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utilizing blood transcriptional signatures: 
a multicohort analysis
Qian Qiu1, Anzhou Peng2, Yanlin Zhao3, Dongxin Liu3, Chunfa Liu3, Shi Qiu4, Jinhong Xu5, Hongguang Cheng6, 
Wei Xiong7* and Yaokai Chen1*    

Abstract 

Background:  Blood transcriptomics can be used for confirmation of tuberculosis diagnosis or sputumless triage, and 
a comparison of their practical diagnostic accuracy is needed to assess their usefulness. In this study, we investigated 
potential biomarkers to improve our understanding of the pathogenesis of active pulmonary tuberculosis (PTB) using 
bioinformatics methods.

Methods:  Differentially expressed genes (DEGs) were analyzed between PTB and healthy controls (HCs) based 
on two microarray datasets. Pathways and functional annotation of DEGs were identified and ten hub genes were 
selected. They were further analyzed and selected, then verified with an independent sample set. Finally, their diag-
nostic power was further evaluated between PTB and HCs or other diseases.

Results:  62 DEGs mostly related to type I IFN pathway, IFN-γ-mediated pathway, etc. in GO term and immune pro-
cess, and especially RIG-I-like receptor pathway were acquired. Among them, OAS1, IFIT1 and IFIT3 were upregulated 
and were the main risk factors for predicting PTB, with adjusted risk ratios of 1.36, 3.10, and 1.32, respectively. These 
results further verified that peripheral blood mRNA expression levels of OAS1, IFIT1 and IFIT3 were significantly higher 
in PTB patients than HCs (all P < 0.01). The performance of a combination of these three genes (three-gene set) had 
exceeded that of all pairwise combinations of them in discriminating TB from HCs, with mean AUC reaching as high 
as 0.975 with a sensitivity of 94.4% and a specificity of 100%. The good discernibility capacity was evaluated d via 7 
independent datasets with an AUC of 0.902, as well as mean sensitivity of 87.9% and mean specificity of 90.2%. In 
regards to discriminating PTB from other diseases (i.e., initially considered to be possible TB, but rejected in differential 
diagnosis), the three-gene set equally exhibited an overall strong ability to separate PTB from other diseases with an 
AUC of 0.999 (sensitivity: 99.0%; specificity: 100%) in the training set, and 0.974 with a sensitivity of 96.4% and a speci-
ficity of 98.6% in the test set.
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Background
Tuberculosis (TB), together with HIV, is the primary 
cause of death around the world caused by an infectious 
agent. An estimated 10.0 million (range, 9.0–11.1 million) 
people fell ill with TB in 2018, resulting in 1.6 million 
deaths [1]. Mycobacterium tuberculosis (Mtb), the causa-
tive bacteria of TB, generally affects the lung and leads to 
pulmonary TB (PTB). This disease spreads when people 
with PTB expel Mtb into the air, including by coughing. 
Fatalities caused by TB are mostly preventable through 
a timely and accurate diagnosis [2]. Unfortunately, it is 
often neglected due to a lack of sensitive and expedient 
detection methods. Current detection methods, which 
largely rely on radiological assessments and checking for 
the presence of Mtb in patient samples, have many defi-
ciencies. Current standard Mtb detection uses sputum 
cultures, which require 3 to 6  weeks to obtain results, 
thereby delaying the initiation of treatment. Molecular 
testing (e.g., GeneXpert), while allowing quicker diagno-
sis, also has limitations, including a high financial cost, 
inaccessibility in resource-poor settings, and relying on 
sputum availability to confirm the presence of bacteria by 
detecting pathogen DNA/RNA. Blood sample detection 
methods are more rapid, however, they lack high sensi-
tivity and specificity [3]. To develop new biomarkers for 
TB diagnosis, it is necessary to enhance our understand-
ing of TB pathogenesis and improve our knowledge of 
the regulatory network.

While the immunological response to Mtb is focused 
predominantly on the lungs, circulating immune cells in 
the peripheral blood determine its pathological status. 
Whole blood transcriptomic profiles serve as indispen-
sable tools in ascertaining the molecular components 
underlying the infection and provide an insight into the 
host immune response in TB [4], especially the advance-
ments of high-throughput sequencing and microarray 
technology have provided efficient tools for developing 
reliable diagnostic biomarkers [5]. The deposition of their 
datasets in public databases (such as the Gene Expression 
Omnibus (GEO)) offers possibilities for surveying molec-
ular patterns from different perspectives via bioinfor-
matics analysis [6]. Nonetheless, a single gene biomarker 
would have insufficient predictive power [7]. Studies have 
shown that gene signatures that include several genes are 
a better alternative [8, 9]. According to current informa-
tion, studies on the multigene prognostic signatures of 

PTB are scarce. Transcriptome analyses of macrophages 
infected with either the virulent Mtb strain H37Rv (Rv) 
or the avirulent Mtb strain H37Ra (Ra) confirmed the 
gene expression of immune cells differs under Mtb-
infection [10]  but lacks diagnostic evaluation. Blischak 
et  al. measured gene expression levels in Mtb-infected 
and non-infected dendritic cells to predict TB suscepti-
bility [11], however, it was based on a  small population 
(25 samples). Both are laboratory based experiments, and 
not directly based on patient data. Thus, the mechanisms 
and functions of mRNA in PTB require further study. As 
such, many efficient and sensitive mRNA signatures will 
need to be identified for PTB diagnosis.

Although a few studies have investigated host response 
to PTB infection using microarray-based whole-genome 
expression profiles in peripheral blood, the results have 
been inconsistent, or even contradictory [12–14]. How-
ever, one common finding across these studies is that 
despite the inconsistencies, the gene expression in PTB 
patients differs from that of healthy individuals. Thus, 
there is a need to recapitulate transcriptomic signatures 
in several studies worldwide using independent clinical 
cohorts, as well as in meta-analyses combining several of 
these cohorts for further analysis.

The latest study used meta-analysis to integrate tran-
scriptome datasets from different studies and screen for 
TB biomarkers in patients who were HIV-positive [15]. In 
our study, we will analyse data for PTB while eliminating 
any potential interference from HIV by using HIV-nega-
tive patients only. In this study, whole blood gene expres-
sion datasets from two separate studies were selected and 
analyzed. Deregulated mRNAs were acquired and func-
tionally annotated to explore the potential pathways in 
PTB. By integrating the information on gene expression 
and function, a protein–protein interaction (PPI) net-
work was constructed to conduct modular analysis and 
immune process involvement. After which, hub genes 
with high degrees of connectivity were selected. Another 
independent dataset with PTB patients and healthy par-
ticipants was then used to optimize hub gene selection 
according to their PTB diagnostic power, resulting in a 
three-gene set which was verified with an independent 
sample set. A receiver operating characteristic (ROC) 
curve was drawn to estimate the diagnostic power of 
this three-gene set between PTB and the healthy group 
from a series of datasets. Furthermore, a random forest 

Conclusion:  The described commonalities and unique signatures in the blood profiles of PTB and the other control 
samples have considerable implications for PTB biosignature design and future diagnosis, and provide insights into 
the biological processes underlying PTB.
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(RF) classifier based on this three-gene set was also con-
structed to test their ability to discriminate PTB from 
other diseases (i.e., TB was considered in the differential 
diagnosis but then excluded). The information acquired 
provided insights into the immunotherapies and clinical 
diagnosis of PTB.

Methods
Microarray data
All of 11 datasets (GSE42834, GSE83456, GSE56153, 
GSE19491, GSE28623, GSE34608, GSE54992, GSE62525, 
GSE147964, GSE147690 and GSE37250) were retrieved 
from the GEO database (https://​www.​ncbi.​nlm.​nih.​
gov/​geo/) based on the following criteria: (1) adult PTB 
patients: (i) culture-confirmed Mtb in either sputum or 

bronchoalveolar lavage; (ii) have not started TB treat-
ment; (2) healthy controls (HCs) or other disease (i.e., 
TB was considered in the differential diagnosis but then 
excluded) controls: (i) matched age, gender and ethnic-
ity to patients; (ii) negative interferon (IFN) -γ release 
assays (IGRAs). The exclusion criteria for the patients 
and healthy controls were the presence of other medical 
conditions (including any immunosuppression, such as 
HIV infection) and pregnancy. All data used are available 
online. No animal or human experiments were carried 
out by any of the authors involved in this study.

The workflow of data collection is shown as Fig.  1. 
Briefly, GSE42834 (35 PTB samples and 113 HCs and 
GSE83456 (45 PTB samples and 61 HCs) were used 
to identify any differentially expressed genes (DEGs), 

Fig. 1  Flow diagram of procedure of data collection

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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obtaining ten hub genes. Then, GSE56153 (18 PTB and 
18 HCs) was used to screen and evaluate the selected hub 
genes which were verified with an independent sample 
set (20 PTB and 20 HCs). To further evaluate the perfor-
mance of our selected gene-set, its performance of dif-
ferentiating PTB from HCs was evaluated using seven 
independent datasets (216 PTB and 211 HCs). In addi-
tion to the gene-set ability to distinguish between PTB 
and other diseases, GSE37250 (97 PTB and 83 other dis-
eases) was used to train RF machine learning algorithm 
with tenfold cross validation, which was then used in 
the test set to evaluate its performance.

Data processing of DEGs
GEO2R (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​geo2r/) was 
used to determine the differentially expressed genes 
(DEGs) between samples from PTB patients and healthy 
individuals, followed by the calculation of the false dis-
covery rate (FDR) and log2 (fold change) (logFC). Genes 
that met the cutoff criteria (|logFC|≥ 1.5 and FDR < 0.05) 
were considered to be differentially expressed [16]. Each 
dataset underwent statistical analysis. Then, any inter-
secting parts were identified using the Venn diagram 
webtool (bioinformatics.psb.ugent.be/webtools/Venn/). 
SangerBox, a biological information visualization tool, 
was used to produce volcano plot and heatmap, and any 
genes that significantly changed (up and downregulated 
genes) were presented (|logFC|≥ 1.5 and FDR < 0.05).

GO, KEGG pathway and GSEA analysis
Gene Ontology (GO) analysis is a valuable method 
commonly used for large-scale functional enrichment 
research [17]. Gene functions are usually categorized into 
cellular component (CC), molecular function (MF), and 
biological process (BP). Kyoto Encyclopedia of Genes and 
Genomes (KEGG) is a common database resource that 
lists large amounts of drugs, chemicals, diseases, biologi-
cal pathways, and genome data [18]. The DEGs were sub-
jected to GO annotation and KEGG pathway enrichment 
analysis utilizing the Database for Annotation, Visualiza-
tion, and Integrated Discovery (DAVID) tools (DAVID 
Bioinformatics Resources 6.8) [19]. Statistical signifi-
cance was achieved when gene counts ≥ 3 and P < 0.05, 
whereas P < 0.05 for GO analysis of the top ten hub genes 
with DAVID. Gene Set Enrichment Analysis (GSEA) 
was conducted using GSEA v4.1.0 software (http://​
www.​gsea-​msigdb.​org/​gsea/​index.​jsp) and certain gene 
sets used in the present study for GO and KEGG terms 
were downloaded from the Molecular Signatures Data-
base (MSigDB, http://​softw​are.​broad​insti​tute.​org/​gsea/​
msigdb/​index.​jsp, v7.2) [20]. Go and KEGG signaling 

pathway analysis were performed through pre-ranked 
GSEA. Members of a gene set were pre-ranked based on 
their P-value with the up-regulated gene at the top and 
the down-regulated genes at the bottom. Gene sets were 
considered to be significantly enriched by a combined 
criteria of |normalized Enrichment Scores (NES)|> 1, 
P < 0.05 and FDR < 0.25. PPI network construction and 
hub gene identification.

The Search Tool for the Retrieval of Interacting 
Genes (STRING) database was used for PPI informa-
tion analysis. Previously identified DEGs were com-
pared to the STRING database to evaluate any potential 
PPI relationship. PPI pairs with a combined score 
of ≥ 0.7 were extracted. The PPI network was subse-
quently clearly shown with Cytoscape 3.7.1, equipped 
with ClueGo and CluePedia plugins [21]. Furthermore, 
modules of the PPI network were verified by Molecular 
Complex Detection (MCODE) in Cytoscape with the 
following standard: degree cutoff = 2, max. depth = 100, 
k-core = 2, and node score cutoff = 0.2. In addition, 
Interrelation analysis in immune system process was 
performed and then visualized using ClueGO + Clue-
Pedia plugins. Finally, CytoHubba, a Cytoscape plugin, 
was performed for the calculation of each protein node 
degree [22]. In this study, 10 highest-ranking genes (as 
defined by their degree) were identified as hub genes. 
The PPI networks were then used to verify these hub 
genes, using the maximal clique centrality (MCC) and 
maximum neighborhood component (MNC) algo-
rithms of cytoHubba [23].

Evaluation of ten hub genes and their evaluation in PTB 
and HC samples
For the GEO database, a link is provided at the bottom 
of the page to the series matrix file(s), which contains 
the expression values for each gene (probe set) and 
microarray. The values have been normalized using the 
normexp method and quantile normalized between 
arrays, rendering the samples cross-comparable. R 
scripting was used to extract the expression values of a 
small number of genes (probe sets) of interest and the 
clinical data from the data matrices downloaded from 
GEO. Log2 transformation on values was performed, 
which represented the expression levels of the genes for 
further analysis. The other independent GEO datasets 
were used to further evaluate the ten hub genes. Briefly, 
we used GSE56153 dataset to compare the indicated 
gene expression in PTB patients versus HCs. Besides, 
correlation analysis and multivariate poisson regres-
sion analysis were used to estimate the relationship 
between the ten hub genes and PTB variables. Further-
more, we used seven independent datasets (GSE19491, 

https://www.ncbi.nlm.nih.gov/geo/geo2r/
http://www.gsea-msigdb.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://software.broadinstitute.org/gsea/msigdb/index.jsp
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GSE28623, GSE34608, GSE54992, GSE62525, 
GSE147964, GSE147690) to evaluate the three-gene 
set (OAS1, IFIT1 and IFIT3) optimized for diagnostic 
power from the ten hub genes obtained above. Addi-
tionally, ROC analysis was used to determine this 
three-gene set’s ability to distinguish PTB patients from 
HCs, and the overall accuracy was revealed by deter-
mining the area under the curve (AUC) in terms of sen-
sitivity and specificity.

Evaluation of the three‑gene set in an independent sample 
set
We further evaluated the three genes (OAS1, IFIT1 and 
IFIT3) using peripheral blood samples from an inde-
pendent sample set, including 20 patients with pulmo-
nary tuberculosis and 20 healthy volunteers that were 
matched according to age and sex. Active PTB patients 
were recruited from Chongqing Public Health Medi-
cal Center between April 2021 and June 2021. All PTB 
patients were recruited with typical clinical symptoms, 
chest radiograph revealing TB lesion, at least 2 con-
secutive positive sputum smears or a positive sputum 
culture, or a positive Xpert MTB/RIF result. They had 
not received anti-TB treatment within the past 30 days. 
Healthy controls were recruited from regular physi-
cal examination campaigns, which were conducted in 
Chongqing between March 2021 and June 2021. Healthy 
controls were people with a normal chest radiograph and 
no clinical symptoms of diseases. Individuals with posi-
tive human immunodeficiency virus (HIV), positive hep-
atitis B virus (HBV) or hepatitis C virus (HCV), diabetes, 
malignancies, severe autoimmune diseases, and those 
who took immunosuppressive or immunopotentiator 
agents, or were in pregnancy or lactation were excluded. 
The demographic characteristics of all 40 participants in 
this study are shown in an additional word file in more 
detail (see in Additional file 1). This study was performed 
in accordance with the guidelines of the Helsinki Decla-
ration and was approved by the Ethics Committee of the 
Chongqing Public Health Medical Center (No. 2021-018-
01-KY). Written informed consents were obtained from 
each participant before blood sample collection.

PBMCs isolation and quantitative real‑time PCR analysis
Peripheral blood samples (5  ml) from participants 
were collected in heparin-containing vacutainer tubes 
from each subject. Peripheral blood mononuclear cells 
(PBMCs) were separated by density gradient using Lym-
phocyte Cell Separation Media (Tianjin Haoyang Bio-
logical Manufacture Co., Ltd., China) within 6 h of blood 
collection. Total RNA was extracted from PBMCs using 
TRIzol reagent (Invitrogen, MA, USA) according to the 
manufacturer’s protocol. A total of 1.5  μg of purified 

RNA was reverse transcribed to cDNA using Goldenstar 
RT6 cDNA Synthesis Kit Ver 2 (TSK302S, Tsingke Bio-
technology Co., Ltd., China) according to the manufac-
turer’s instructions. SYBR Green (2 × T5 Fast qPCR Mix 
(SYBR Green I, Tsingke Biotechnology Co., Ltd., China) 
uptake in double-stranded DNA was measured using ABI 
7900 Real-time PCR System (Applied Biosystems, Inc., 
USA). 2-ΔΔCT was calculated and used to determine rel-
ative gene expression. The reference gene was GAPDH. 
The primer sequences of the target genes in the qPCR 
analysis are shown in an additional word file in more 
detail (see in Additional file 2).

Predictive performance of the three‑gene set 
in distinguishing PTB from other diseases
To further quantitatively determine the  performance 
of the three-gene set in predictively classifying PTB 
and other diseases, we used the independent dataset 
GSE37250 containing 97 PTB patients and 83 patients 
with other diseases to construct the multiple regression 
model as previously described [24, 25]. According to the 
description of the study, the data were obtained from[12], 
after intensive investigation, any case with a confirmed 
alternative diagnosis to TB, no microbiological evi-
dence of TB, or an absence of TB symptoms at the time 
of follow-up all while showing observed improvement of 
clinical symptoms to non TB treatment, was recruited as 
an other disease case. RF machine learning algorithms 
were used to train the regression model [26–28]. In this 
method, the reliability of the result was judged, using the 
tenfold cross validation. Briefly, RF predictive model was 
all iteratively trained and tested using tenfold cross vali-
dation with early stopping mechanisms to prevent over-
fitting. In this validation paradigm, data were partitioned 
into ten random segments or folds. Training occurred on 
nine of the folds as the  training set, and the remaining 
fold as the test set was used to monitor performance for 
overfitting. Each of the ten models trained and was then 
tested on the test set partitioned prior to hyperparame-
ter tuning, and the final metrics reported were averages 
for the metrics across the ten models. The classification 
performances of RF with a three-gene set were evaluated 
using AUC. Simultaneously, accuracy, sensitivity, and 
specificity were calculated using the confusion matrix of 
classification results.

Statistical analysis
Statistical analysis was performed using SPSS 26.0 (SPSS 
Inc., USA) and GraphPad Prism 8.0.2 (GraphPad, USA). 
Data were analyzed using one-way analysis of variance 
(ANOVA) to compare multiple groups, or Student’s 
t-tests (two-sided) to compare two groups in condition of 
homogeneity of variance, otherwise, the Mann–Whitney 
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U test was used. Correlations between the ten hub genes 
and PTB variable were analyzed using point-biserial 
correlation tests, then a quantitative relationship of 
the  interdependence of those was analyzed using multi-
variate poisson regression analysis with a robust variance 
estimate. R software (version 4.0.0; R Foundation for Sta-
tistical Computing) was used for bioinformatics analy-
sis. RF predictive model was implemented in R using the 
package for randomForest and caret respectively. The 
importance of the variable was measured in terms of the 
average normalized mean square error decline caused 
by the deletion of the variable, the larger the value, the 
more important for the variable. The prediction capacity 
of variables was evaluated by the ROC curve and AUC 
value using the ROCR package in R. Data are shown as 
the mean ± standard deviation (SD). P < 0.05 indicated a 
statistically significant difference.

Results
Identification of DEGs
Two gene expression profiles (GSE42834 and GSE83456) 
were chosen for this study. GSE42834 included 35 PTB 
samples (PTB group) and 113 healthy control samples 
(HC group), while GSE83456 included 45 PTB samples 
(PTB group) and 61 HC samples (HC group) (Table  1). 
DEG identification was performed by comparing PTB 
and HC samples. At FDR < 0.05 and |logFC|≥ 1.5, 92 
DEGs (89 upregulated and 3 downregulated) were found 
in GSE42834. In GSE83456, 69 DEGs (67 upregulated 
and 2 downregulated) were determined. All genes were 
plotted in Fig. 2A, B. Subsequently, intersections between 
DEG profiles (Fig. 2C, D) were observed using Venn anal-
ysis. Sixty-two DEGs were differentially and significantly 
expressed in the two groups. Among these DEGs, 60 
were notably upregulated, while 2 were downregulated. 
The expression levels of these genes were demonstrated. 

The logFC of DEGs in the two GEO datasets is shown in 
the heatmap, appearing well clustered (Fig. 2E).

Functional enrichment analyses of DEGs
To evaluate the biological role of DEGs in PTB disease, GO 
function enrichment, KEGG pathway, and GSEA analysis 
were performed. As shown in Fig.  3A and an additional 
word file in more detail (see in Additional file 3), GO analy-
sis indicated that the DEGs were mainly enriched in BPs, 
including defense response to virus, type I IFN signaling 
pathway, immune response, response to virus, negative reg-
ulation of viral genome replication, IFN-γ-mediated signal-
ing pathway, regulation of apoptotic process, response to 
IFN-β, and blood circulation. MF analysis showed that the 
DEGs were considerably enriched in protein binding, GTP 
binding, GTPase activity, 2′-5′-oligoadenylate synthetase 
(OAS) activity, double-stranded RNA binding, and trans-
ferase activity. In CC, DEGs were enriched in the cytosol 
and mitochondrion. Furthermore, DEGs largely enriched 
in RIG-I-like receptor (RLR) signaling pathway were identi-
fied using KEGG pathway analysis. Finally, GSEA analysis 
in GO and KEGG terms verified that the results were posi-
tively correlated with PTB (Fig.  3B), implying that DEGs 
in PTB patients are potentially involved in regulation of 
innate and adaptive immune responses.

PPI network construction and modular analysis
All DEGs were submitted to STRING in order to construct 
the PPI network visualized using Cytoscape. As shown 
in Fig. 4A, 204 edges and 60 nodes were recognized (PPI 
enrichment, P < 1.0e−16). MCODE plugin was then used 
to select the top four central modules in the PPI network. 
Module 1 had an MCODE score of 16.353 and consisted of 
18 nodes with 139 edges. The rest had a score of 3 and con-
sisted of 3 nodes with 3 edges (Fig.  4B–E). Furthermore, 
interrelation analysis in immune system pathways was 
performed using ClueGO + CluePedia plugins. All of the 
DEGs were found to be largely enriched in terms related 
to type I IFN signaling pathway, IFN-γ-mediated signal-
ing pathway, regulation of defense response to virus, and 
negative regulation of innate immune response (Fig.  4F, 
G). Notably, most genes from module 1 and module 2 were 
involved in those immune processes.

Table 1  Statistics of the two microarray databases derived from 
the GEO database

GEO: Gene Expression Omnibus; PTB: pulmonary tuberculosis; HC: healthy 
control

Dataset ID PTB HC Total number

GSE42834 35 113 148

GSE83456 45 61 106

(See figure on next page.)
Fig. 2  All genes and DEGs common in the two GEO datasets. A Volcano plot of all genes in GSE42834 gene chip. Red and green dots denote 
upregulated and downregulated genes, respectively. Black dots show the remaining genes without significant changes in expression. B 
Volcano plot of all genes in GSE83456 gene chip. C Venn diagram of upregulated genes common in the two GEO datasets. D Venn diagram of 
downregulated genes common in the two GEO datasets. E Heatmap of DEGs in the two GEO datasets (60 upregulated and 2 downregulated 
genes). Legend represents gene expression. Red and blue colors denote upregulation and downregulation, respectively
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Fig. 2  (See legend on previous page.)
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Identification and analysis of hub genes
The top ten hub genes were identified and evaluated with 
regard to the degree of connectivity in the PPI network 
(Table  2). The results demonstrated that the 2′-5′-OAS1 
gene had the highest connectivity degree (degree = 26), fol-
lowed by the OAS3 (degree = 25), 2′-5′-OAS-like (OASL; 
degree = 24), IFN-induced protein with tetratricopep-
tide repeats 3 (IFIT3; degree = 22), IFN-induced pro-
tein 44-like (IFI44L; degree = 21), IFN-induced protein 
44 (IFI44; degree = 20), IFN-stimulated gene 15 (ISG15; 
degree = 20), radical S-adenosyl methionine domain con-
taining 2 (RSAD2; degree = 20), IFN-induced protein with 
tetratricopeptide repeats 1 (IFIT1; degree = 20), and XIAP-
associated factor 1(XAF1; degree = 19). We used another 
MCC and MNC algorithm of cytoHubba to create the PPI 
network and found that the top ten hub genes were com-
mon in the three algorithm methods (Table 2). All top ten 
hub genes were contained in aforementioned module 1, 
indicating many of which correspond to known molecular 
complexes in densely connected regions of PPI networks.

For a better understanding of the potential biological 
functions of the top ten hub genes, we used DAVID to 
re-analyze BP enrichment (P < 0.05)  (Fig.  5). The results 
showed that these hub genes were functionally associated 
with several critical biological processes consistent with 
the DEGs, including type I IFN signaling pathway, defense 
response to virus, response to virus, negative regulation of 
viral genome replication, IFN-γ-mediated signaling path-
way  (Fig.  5A, B), predicting the hub ten genes might be 
really representative of many DEGs.

Evaluation of the hub genes
The other independent GEO datasets were used to further 
evaluate the expression of the hub genes. The RNA levels of 
the ten hub genes were evaluated using GSE56153, which 
revealed that 4 genes were statistically upregulated in the 
peripheral blood from PTB patients compared with HCs, 
namely OAS1, IFIT1, IFIT3, and XAF1 (q < 0.01; Fig.  6A). 
Furthermore, the correlations between different expres-
sion levels of the ten hub genes and the PTB variable were 
presented in Fig. 6B. OAS1, IFIT1, IFIT3, or XAF1 gene was 
positively associated with PTB with correlation coefficients 
of 0.525 ~ 0.761 (all P < 0.01), suggesting these genes might 
be appreciated as the candidate indicators of PTB. Finally, 
multivariable poisson regression analysis indicated that 
OAS1, IFIT1, IFIT3, OASL and IFI44 were included in the 
equation (all of P < 0.01), whereas adjusted risk ratios (RRs) 
of OAS1, IFIT1 and IFIT3 were 1.36 (95% CI 1.01–1.83; 

P = 0.04), 3.10 (95% confidence interval (CI) 1.32–8.03; 
P = 0.02) and 1.32 (95% CI 1.01–1.72; P = 0.045), respec-
tively, in discriminating TB from the HC group (Fig. 6C). 
Taken together, these results revealed that OAS1, IFIT1 and 
IFIT3 as factors could indicate the risk of PTB disease, and 
the three-gene set (OAS1, IFIT1 and IFIT3) might poten-
tially be multi-combined diagnostic biomarkers in differen-
tiating PTB and healthy groups.

We then sought to verify the three genes (OAS1, IFIT1 
and IFIT3) in an independent sample set and found that 
gene expression levels of OAS1, IFIT1 and IFIT3 in periph-
eral blood were statistically significant (all P < 0.01) higher 
in PTB patients than in healthy controls (Fig. 6D).

Efficacy evaluation for the three‑gene set predicting PTB 
versus HCs
To further detect whether these three genes (OAS1, IFIT1 
and IFIT3) or a combination thereof could discriminate 
TB from HCs, ROC analysis was performed to evalu-
ate their discriminative potential in the validation sets. In 
GSE56153, as a result, the AUCs of OAS1, IFIT1 and IFIT3 
were found to be 0.957 (95% CI 0.896–1.000), 0.852 (95% 
CI 0.713–0.991) and 0.873 (95% CI 0.745–1.000), respec-
tively, in discriminating TB from HCs. However, The AUC 
values of the  combination of all three genes could reach 
as high as 0.975 with a sensitivity of 94.4% and a specific-
ity of 100%, which exceeded that of a combination of any 
two (Fig.  7A). In addition, seven independent datasets 
(GSE19491, GSE28623, GSE34608, GSE54992, GSE62525, 
GSE147964 and GSE147690) were used to compare HCs 
with PTB patients; these datasets contained a total of 211 
HCs and 216 PTB patients (Table 3). As expected, in the 
validation datasets, the three-gene set distinguished PTB 
from HCs with a mean AUC of 0.902 (range 0.818–1), as 
well as mean sensitivity of 87.9% and a mean specificity of 
90.2% (Fig. 7B, C). These results demonstrated that a bet-
ter discriminative capacity between healthy individuals and 
those with PTB can be achieved via the combination of 
genes compared to any single gene.

Prediction accuracy of the three‑gene set distinguishing 
PTB from other diseases
To quantitatively assess the ability of the three-gene set to 
classify subjects as having either PTB disease or other dis-
eases, predictive RF models were built based on GSE37250 
dataset using 10-cross validation. As a result, the accuracy 
of this model reached 0.99 in the training set, as well as 0.89 
in the test set, showing great predictive performance of RF 

Fig. 3  A Significantly enriched GO terms and KEGG pathways of DEGs with P < 0.05 and gene counts ≥ 3. Font colors of Y-axis label correspond 
to different enriched terms (BP, CC, MF terms of GO or KEGG pathways) of DEGs. Legend indicates the significance of the term (−log10 P-value). 
B Results of Gene Set Enrichment Analysis (GSEA) in GO and KEGG terms showed differential enrichment of genes in PTB and HC groups. “1” 
represents PTB, “0” represents HCs

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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Fig.4  PPI network of DEGs and module analysis. A DEG PPI network constructed by STRING online database. Circular nodes represent proteins. 
Edges indicate the interaction between two proteins. The color intensity of the nodes or edges is based on the degree or combined score in the 
DEGs. B–E Module analysis via Cytoscape software (degree cut-off = 2, node score cut-off = 0.2, k-core = 2, and max. depth = 100) and four central 
modules were built based on the PPI network. F Interrelation analysis between immune system pathways. All genes from all pathways were noted 
in red. G Count number of genes involved in the identified pathways
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algorithm. Additionally, we further analyzed the classifier-
specific predictive importance of these three gene variables. 
The number of PTB patients could be predicted in decreas-
ing order of accuracy, when all patients were considered, 
by IFIT3 > IFIT1 > OAS1 (Fig.  8A). In regards to discrimi-
nating PTB from other diseases, AUC values of the three-
gene set could reach as high as 0.999 (range 0.999–1) with 
a sensitivity of 99.0% (98.8–100%) and a specificity of 100% 
(100–100%) in the training set, and 0.974 (range 0.740–1) 
with a sensitivity of 96.4% (63.6–100%) and a specificity of 
98.6% (85.7–100%) in the test set (Fig. 8B). The high mean 
AUC, sensitivity, and specificity values (all > 0.90) suggest 
an  overall strong discriminatory ability of this three-gene 
set between PTB and other diseases, which seems to per-
form well in the classification of TB and subjects with other 
diseases within the dataset, despite the different genetic 
backgrounds of subjects. Overall, these results provide 
strong evidence that the three-gene set performs well, even 
in the difficult case of separating PTB from other diseases 
or healthy controls.

Discussion
To seek better diagnostics for TB, WHO recently released 
a consensus target product profile to define the ideal 
concept of a new diagnostic, which should have a rapid, 
simple, and low-cost triage test that prioritizes sensi-
tivity to confidently rule out TB, or to identify patients 
who require further investigation. As not all patients 
with TB produce sputum spontaneously, a non-sputum 
confirmatory test that prioritizes specificity is also advo-
cated. Meanwhile, this test should also possess features 
such as ease of use and reliable detection. Therefore, 
more attention should be paid to host transcriptional 
biomarkers that represent a realistic and achievable tri-
age strategy for the resource-limited settings where they 
are most needed. In this research, in addition to identi-
fying the blood-based signatures (DEGs) in PTB patients 

compared with HCs, we further explored those biological 
functions and pathways involved in active PTB. The inde-
pendent dataset evaluated our bioinformatics results 
and confirmed that these three genes (OAS1, IFIT1 and 
IFIT3) might potentially be multi-combined diagnostic 
biomarkers. Finally, the performance of the  three-gene 
set for distinguishing PTB from HCs and patients with 
other diseases was assessed to explore their potential use 
as multimarker for PTB diagnostics.

Identifying the immunologic parameters of DEGs 
involved in active PTB will help us understand the patho-
genesis of PTB. The pathogen immune response is a 
stringently controlled process that must preserve infected 
organs while eliminating the  microbial infection. TB is 
an immunopathological disease typically affecting the 
lungs, resulting from an extremely heightened immune 
response to infection by mycobacteria. Antimicrobial 
immunity protects the bulk of the infected tissue, but 
can become harmful when not finely regulated. Active 
TB as the awful outcome of Mtb infection is based on the 
interaction between Mtb and host immunity. Troegeler 
et  al. [29] demonstrated that dendritic cell (DC) immu-
noreceptor sustains type I IFN signaling in DCs, and thus 
modulates TB immunity in vivo and in vitro. Since DEGs 
identified were found to be mostly related to type I IFN 
signaling pathway (Fig.  3), suggesting its high involve-
ment in Mtb infection. Current IGRAs that detect IFN-γ 
release from T cells in response to two Mtb–specific anti-
gens (ESAT-6 and CFP-10) can determine the presence 
of Mtb infection based on this theoretical concept [30]. 
Besides immune response, DEGs were also involved in 
the virus defense response, and viral genome replication 
negative regulation using BP (GO) enrichment analysis. 
These results are consistent with our findings with GSEA 
analysis and interrelation analysis in immune system 
pathways for DEGs, as well as BP analysis for hub genes. 
This observation is further supported by a previous study, 

Table 2  Top ten hub genes with a high connectivity degree ranked by three different algorithms

MCC: maximal clique centrality; MNC: maximum neighbourhood component

Gene symbol Gene description Degree MCC MNC

OAS1 2’-5’-Oligoadenylate synthetase 1 26 1.88E+10 26

OAS3 2’-5’-Oligoadenylate synthetase 3 25 1.88E+10 25

OASL 2’-5’-Oligoadenylate synthetase like 24 1.88E+10 24

IFIT3 Interferon induced protein with tetratricopeptide repeats 3 22 1.88E+10 22

IFI44L Interferon induced protein 44 like 21 1.87E+10 20

IFI44 Interferon-induced protein 44 20 1.87E+10 20

ISG15 Interferon stimulated gene 15 20 1.88E+10 20

RSAD2 Radical S-adenosyl methionine domain containing 2 20 1.88E+10 20

IFIT1 Interferon induced protein with tetratricopeptide repeats 1 20 1.88E+10 20

XAF1 XIAP-associated factor 1 19 1.88E+10 19
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in which abortive influenza or hepatitis virus infection in 
macrophages was found to be controlled through a type 
I IFN-dependent mechanism [31], suggesting that Mtb 
infection may share mechanisms with virus infection and 
viral genome replication.

Additionally, the type I IFN family is a multigene 
cytokine family that includes one IFNβ, 13 (in humans) or 
14 (in mice) partly homologous IFNα subtypes, and a few 
other gene products [32]. IFNα and IFNβ (IFNα/β) are 
the most well defined and highly expressed type I IFNs. 
They are able to stimulate the transcription of a gene 

Fig. 5  The GO enrichment results of the top ten hub genes. The bubble plot and chord diagram show the GO term (BP) (A) related to the top ten 
hub genes (B)
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program that is able to interfere with the viral replica-
tion cycle at multiple stages with numerous mechanisms, 
and thus mediate the antiviral state in both virus-infected 
and uninfected cells [33]. Nevertheless, IFNα/β have 
various accessional roles that regulate both the adaptive 
and innate immune responses against bacterial and viral 
pathogens. Both the mouse infection models and patient 
studies indicate that IFNα/β plays a detrimental role 
during TB. Several studies have found that the lack of 
IFNα/β-mediated signaling corresponds to reduced bac-
terial load and better host survival [34]. Patients suffering 
from active TB infection have a noticeable whole blood 
transcriptional profile inducible by IFNα/β, the profiles 
of which are correlated with the degree of radiographic 
disease progress, which is reduced after successful treat-
ment [35]. In the absence of the IFNγ pathway, IFNα/β 
play a part in host protection through experiments in 
Ifngr1–/–Ifnar1–/– mice [36].

Although previous studies have demonstrated the 
damaging role of  type I IFNs during Mtb infection, the 
mechanism by which IFNα/β exacerbates TB remains 
unknown. Our KEGG pathway analysis demonstrated 
that DEGs were  largely enriched in RLR signaling path-
way (Fig.  3), indicating RLR might involve in the type-I 
IFN response. Recent studies have reported the distinct 
roles of the host cell cytosolic RNA sensor RIG-I ((a 
member of RLR) in the type I IFN signaling in response 
to Mtb infection [37–39]. Mtb infection induces RIG-I 
activation, aimed at enhancing downstream signaling. 
Eira Choudhary et al. further showed that loss of RIG-I 
in Mtb-infected macrophages leads to dampened IFN-β, 
IL-1α, and IL-1β production, elevated autophagic activ-
ity, and especially reduced intracellular bacterial survival 
[37]. These results show that targeting this pathway is a 
potential host-directed approach to treat TB disease. For 
instant, Shahin Ranjbar et al. firstly clarified that the oral 
FDA approved thiazolide drug nitazoxanide significantly 
inhibits intracellular Mtb growth and amplifies Mtb-
driven RLR activity [38], further providing robust sup-
port that RLR signaling pathway can be further explored 
in designing novel anti-TB drug targets.

Our study examined the transcriptional profiles of 
peripheral blood in PTB patients to investigate gene 
expression changes between PTB and HCs not only 
based on data analysis, but also qRT-PCR experiments in 
an independent sample set were used to verify the bio-
logical roles of this predictive gene-set in PTB. Finally, 
OAS1, IFIT1 and IFIT3 genes were selected as risk indi-
cators of PTB. 2′-5′-OAS, specifically OAS1, OAS2, and 
OAS3, are members of IFN-mediated genes that are 
synonymous with antiviral function. Their upregulation 
in numerous transcriptome expression profiles, differ-
entiating active and latent infections, was continuously 
observed through blood transcriptome profiling [40]. 
This observation is supported by our findings. The upreg-
ulated hub genes, such as OAS1, OAS3, and OASL, were 
identified on the basis of the PPI network of analyzed 
DEGs. These findings suggested that the hub genes func-
tion as clinical biomarkers in PTB. However, the function 
of OASs and how their expression levels affect the persis-
tence and pathogenesis of TB have yet to be elucidated. 
The OAS1 gene is the first of 3 closely related genes 
located on human chromosome 12q24.2, and encodes 
three closely linked genes, including OAS1, which exist in 
isoforms p42, p44, p46, and p48 [41]. IFN release induces 
its expression. As part of the type I IFN response to TB 
infection, OAS1 is the most upregulated gene, as shown 
by neutrophil blood transcriptome profiling in active TB 
patients [35]. Type I IFN signaling at  the late stages of 
TB is enhanced by the continuous expression of RNase L 
through OAS activation, and OAS may exhibit immune-
modulatory capabilities [42]. Additionally, considering 
that the type I IFN response is a significant host response 
in TB, Type I IFN inducible proteins ISG15, IFIT1, IFIT2, 
and IFIT3, are highly induced during Mtb infection [43]. 
The possible role of ISG15 and IFITs in the host response 
to Mtb infection was potentially influenced by type I IFN 
signaling pathway. While recent studies have reported 
the distinct roles of OAS1, IFIT1, and IFIT3 in the type 
I IFN signaling in response to Mtb infection, a clear and 
holistic picture of the regulation networks of these three 
genes involved in host immune during Mtb infection is a 

(See figure on next page.)
Fig. 6  Expression of the ten hub genes and screening in an independent dataset (GSE56153). A Scatter plot from multiple t tests. mRNA expression 
levels of ISG15, OAS1, IFIT3, OAS3, IFIT1, OASL, IFI44L, RSAD2, XAF1 and IFI44 in the peripheral blood from PTB patients were compared with those in 
HC groups. Data were analyzed with multiple t tests and the scatter plot is created via GraphPad Prism 8.0.2. Each dot represents one gene and red 
dots denote genes with significant changes in expression (q < 0.01). The X axis is the difference between means for each gene from PTB and HC 
groups. The Y value plots the minus logarithm of the q-value. A dotted grid line is shown at Y = −log10(0.01). B Correlation of ISG15, OAS1, IFIT3, 
OAS3, IFIT1, OASL, IFI44L, RSAD2, XAF1 and IFI44 expression levels and PTB variable. Correlations were analyzed using point-biserial correlation tests 
and correlation coefficients of these genes were plotted. Red circles denote genes with correlation coefficient > 0.5 and P < 0.01. C Forest plot of 
the association between the ten hub genes and PTB in GSE56153 dataset. These ten hub genes from PTB patients and HCs were analyzed using 
multivariate poisson regression analysis with robust variance estimate. Metaanalysis of those was conducted, and adjusted RR, 95% CI of each gene 
and corresponding P value were calculated and plotted in the forest plot. D mRNA expression values of the three genes (OAS1, IFIT1 and IFIT3) in 
PTB and HC from an independent sample set by qRT-PCR. The mRNA values of the evaluated genes were normalized to the housekeeping gene 
GAPDH. The numbers of participants in validation test were the following: PTB, n = 20; HC, n = 20. **P < 0.01, ***P < 0.001
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Fig. 6  (See legend on previous page.)
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complete lack, and other RIG-I-dependent mechanisms 
involved in Mtb–host interactions are yet to be fully 
elucidated.

Our results provide strong evidence that the three-
gene set could be used to address some of the major 
challenges in the  diagnosis of active PTB. Our three-
gene set performed well in the diagnosis of PTB versus 
HCs, with a  mean AUC of 0.911, mean sensitivity of 
88.7%, and mean specificity of 91.5% (7 datasets added 
GSE56153), approximated to the minimum WHO target 
product profile criteria of 90% sensitivity and 70% speci-
ficity for a triage test to rule out TB [44]. In differenti-
ating PTB from other diseases, sensitivity and specificity 
of RF model with the three-gene set yielded 99% and 
100% in the training set, respectively. In the test set, this 
model provided a sensitivity of 96.4% and a specificity of 
98.6%, demonstrating that RF model with the three-gene 
set had a better power for discrimination between PTB 
and other diseases. Furthermore, the accuracy of our 
results is substantially higher than some gene sets from 
other studies. Pan et al. revealed that the combination of 
RETN and KLK1 genes achieved the best discriminative 
capacity (AUC = 0.916), with a sensitivity of 71.2% and a 
specificity of 93.6%, when discriminating TB from latent 
tuberculosis infection (LTBI) [45]. However, it failed to 
reach the WHO target product profile criteria. Recently 
eight-protein biomarkers were identified using an anti-
body-based array [46]. Although the training cohort had 
a 100% specificity and 100% sensitivity in diagnosing TB 
using the RF algorithm approach by cross-validation, the 
specificity and sensitivity were 83% and 76% in the test 
cohort, respectively, as well as 84% and 75% in the pre-
diction cohort. Sweeney et al. [47] showed that the diag-
nostic power of a set of three genes (GBP5, DUSP3, and 
KLF2) to separate active TB from HCs with AUC of 0.90, 

Fig. 7  Efficacy evaluation for the three-gene set predicting 
PTB versus HCs by receiver operating characteristic curve (ROC) 
analysis. A ROC of the single gene or optional combinations of the 
three-gene set for discriminating PTB from HCs in independent 
GSE56153 dataset. 95% confidence interval of AUC was shown in 
the legend area, and the different colors presented different genes 
or combinations. B, C ROC of the three-gene set in the other seven 
independent datasets (GSE19491, GSE28623, GSE34608, GSE54992, 
GSE62525, GSE147964, GSE147690). 95% CI of AUC was shown in the 
legend area, and the different colors presented different datasets

Table 3  Statistics of the nine microarray databases derived from 
the GEO database

GEO: Gene Expression Omnibus; PTB: pulmonary tuberculosis; HC: healthy 
control; Other diseases: TB was considered in the differential diagnosis but then 
excluded

Dataset ID PTB HC Other 
diseases

Total number

GSE56153 18 18 – 36

GSE19491 117 61 – 178

GSE28623 37 46 – 83

GSE34608 18 8 – 26

GSE54992 6 27 – 33

GSE62525 14 14 – 28

GSE147964 10 20 – 30

GSE147690 14 35 – 49

GSE37250 97 – 83 180
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sensitivity of 0.85 and specificity of 0.93, latent tubercu-
losis with AUC of 0.88, sensitivity of 0.80 and specificity 
of 0.86, and other diseases with AUC of 0.84, sensitivity 
of 0.81 and specificity of 0.74 in eight independent data-
sets composed of both children and adults. Deviations 
between results could be due to different bioinformat-
ics analysis techniques, such as where the three-gene set 
was obtained via the calculation of the tuberculosis score. 
In addition, different selected datasets could contribute 

to differences in the results. Three datasets (GSE19491, 
GSE37250, and GSE42834) were used by Sweeney et  al. 
[47] to identify the gene set. Furthermore, differences in 
biomarker study design might affect the performance of 
biomarker signatures, as well as the  exclusion of HIV-
positive individuals and children in our study. Impor-
tantly, a principal advantage of the three-gene set is the 
easy accessibility of blood sampling. However, alternative 
microbiological tests for TB using non-sputum samples 
are being developed, which might offer greater promise 
among patient subgroups where obtaining sputum is dif-
ficult. Moreover, the cost of the three-gene set assays is 
low cost similar to that of C-reactive protein test, which 
might provide a realistic and achievable diagnostic strat-
egy for the resource-limited settings where they are most 
needed.

Limitation
There are some limitations to our study. First, there is 
insufficient available data to determine whether it is spe-
cific to virulent or non-virulent strains, such as M. tuber-
culosis H37Ra or M. bovis BCG, since the three-gene 
signatures were obtained from data based on the multi-
ple clinical PTB cohorts, in which only virulent strains 
would likely to cause infection, and cells were infected 
with the virulent strain H37Rv. Second, due to the small 
number of the samples in independent sample set, the 
effect of inter-individual differences cannot be avoided, 
even though independent sample sets were used to evalu-
ate the microarray results. Third, our chosen cohort was 
restricted to IGRA-negative patients. Similar independ-
ent validation studies are needed for LTBI and patients 
with extrapulmonary tuberculosis. Lastly, due to the lack 
of publicly available data, the model isn’t specific enough 
to verify diagnosis alone, but alongside other methods 
such as differential diagnosis. As well, at the moment 
there aren’t enough samples to produce a standard that 
could be quickly referenced. Despite the limitations, the 
three-gene set, in conjunction with differential diagnosis, 
can boost the confidence of PTB diagnosis for clinicians, 
provides an early warning of possible active PTB, and 
allows for early isolation and treatment, possibly avoiding 
any potential transmission, and better patient prognosis.

Conclusion
The data from the 11 dataset cohorts and an inde-
pendent clinical sample set show that OAS1, IFIT1, 
and IFIT3 were included and evaluated in the multi-
combined diagnostic biomarkers in discriminating TB 
from the control or other disease groups, and were thus 
regarded as distinctive combined biomarkers of PTB. 

Fig. 8  The discriminative performance of the three-gene set in 
discriminating TB from other diseases based on the Random Forest 
(RF) predictions in independent GSE37250 dataset. A Importance 
plot of the variables. Total pixel was the three-gene set, followed by 
OAS1, IFIT1, and IFIT3. B ROC of RF prediction model based on the 
three-gene set in the training set and test set from the GSE37250 
dataset. AUC was also shown in the legend area
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The commonalities and unique signatures in the blood 
profiles of the PTB and control samples have consider-
able implications for PTB biosignature design and future 
diagnosis, providing insights into the biological processes 
underlying PTB.
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