECLIPSE whole blood microarray data were available at 
the initial enrollment visit. Details regarding microarray 
data collection and processing were previously published 
[25]. Total RNA was extracted using PAXgene Blood 
miRNA kits and hybridized to the Affymetrix Human 
Gene 1.1 ST array. Quality control metrics were imple-
mented using the Bioconductor oligo [26] and RMA 
Express [27] packages. The Factor Analysis for Robust 
Microarray Summarization [28] package was utilized for 
background correction and normalization. Batch effects 
were removed using the limma removeBatchEffects func-
tion [24]. As some gene transcripts were represented by 
multiple probes, we chose the probe with the greatest 
interquartile range, as previously described [14, 15].

We then took additional steps to facilitate comparabil-
ity across RNA-seq and microarray data technologies: (1) 
we limited transcripts to those present in both data sets 
based on HGNC symbols; (2) we scaled and centered all 
gene expression data to have a mean of zero and a stand-
ard deviation of 1.

Statistical analyses
Overview of study design
COPDGene was used as a discovery and testing cohort, 
and ECLIPSE was used for independent replication 

(Fig.  1). In COPDGene, risk score training was per-
formed in half the participants with the other half of the 
participants used for risk score testing. We assessed the 
association of three transcriptome-based risk scores (see 
Predictors) with outcomes (see Outcomes) in the COP-
DGene testing sample. We attempted to replicate the risk 
score associations in ECLIPSE.

Predictors
We calculated the Herazo-Maya et al. [14, 15] IPF prog-
nosis signature using transcriptomic data from COP-
DGene and ECLIPSE and applied this risk signature to 
the prediction of ILA and mortality in these cohorts. Two 
transcripts were not available in our cohorts (C2ORF27A 
and SNHG1), resulting in 50 genes available for testing. 
Briefly, calculating this risk score involves calculating 
the proportion of up- and down-regulated genes, sum-
ming the normalized expression values, calculating the 
product between the summed normalized expression 
values and proportion of decreased and increased genes, 
and comparing the up- and down- scores to the median 
for the population. If both the up- and down- scores are 
higher than the median of the population in which the 
score is being calculated, then the person is considered to 
be at high IPF mortality risk (1 = high IPF mortality risk, 
0 = low IPF mortality risk).

Fig. 1  Schematic of study design. ILA = interstitial lung abnormalities. IPF = idiopathic pulmonary fibrosis. LASSO = least absolute shrinkage and 
selection operator
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To test the performance of these same genes using an 
alternative method, we developed a risk score optimized 
to the outcome of ILA by taking the following steps:

(1)	 We used the 50 available transcripts as inputs to 
construct a penalized regression (Least Absolute 
Shrinkage and Selection Operator (LASSO)) model 
in the COPDGene training set optimized to the 
outcome of ILA. LASSO regression shrinks coef-
ficients toward zero to provide feature selection 
and minimizes collinearity amongst predictors. We 
tuned models within the COPDGene training set 
using fivefold cross-validation, optimizing the area-
under-the-receiver-operating-curve (AUC) on the 
left-out fold.

(2)	 We used this penalized regression model (weights 
of gene transcripts) to calculate the log odds for 
ILA for each individual in the COPDGene testing 
sample and ECLIPSE.

(3)	 We scaled and centered the risk scores within the 
COPDGene testing and ECLIPSE datasets sepa-
rately.

Thus, we evaluated two main predictors in this study: 
(1) the original IPF mortality risk score, and (2) a re-
weighted risk score optimized to ILA as an outcome 
(hereafter, “ILA score [IPF transcripts]”). Results were 
presented as 1 standard deviation increases in risk scores. 
Each risk score was tested in the COPDGene testing set 
and the ECLIPSE replication cohort. We additionally 
compared the direction of effects of genes in these scores. 
We range-standardized both risk scores and plotted his-
tograms of predicted probabilities for each respective 
outcome in the COPDGene testing set.

As an additional analysis, we created an ILA-optimized 
risk score using genome-wide transcripts (hereafter, 
“ILA score [all transcripts]”). Prior to training the ILA 
score [all transcripts], we limited our analyses to highly 
expressed transcripts (> 1 count per million in 99% of 
samples), resulting in 9100 transcripts. These 9100 tran-
scripts were used as inputs into LASSO regression. The 
model was tuned within the COPDGene training set 
using tenfold cross-validation, minimizing misclassifica-
tion error on the left-out fold. We then calculated and 
standardized the risk scores above as for the ILA score 
[IPF transcripts]. We examined the correlation between 
the ILA score [all transcripts] and IPF score genes using 
Pearson correlation coefficients and considered those 
with Bonferroni-adjusted p-values to be significant. We 
tested the association of each risk score with outcomes in 
the COPDGene testing set and ECLIPSE.

We also performed differential gene expression analy-
ses for ILA in the COPDGene training set using limma 

[24]; for this analysis, RNA-seq data were processed and 
normalized as described above except that we included 
transcripts with more than 1 count per million in half 
the samples. We considered a false discovery rate (FDR)-
adjusted p-value level of 0.05 to be significant.

Outcomes
We examined two primary outcomes available in both 
cohorts: (1) prevalent ILA (at the time of blood sample 
collection), and (2) time-to-death. With respect to time-
to-death, COPDGene participants were followed for up 
to 5 years after collection of RNA-seq data, and ECLIPSE 
participants for up to 8 years.

Models and model specifications
We used logistic regression to test the association of each 
of the 50 transcripts with ILA and compared the direc-
tion of effect for ILA to the transcript direction (up or 
down) in the IPF mortality score. We also compared the 
association of the 50 individual transcripts with all-cause 
mortality and compared the effect direction to both the 
effect for ILA association and direction in the original IPF 
mortality score. We assessed the association of each risk 
score (IPF score, ILA score [IPF transcripts], ILA score 
[all transcripts]) with ILA and time-to-death. Logistic 
regression was used to assess associations with ILA. We 
used Cox regression [29] to test associations with time-
to-death (survival R package [30]). Models were adjusted 
for age, sex, race, body-mass index, pack-years of ciga-
rette smoking, and current smoking status (at the time 
of blood sample collection). For time-to-death analy-
ses, we also performed stratified analyses in ILA and 
non-ILA participants. For ILA, the Bonferroni-adjusted 
threshold was 0.05/3 risk scores/2 cohorts = 0.0083. For 
time-to-death analyses, the Bonferroni-adjusted thresh-
old was 0.05/3 risk scores/2 cohorts/3 strata = 0.0028. 
Proportional hazards assumptions were evaluated with 
Schoenfeld residual plots and tests. To evaluate predic-
tive performance, we performed AUC analyses using the 
pROC R package and c-indices [31] for survival models 
using the rms R package. As a sensitivity analysis, we 
further adjusted models for white blood cell differential 
counts to assess whether white cell counts attenuated the 
observed signals. To combine the signals between the 
two testing cohorts (COPDGene testing, and ECLIPSE), 
we performed fixed-effects inverse variance-weighted 
meta-analyses using the meta R package [32].

Mediation analyses
We noted that the associations of the ILA score [IPF 
transcripts] with time-to-death were substantially 
attenuated when age was added to models. Therefore, 
we performed causal mediation analyses to determine 
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whether the effects of age on mortality were mediated 
through this score. We used the medflex R package [33] 
to perform natural effects causal mediation analyses 
[34, 35] in the COPDGene testing set. We considered 
age as the exposure, and death (binary) as the outcome 
in logistic regression analyses. We considered the ILA 
score [IPF transcripts] as the mediator, and a p-value 
for the natural indirect effects less than 0.05 was con-
sidered significant. We also tested the association of 
the ILA score [IPF transcripts] with age using a Pearson 
correlation coefficient.

Characterization of IPF and ILA score genes
To gain biologic insight into the relationship between 
genes that comprised the risk scores, we examined 
Pearson correlation coefficients between each of the 50 
transcripts and constructed a heatmap of correlation 
coefficients. The observed correlation structure allowed 
us to use the sigora R package [36] to perform pathway 
enrichment analyses for the 50 gene transcripts. We 
also evaluated how changing the number of genes in 
the ILA score [IPF transcripts] affected predictive per-
formance (Additional file 1: Methods).

All analyses were performed in R version 4.0.3 
(www.r-​proje​ct.​org). Normality for continuous vari-
ables was assessed by visual inspection of histograms. 
Results were reported as mean ± standard deviation or 
median [interquartile range], as appropriate. Continu-
ous variables were compared with Student t-tests or 
Wilcoxon tests, and categorical variables were com-
pared with analysis of variance (ANOVA) or Kruskal–
Wallis tests, as appropriate. A p-value less than 0.05 
was considered nominally significant, and p-values 
below Bonferroni-adjusted thresholds were considered 
significant.

Results
Characteristics of study participants
Figure 1 is a schematic of the study design. We included 
1,469 COPDGene participants from the 5-year follow up 
visit with RNA-seq and visual scoring of ILA phenotype 
data, and 571 ECLIPSE participants with microarray and 
ILA phenotype data. Table  1 shows demographic char-
acteristics and outcomes in the COPDGene training set 
(n = 734), COPDGene testing set (n = 735), and ECLIPSE 
(n = 571). Characteristics were similar across COPDGene 
training and testing sets. Compared to COPDGene, 
ECLIPSE participants were more likely to be male, were 
all European ancestry, had more pack-years of smoking, 
were less likely to be current smokers, were less likely to 
have ILA, and had a higher proportion of deaths.

Development of risk scores
Fifty out of the 52 genes from Herazo-Maya et al. [14, 15] 
were available in both cohorts (C2ORF27A and SNHG1 
were missing). First, using these 50 genes, we calculated 
the IPF score in COPDGene and ECLIPSE participants. 
We noted that when testing the associations of individual 
transcripts with ILA or death, 23 genes had a discordant 
direction of effect for ILA and 3 genes (HLA-DP1, HLA-
DP2, LPAR6) had a discordant direction of effect for 
all-cause mortality compared to the directions of effects 
reported for the IPF score (Additional file  1: Table  S1). 
Second, we used the 50 available genes to construct a 
LASSO penalized regression model in the COPDGene 
training set, which was optimized to the outcome of ILA 
(ILA score [IPF transcripts]). Additional file  1: Table  S2 
shows the ILA score [IPF transcripts] gene transcripts, 
beta coefficients and comparisons of directions of effects 
to the IPF risk score. Only three transcripts (LBH, GBP4, 
BTN3A1) were significantly associated with ILA, all of 
which were included in the ILA score [IPF transcripts]. 

Table 1  Characteristics of study participants

ILA = interstitial lung abnormalities. *ILA prevalence in the overall population was 5.7% (586/10,364) in COPDGene and 1.3% (37/2,746) in ECLIPSE

Characteristics COPDGene training sample COPDGene testing sample ECLIPSE p

n 734 735 571

Age in years (mean (SD)) 65.08 (8.53) 64.91 (8.60) 64.04 (6.10) 0.054

Sex (No. (%) female) 341 (46.5) 371 (50.5) 195 (34.2)  < 0.001

Race (No. (%) African American) 178 (24.3) 171 (23.3) 0 (0.0)  < 0.001

Pack-years of smoking (mean (SD)) 43.71 (23.86) 42.38 (21.85) 47.27 (26.45) 0.002

Current smoking status (No. (%)) 253 (34.5) 250 (34.1) 129 (22.6)  < 0.001

Outcomes

 ILA (No. (%)) * 122 (16.6) 126 (17.1) 37 (6.5)  < 0.001

 Dead (No. (%)) 84 (11.4) 73 (9.9) 107 (30.7)  < 0.001

 Days followed (median [IQR]) 1881.00 [1603.75, 2104.00] 1916.50 [1631.50, 2140.75] 2848.00 [1425.00, 
2926.00]

 < 0.001

http://www.r-project.org
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The ILA score [IPF transcripts] included 11 transcripts 
(BTN3A1, CPED1, CXCR6, GBP4, GPR174, IL7R, 
LBH, LPAR6, LRRC39, NAP1L2, PLBD1), six of which 
had a discordant direction of effect with the IPF score 
(BTN3A1, CPED1, GBP4, GPR174, LPAR6, NAP1L2). The 
distribution of the ILA score [IPF transcripts] in both 
cohorts is shown in Additional file 1: Figure S1. We then 
plotted range-standardized predicted probabilities in the 
COPDGene testing set and observed overlapping but 
distinct distributions between the two risk scores (Addi-
tional file  1: Figure S2). We additionally used genome-
wide transcripts to train a risk score to ILA (ILA score 
[all transcripts]); this score included 25 transcripts (Addi-
tional file 1: Table S3), none of which overlapped with the 
50 genes in the IPF score. To examine correlation struc-
ture between the ILA score [all transcripts] and IPF score 
genes, we calculated correlation coefficients for 1200 
unique combinations of risk score genes and observed 
that 547 transcripts were significantly correlated (Addi-
tional file 1: Figure S3). We then tested these risk scores 
(IPF score, ILA score [IPF transcripts], ILA score [all 
transcripts]) for association with ILA and time-to-death 
in the COPDGene testing set and ECLIPSE.

Association of risk scores with ILA
The IPF score was not associated with ILA in the COP-
DGene testing set or ECLIPSE (Table  2). The univari-
able associations of the ILA score [IPF transcripts] with 
ILA in both cohorts is shown in Fig.  2A. In multivari-
able models (Table  2), the ILA score [IPF transcripts] 
was associated with ILA in the COPDGene testing set 
and ECLIPSE (meta-analysis OR 1.4 [95% CI: 1.2–1.6], 
p = 6.8e-5). The multivariable model including clinical 
factors and the IPF score had AUCs of 0.64 in both the 
COPDGene testing set and ECLIPSE. The multivariable 
model including clinical factors and the ILA score [IPF 
transcripts] had AUCs of 0.65 in the COPDGene test-
ing set and 0.68 in ECLIPSE, respectively. As a sensitivity 
analysis, we further adjusted models for white blood cell 

Table 2  Odds ratios of the IPF and ILA [IPF transcripts] risk scores with ILA in the COPDGene test set (n = 735) and ECLIPSE (n = 571)

Logistic regression models were adjusted for age, sex, race, body-mass index, pack-years of smoking, and current smoking status. Inverse variance fixed-effects meta-
analyses of the adjusted estimates were performed

ILA interstitial lung abnormalities, IPF idiopathic pulmonary fibrosis

Score COPDGene ECLIPSE Combined (Meta-
analyses)

Unadjusted Adjusted Unadjusted Adjusted Adjusted

OR (95% CI) p OR (95% CI) p OR (95% CI) p OR (95% CI) p OR (95% CI) p

IPF score 1.8 (1.1–2.8) 0.018 1.7 (1.1–2.8) 0.023 0.64 (0.22–1.9) 0.41 0.63 (0.22–1.8) 0.4 1.5 (0.95—2.3) 0.083

ILA score [IPF 
transcripts]

1.4 (1.2–1.7) 6.70E-05 1.3 (1.1–1.6) 0.0019 1.5 (1.2–2) 0.001 1.4 (1.1–1.9) 0.011 1.4 (1.2—1.6) 6.80E-05

Fig. 2  Violin and box plots showing the unadjusted association 
of the ILA score [IPF transcripts] with ILA (A) and death (B) in the 
COPDGene test set (n = 735) and ECLIPSE (n = 571)
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counts, and observed similar results (Additional file  1: 
Table S4).

Association of risk scores with time‑to‑death
The IPF risk score was not associated with mortal-
ity in the COPDGene testing set or ECLIPSE (Table  3). 
The univariable associations of the ILA score [IPF tran-
scripts] with death in both cohorts is shown in Fig.  2B. 
In multivariable analyses (Table  3), the ILA score [IPF 
transcripts] is associated with time-to-death in all par-
ticipants, but not the ILA participants. Multivariable 
models with clinical risk factors and the IPF or ILA 
[IPF transcripts] scores performed similarly in terms of 
c-indices (Table 3). Meta-analyses demonstrate a signifi-
cant association of the ILA score [IPF transcripts] with 
time-to-death (Fig. 3) in all (meta-analysis HR 1.25 [95% 
CI: 1.12–1.41], p = 1.25e-4) and non-ILA (meta-analysis 
HR 1.33 [95% CI: 1.17–1.52], p = 2.17e-5) participants. 
As a sensitivity analysis, we further adjusted models 
for white blood cell counts and observed similar results 
(Additional file 1: Table S5). In causal mediation analyses, 
we observed that the ILA score [IPF transcripts] medi-
ated the effects of age on mortality (natural indirect effect 
p = 0.003; proportion mediated = 11.8% [95% CI: 4.04%-
22.6%]). We also observed that the ILA score [IPF tran-
scripts] was associated with age in both the COPDGene 
training and testing sets (Additional file 1: Figure S4).

We examined the ILA score [all transcripts] for asso-
ciation with ILA and all-cause mortality. We found that 
this new score was associated with ILA and all-cause 
mortality in the COPDGene testing set, but only with all-
cause mortality in ECLIPSE (Additional file 1: Table S6). 

In differential gene expression analyses in the COP-
DGene training set, no transcripts were associated with 
ILA at an FDR of 0.05.

Characterization of the gene signature
Having demonstrated that the genes in the IPF mortality 
score can be re-weighted to create an ILA score, and that 
this ILA score [IPF transcripts] consistently associates 
with ILA and time-to-death in two cohorts, we sought 
to understand how biological processes annotated to the 
IPF mortality genes relate to our outcomes. We observed 
that these 50 genes are highly correlated with each other 

Table 3  Association of the IPF and ILA [IPF transcripts] scores with time-to-death in the COPDGene test set (n = 735) and ECLIPSE 
(n = 571)

Multivariable Cox regression models were adjusted for age, sex, race, body-mass index, pack-years of smoking, and current smoking status. ILA = interstitial lung 
abnormalities. C-indices for multivariable models including clinical variables and corresponding risk score are shown in the right-hand column

Score Cohort Stratum Unadjusted Adjusted

HR (95% CI) p HR (95% CI) p c-index

IPF score COPDGene test set All 1.3 (0.71–2.3) 0.41 1.3 (0.7–2.3) 0.44 0.63

ILA 1.3 (0.47–3.8) 0.6 1.2 (0.44–3.6) 0.68 0.66

non-ILA 1.2 (0.57–2.4) 0.67 1.2 (0.58–2.4) 0.63 0.61

ECLIPSE All 1.3 (0.77–2.1) 0.36 1.2 (0.75–2) 0.4 0.56

ILA 2.2 (0.49–10) 0.3 2.6 (0.54–13) 0.23 0.54

non-ILA 1.2 (0.72–2.1) 0.47 1.2 (0.7–2) 0.54 0.56

ILA score [IPF 
transcripts]

COPDGene test set All 1.4 (1.2–1.7) 3.60E-05 1.3 (1.1–1.6) 0.0012 0.64

ILA 1 (0.64–1.6) 0.99 0.9 (0.53–1.5) 0.69 0.66

non-ILA 1.6 (1.3–2) 2.50E-06 1.6 (1.3–2) 4.00E-05 0.62

ECLIPSE All 1.3 (1.1–1.4) 0.003 1.2 (1–1.4) 0.023 0.6

ILA 1.2 (0.78–1.7) 0.47 1.1 (0.67–1.7) 0.82 0.52

non-ILA 1.3 (1.1–1.5) 0.006 1.2 (1–1.4) 0.027 0.59

Fig. 3  Forest plots based on time-to-death analyses of the ILA score 
[IPF transcripts] in the COPDGene test set (n = 735) and ECLIPSE 
(n = 571). Cox proportional hazards models were fit, adjusting for 
age, sex, race, body-mass index, pack-years of smoking, and current 
smoking. Hazard ratios are shown as per standard deviation increase 
in the ILA score. ILA = interstitial lung abnormalities
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and may represent coordinated biological processes. A 
heatmap of Pearson correlation coefficients is shown 
in Additional file  1: Figure S5. In pathway enrichment 
analyses, the 50 IPF score genes were associated with 
three pathways: Butyrophilin family interactions, P2Y 
receptors, and immunoregulatory interactions between 
lymphoid and non-lymphoid cells (Additional file  1: 
Table S7). The effects of varying levels of genes in the ILA 
score [IPF transcripts] on predictive performance for ILA 
are shown in Additional file 1: Results; Additional file 1: 
Table S8; Additional file 1: Figure S6).

Discussion
While there has been extensive research into gene 
expression changes associated with IPF [37–40], no stud-
ies, to our knowledge, have examined gene expression 
profiles in ILA. ILA may progress to pulmonary fibrosis 
in certain instances [4, 5], and IPF and ILA have demon-
strated overlapping yet distinct genetic underpinnings 
[10]. In this study of over 2000 individuals with blood 
gene expression and ILA phenotype data, we examined 
the association of a blood IPF gene expression mortality 
score with ILA and all-cause mortality. We found that a 
previously described IPF score was not associated with 
ILA or mortality. By applying penalized regression to 
the IPF gene transcripts, we developed an 11-transcript 
ILA score. Six of these genes had discordant directions of 
effects compared to the IPF score, which may implicate 
important mechanisms regulating whether an individual 
develops ILA versus progressing to pulmonary fibrosis. 
While there may be some shared pathogenic mecha-
nisms between ILA and IPF, the amount of discordance 
we observed further suggests that some of those with ILA 
(among populations of smokers) are likely distinct from 
IPF. Two ILA scores, derived from IPF score or genome-
wide transcripts, were associated with all-cause mortality 
in both cohorts, suggesting that the transcripts relevant 
to ILA risk may represent general risk factors for mor-
tality. We identified a peripheral blood signature of ILA, 
demonstrated overlapping and distinct gene transcripts 
between ILA and IPF, and lend insight into how gene 
expression profiles and biological pathways associated 
with IPF prognosis relate to ILA and all-cause mortality.

Our analyses may lend insight into biological pro-
cesses relevant to ILA. We developed our risk score using 
LASSO, a method that reduces collinearity amongst fea-
tures and optimizes prediction accuracy, but which does 
not necessarily choose the most biologically relevant fea-
tures; thus, biological interpretation must be performed 
with caution. Despite this caveat, many of the genes iden-
tified as being predictive of ILA have been implicated in 
IPF pathogenesis, and the correlation structure amongst 
IPF risk score genes allowed us to perform pathway 

enrichment analyses and link the predictive transcripts to 
specific biological processes.

Five genes demonstrated concordant directions of 
effects between the ILA [IPF transcripts] and IPF scores 
(CXCR6, IL7R, LBH, LRRC39, PLBD1), suggesting these 
genes may represent important biologic processes in 
promoting the progression of pulmonary fibrosis. IL7R 
had the largest absolute effect size in the ILA score [IPF 
transcripts] and was inversely associated with ILA. Our 
results are consistent with in  vitro and in  vivo molecu-
lar evidence demonstrating that IL-7 inhibits fibroblast 
TGF-ß production in pulmonary fibrosis [41]. CXCR6 is a 
chemokine receptor that attracts T cells to the lungs [42] 
and can promote the epithelial-mesenchymal transition 
in cell lines [43], an event that may be important to the 
progression of pulmonary fibrosis. LBH is a transcription 
factor involved in Wnt signaling and is highly expressed 
in sub-populations of matrix fibroblasts from mouse lung 
[44]. Thus, there is already evidence that IL7R, LBH, and 
CXCR6 are important for understanding processes that 
promote pulmonary fibrosis, and LRRC39 and PLBD1 are 
additional targets for future studies.

The transcripts with discordant directions of effects 
compared to the IPF score (BTN3A1, GBP4, CPED1, 
GPR174, LPAR6, NAP1L2) support the notion that ILA 
may represent a collection of disorders, some of which 
are distinct from IPF. This observation is consistent with 
genetic analyses of IPF and ILA. A genome-wide associa-
tion study (GWAS) of ILA identified four genome-wide 
significant variants (in FCF1P3, IPO11, HTR1E, MUC5B); 
while the MUC5B rs35705950 promoter polymorphism 
is well known in IPF, the other three loci were not asso-
ciated with IPF. Similarly, out of  12 previously reported 
IPF GWAS variants, only four other variants were signifi-
cantly associated with ILA (DPP9, DSP, FAM13A, IVD), 
though most of the others were consistent in effect direc-
tion. Whether the genetic variants uniquely associated 
with ILA indirectly regulate the discordant genes identi-
fied in the current study is unclear and requires further 
investigation.

The transcripts with discordant directions of effects 
between the ILA [IPF transcripts] and IPF scores 
allude to divergent biologic processes that could play a 
role in determining whether a person develops ILA or 
progresses to irreversible fibrosis. BTN3A1 is part of 
the Butyrophilin immunoglobulin superfamily. Buty-
rophilins may play a role in facilitating interactions 
between adaptive and innate immune cells [45]. GBP4 
is a guanylate binding protein that facilitates second 
messenger signaling for interferons, and has been 
observed to increase in response to cytokine stimula-
tion in IPF lungs [46]. Genetic variation in GPR174 is 
associated with susceptibility to autoimmune disease, 
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and GPR174-deficient mice were resistant to lipopol-
ysaccharide-induced cytokine storm [47]. NAP1L2 
promotes histone acetylation during neuronal dif-
ferentiation [48] and other members of the same pro-
tein family have demonstrated increased expression in 
lung fibroblasts from IPF patients [49]. To determine 
whether peripheral blood cells might be explaining a 
substantial portion of our associations, we adjusted 
models for measured white cell counts and observed 
similar results. These results suggest that peripheral 
blood cell counts do not explain our observed associa-
tions. Taken together, these data suggest that immune 
responses to environmental/infectious insults, genetic 
variation, and epigenetic modifications may be impor-
tant to understanding the distinct pathogenic mecha-
nisms present in ILA that may lead to IPF.

We observed that the ILA score [IPF transcripts] was 
associated with all-cause mortality, but that this asso-
ciation was driven by non-ILA participants, albeit with 
small samples sizes for ILA. In single gene association 
analyses for the 50 IPF score genes, nearly half of all 
transcripts had discordant effect directions for ILA asso-
ciation compared to associations with all-cause mortality 
and in comparison to gene weights in the IPF score. Con-
versely, the 50 IPF gene effect directions in association 
with all-cause mortality (in all study participants) were 
highly concordant with the directions of weights in the 
IPF score with only three genes having discordant effect 
directions. Further, an ILA score trained using genome-
wide transcripts in the COPDGene training data was not 
associated with ILA in both the COPDGene testing set 
and ECLIPSE but was associated with all-cause mortal-
ity in both cohorts. These data suggest that transcripts 
associated with ILA risk may also be risk factors for all-
cause mortality. When training a gene expression model 
to ILA, we identified a gene set associated with all-cause 
mortality; however, an ILA score derived from the lim-
ited set of IPF score genes is associated with ILA and 
mortality. These observations suggest that the IPF score 
represents a mixture of transcripts relevant to all-cause 
mortality and the ILA-IPF axis.

LPAR6 was the only non-HLA transcript with con-
cordant directions of effects when tested for association 
with ILA and all-cause mortality and had discordant 
directions of effects compared to the IPF score. LPAR6 
is a lysophosphatidic acid (LPA) receptor. LPA has been 
shown to signal through its G-protein-coupled receptors 
to induce pro-inflammatory signals from stressed epithe-
lial cells and activate TGF signaling [50]. Thus, LPAR6 
could represent a shared mechanism between ILA and 
all-cause mortality or it could be on the causal pathway 
between ILA and death.

As aging is a major driver of mortality, we sought to 
determine whether the effects of the ILA score [IPF tran-
scripts] on mortality represent an aging effect. In causal 
mediation analyses, we found that about 12% of the effect 
of age on mortality was mediated through the ILA score 
[IPF transcripts]. Thus, the 11 genes in the ILA score [IPF 
transcripts] might be important for overall mortality and 
partially represent aging effects on mortality. We must 
interpret our mediation results with caution as the ILA 
score [IPF transcripts] was associated with age, which 
makes it unclear whether the observed gene expression 
changes lead to aging or vice versa; this issue alludes to 
an assumption of causal mediation analyses that there 
are no intertwined causal pathways (i.e. “identifiability 
condition”). Determining which gene expression changes 
are caused by versus causative of aging requires further 
investigation. Further, the majority of aging effects are 
not captured by the ILA score [IPF transcripts], which 
highlights the need for further research into the shared 
and divergent biological processes related to ILA, aging, 
and mortality.

Strengths of this study include replication in two well-
characterized cohorts of smokers, cross-technology 
replication (both RNA-seq and microarray), and the 
application of causal inference analyses to examine the 
relationship between IPF and ILA transcriptomic risk 
with aging and risk of death. Despite the statistical sig-
nificance of the odds ratio of 1.4 and AUC of 0.65–0.68, 
the clinical impact is likely low. Even large odds ratios can 
have poor discriminative performance. Quantifying the 
clinical impact of risk scores in disease screening, diag-
nosis, and prevention is a complex issue [51, 52]. Under-
standing the implications for using our score as a clinical 
prediction tool was outside the scope of this study. We 
were not able to assess the association of the ILA risk 
scores with the development or progression of ILA due 
to data availability. Our primary analysis was of genes 
identified in a study of IPF, which allowed an assessment 
of the contrasts between IPF mortality and ILA risk in 
a well-validated set of genes. Notably, attempting to use 
a larger set of genes in the blood transcriptome, includ-
ing other transcripts that may be more predictive of ILA 
risk, was not superior. The reasons that the ILA score [all 
transcripts] performed worse than the ILA score [IPF 
transcripts] are likely similar to the reasons we did not 
observe genes differentially expressed with ILA; the rea-
son for the lack of differential gene expression for ILA is 
multifactorial and is attributable to a combination of lim-
ited statistical power, phenotypic heterogeneity of ILA 
in smokers, and poor reflection of ILA disease processes 
in peripheral blood gene expression. While our study 
is consistent with a limited signal for ILA in peripheral 
blood gene expression, we acknowledge that a wider 
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range of machine learning and prediction methodologies 
could improve predictive performance of the risk score. 
The correlation between the ILA score [all transcripts] 
and IPF score genes suggests an apparent lack of speci-
ficity of the prediction genes and reinforces the need to 
approach biological interpretations with caution. We 
were not able to assess the impact of technical factors 
(e.g. globin-versus poly-A-reduced RNA-seq, harmoniz-
ing gene expression platforms) on risk score construction 
and performance; improved risk scores and biological 
insights might be attainable by standardizing data col-
lection and processing methods across cohorts. Other 
approaches using blood gene expression and additional 
-Omics data (such as methylation, proteomic, microbi-
ome) may allow us to delve deeper into the mechanisms 
underlying our observed associations, as well as longitu-
dinal studies of ILA and IPF.

In conclusion, a peripheral blood gene signature asso-
ciated with IPF mortality was not associated with ILA or 
mortality in two well-characterized cohorts of smokers. 
An ILA gene expression score, derived from the genes 
in the IPF score, was reproducibly associated with ILA 
and all-cause mortality in current and former smok-
ers. Separately, an ILA score derived from genome-wide 
transcripts was associated with all-cause mortality, but 
not ILA in validation studies. Approximately half of the 
genes in the ILA score [IPF transcripts] were of opposite 
direction in the IPF score, and genes associated with ILA 
may also be risk factors for mortality and partially rep-
resent aging effects on mortality. Genes identified in this 
study may be important candidates to further examine 
in the pathogenesis and progression of ILA to IPF and in 
mortality.
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