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Abstract 

Background:  Spirometry quality assurance is a challenging task across levels of healthcare tiers, especially in primary 
care. Deep learning may serve as a support tool for enhancing spirometry quality. We aimed to develop a high accu-
racy and sensitive deep learning-based model aiming at assisting high-quality spirometry assurance.

Methods:  Spirometry PDF files retrieved from one hospital between October 2017 and October 2020 were labeled 
according to ATS/ERS 2019 criteria and divided into training and internal test sets. Additional files from three hospitals 
were used for external testing. A deep learning-based model was constructed and assessed to determine accept-
ability, usability, and quality rating for FEV1 and FVC. System warning messages and patient instructions were also 
generated for general practitioners (GPs).

Results:  A total of 16,502 files were labeled. Of these, 4592 curves were assigned to the internal test set, the remain-
ing constituted the training set. In the internal test set, the model generated 95.1%, 92.4%, and 94.3% accuracy for 
FEV1 acceptability, usability, and rating. The accuracy for FVC acceptability, usability, and rating were 93.6%, 94.3%, and 
92.2%. With the assistance of the model, the performance of GPs in terms of monthly percentages of good quality (A, 
B, or C grades) tests for FEV1 and FVC was higher by ~ 21% and ~ 36%, respectively.

Conclusion:  The proposed model assisted GPs in spirometry quality assurance, resulting in enhancing the perfor-
mance of GPs in quality control of spirometry.
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Introduction
Spirometry is the most frequently used pulmonary func-
tion test (PFT) in the assessment of lung function to pro-
vide information used in the diagnosis, screening, and 

monitoring of respiratory diseases [1]. Over the past 
decades, spirometry has become easy access across lev-
els of healthcare tiers even in communities thanks to the 
availability of portable spirometers and the training of 
operators [2]. High-quality assurance of spirometry test-
ing is pivotal for the proper management of patients with 
respiratory diseases [3], as well as in researches where 
spirometry is often needed for drug qualification trials 
and epidemiological surveys.

In 2019, the American Thoracic Society (ATS) and 
the European Respiratory Society (ERS) jointly updated 
technical standards for conducting spirometry [4]. The 
updated document contains quantitative and visual 
inspection criteria, moreover, recommendations on the 
acceptability, usability, and rating for FEV1 and FVC 

Open Access

*Correspondence:  misstall2@163.com; jpzhenggy@163.com; 
nanshan@vip.163.com
†Yimin Wang and Yicong Li contributed equally to this work.
†Yi Gao, Jinping Zheng and Nanshan Zhong contributed equally to this 
work.
1 National Center for Respiratory Medicine, State Key Laboratory 
of Respiratory Disease, National Clinical Research Center for Respiratory 
Disease, Guangzhou Institute of Respiratory Health, First Affiliated 
Hospital of Guangzhou Medical University, Yanjiang Road 151, 
Guangzhou 510120, Guangdong, People’s Republic of China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-7511-661X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12931-022-02014-9&domain=pdf


Page 2 of 9Wang et al. Respiratory Research           (2022) 23:98 

maneuvers are also provided [4]. A motivated and trained 
operator is a key element to obtain high-quality spirom-
etry data since only the trained operators can complete 
the visual assessment of spirometry quality control. The 
quality of spirometry performed in primary care prac-
tice can differ on the impact of formal training [5, 6]. In 
China, only 12.0% of patients with chronic obstructive 
pulmonary disease reported the previous PFT [7], which 
is partly due to the shortness of skilled and trained opera-
tors. The government had promoted 50% of the primary 
care settings to be equipped with spirometers, which 
could output lung function parameters, flow–volume 
curves, and volume–time curves. What’s more, the utili-
zation rate of spirometers in primary care settings should 
reach 90%, which were performed by general practition-
ers (GPs). These measures have led to the need for GPs 
to have powerful supporting tools to assist in the quality 
control of spirometry.

Several studies have already incorporated informa-
tion technologies into the automatic process of spirom-
etry quality assurance to help non-specialist operators 
in clinical practice. Researchers elaborated and validated 
the performance of a Clinical Decision Support System 
for spirometry quality assessment [8]. Andrew and col-
leagues [9] used conventional machine learning algo-
rithms to classify four types of user errors in spirometry, 
namely, early termination, cough, variable flow, and extra 
breath. Similarly, several machine learning classifiers 
were also utilized to decide the curves’ acceptability in 
spirometry [10]. More recently, authors leveraged deep 
learning techniques, i.e., convolutional neural network 
(CNN) to classify FEV1 and FVC acceptability and usabil-
ity in spirometry [11]. Since deep learning models have 
a large parameter space and have automatically learned 
features. Deep learning-based computer vision (CV) 
methods outperform those traditional CV in most tasks 
[12–16]. In addition, updated standards for spirometry 
have led to the need for a more progressive approach for 
spirometry quality to meet the updated criteria.

Comparing to previous literature, we aimed to develop 
a more advanced approach in this work by combining the 
ATS/ERS 2019 guidelines with an object detection mod-
ule, which not only can provide acceptability, usability, 
and rating assessment for FEV1 and FVC separately with 
state-of-the-art accuracy but are also able to classify and 
locate common artifacts visually.

Materials and methods
The present study was approved by the Ethics Commit-
tee of the First Affiliated Hospital of Guangzhou Medi-
cal University (approval number: 2020124). Since it 
was an anonymized and retrospective research, written 
informed consent was waived.

Spirometry
Spirometry was performed by technicians following 
ATS/ERS 2005 guidelines [17] and Chinese Thoracic 
Society 2014 guidelines [18]. Tests using for train-
ing and testing the model were acquired with Mas-
terScreen-Pneumo (Jaeger, Germany) equipment. In 
primary care units, tests were performed by portable 
spirometer with U-BREATH PF680 (E-linkcare, China).

Study design
In accordance with ATS/ERS 2019 standards [4], errors 
of all flow–volume and volume–time curves that need 
visual inspection were labeled independently by four 
pulmonologists, whose experience in operating and 
interpreting spirometry for more than 2 years. They 
labeled different curves (never the same). If there were 
any doubt, then the expert (YG) the experience of more 
than 18 years would make the final decision. The quan-
titative criteria were checked by the Python scripts 
based on the rules of standards [4]. The details of quan-
titative and visual criteria are shown in Additional 
file 1: Tables S1 and S2. A cloud-based artificial intelli-
gence (AI) system was constructed based on the estab-
lished deep learning model (Additional file 1: Appendix 
S1). The architecture, input, and output of the system 
are shown in Additional file 2: Fig. S1, Additional file 3: 
Fig. S2, and Additional file 4: Fig S3.

Following a 3-month period, the baseline perfor-
mance of GPs who have received spirometry training 
was assessed in month 0 before the intervention. GPs 
were instructed to manage the AI system after base-
line data were collected, they were able to access the 
system during the period of the first and second inter-
vention months (month 1 and month 2). The method 
procedure was illustrated in Additional file  5: Fig S4. 
The system was introduced to GPs to assist their daily 
practice, to evaluate the efficacy of this new approach 
of working. The research was conducted from March 
2021 to May 2021 in ten selected primary care units 
in Guangzhou China. A total of 30 GPs was recruited, 
they were trained to perform the spirometry according 
to ATS/ERS 2019 standards [4]. Patients were selected 
for the study who required spirometry testing accord-
ing to GPs’ decision, without limitation of age or sex. 
All tests performed were selected to assess GPs’ perfor-
mance. The patients’ names, technicians’ names, and 
physicians’ names were all anonymized. GPs could only 
access a patient’s data, the one who performed spirom-
etry under their own guidance in their routine work, 
they could not access other patients’ spirometry data.
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Data acquisition
Inclusion criteria included the spirometry files with at 
least one usually three flow–volume and volume–time 
curves, regardless of age, pattern, and quality features. 
A typical example of a spirometry file is shown in Addi-
tional file  3: Fig S2. Files with curves that could not be 
resolved to a JSON (i.e. The flow–volume and volume–
time curves were resolved to numeric values over a 0.01-s 
interval during the maneuver) file were excluded. The 
training set and internal test set files were consecutively 
retrieved from the PFT databases of the First Affiliated 
Hospital of Guangzhou Medical University between 
October 2017 and October 2020. Files were randomly 
divided into 90% for training and 10% for internal testing.

The external test files were retrieved from the PFT 
database of the National Clinical Research Center for 
Respiratory Disease between January 2021 and February 
2021.

Model development
As shown in Additional file  6: Fig S5, our framework 
mainly consisted of three modules: Data Preprocess-
ing Module, Rule Module, and Object Detection Mod-
ule. Given input data, the Data Preprocessing Module 
would extract both numerical information (lung func-
tion parameters, flow–volume curve data, and vol-
ume–time curve data) and curve images. Then, the Rule 
Module would process the numerical information and 
output corresponding results (Yes/No). Simultaneously, 
the flow–volume and volume–time curve images were 
sent to the Object Detection Module, which would auto-
matically determine the type and location if an anomaly 
exists (examples of input and output images were shown 
in Fig.  1). The Module had a popular ResNet50 as the 
backbone network for feature extraction. Details of the 
ResNet50-V1 architecture were shown in Additional 
file  7: Fig. S6. Finally, the results of the Rule Module 
and Object Detection Module were combined together 
to generate FEV1 or FVC acceptability, usability, qual-
ity rating, and guidance for patients (Additional file  1: 
Table  S3). All the data we used would not be furtherly 
saved inside the two modules once the results were gen-
erated. Details on the model development can be found 
in Additional file 1: Appendix S2.

Statistical analysis
The proposed algorithm was evaluated on both the inter-
nal and external test sets. Five metrics including balanced 
accuracy, sensitivity, specificity, PPV, and NPV were 
utilized for evaluation of FEV1 and FVC acceptability 
and usability. Overall accuracy is utilized for the evalua-
tion of quality ratings. Comparisons among the monthly 

percentages of acceptable, usable maneuvers, and good 
quality tests for FEV1 and FVC, in month 0, month 1, 
and month 2 were carried out using the chi-squared test. 
Statistical analyses were performed with SPSS version 26 
(Statistical Package for Social Science) and Python.

Results
Participant characteristics
A total of 16,502 files were scanned and labeled. After the 
exclusion of files with no curves or curves that could not 
be resolved (n = 809), 15,693 files remained, the train-
ing set involved 14,124 files. In the internal test set, there 
were 4592 curves from 1569 files. The external test set 
involved an extra 360 curves from 182 files. The flowchart 
of data acquisition, selection, and division is presented 
in Fig. 2. Details on the types of abnormalities that were 
identified can be found in Additional file 1: Table S4.

At the end of the 3-month study, 501 files had been 
performed from ten primary care centers. After the 
exclusion of files with no curves (n = 2), there were 171, 
431, and 840 curves from 72, 148, and 281 files per-
formed during month 0, month 1, and month 2, respec-
tively. Flowchart of data acquisition was shown in Fig. 3. 
We observed that the monthly number of tests showed 
an astonishing increasing trend from the beginning to 
month 2.

Model testing
We first evaluated the proposed model regarding FEV1 
and FVC acceptability, usability, and quality rating in the 
internal test set (n = 4592 curves). It can be observed that 
our model achieved promising results in all three tasks. 
The model prediction of FEV1 acceptability and usabil-
ity resulted in promising balanced accuracy of 95.1% and 
92.4% with high sensitivity (97.8% and 99.4%) but low 
NPV (69.6% and 72.2%), respectively. The model pre-
diction of FVC acceptability and usability also achieved 
well-balanced accuracy (93.6% and 94.3%) (Table 1). We 
also observed excellent accuracy in both FEV1 and FVC 
ratings (94.3% and 92.2%, respectively, Table 2). Detailed 
statistical data in the internal test set is shown in Addi-
tional file 8: Fig. S7 and Additional file 9: Fig. S8.

Next, the performance of our model was evaluated 
on the external test set to validate its generalization 
ability. As shown in Table  1, our model expressed 
astonishing performance with a 100% accuracy of FEV1 
and FVC usability specifically. This phenomenon may 
be due to the relatively small size of the test set but 
indeed validate the strong generalization ability of the 
proposed model to some extent. The model to deter-
mine acceptability criteria also demonstrated excel-
lent accuracy (details in Table 1). The overall accuracy 
of FEV1 grade and FVC grade were 95.6% and 92.3%, 
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Fig. 1  Input and output samples from Object Detection Module. a Suspect a cough in the flow–volume graph, an up-and-down flow spike is 
detected by the module; b Suspect obstructed mouthpiece or spirometer in the flow–volume graph, a flutter is detected by the module; c Suspect 
glottis closure in the flow–volume graph, a sharp drop is detected by the module



Page 5 of 9Wang et al. Respiratory Research           (2022) 23:98 	

respectively (Table 2). Detailed statistical classification 
in the external test set is shown in Additional file  9: 
Fig. S8 and Additional file 10: Fig. S9.

Effects of the AI system on quality
The monthly percentages of acceptability and usability 
maneuvers were significantly and consistently higher 
in the AI-assistance groups (month 1 and month 2) 
than in the baseline group (month 0) (Table  3). In 
month 2, with the AI supporting, averages of 91.8% 
for FEV1 and 89.4% for FVC acceptability maneuvers 
were presented. In the contrast, the baseline showed 
lower mean percentages (81.9% and 70.2%, respec-
tively) (both P < 0.0001). The percentages of FEV1 
and FVC usability maneuvers maintained the positive 
trend (88.3% and 88.9% at month 0, 99.2% and 99.2% at 
month 2) (both P < 0.0001, Table 3).

The higher monthly percentages of good quality rat-
ings (A, B, or C grades) for FEV1 and FVC in month 
1 (79.1% and 72.3%) and month 2 (91.8% and 89.0%) 
were obtained in comparison with month 0 (70.8% and 
52.8%), respectively (both P < 0.0001) (Table 3).

Discussion
The current research has presented a novel framework 
combining both advanced object detection algorithm and 
ATS/ERS 2019 standards to enable automatic spirometry 
quality assurance, specifically, determination of accept-
ability, usability, and quality rating for FEV1 and FVC. 
The object detection module learned domain knowledge 
during training and was able to mimic the visual screen-
ing action of clinical experts during inference. Extensive 
experiments show that our proposed framework could 
achieve excellent performance on internal testing as well 
as external testing. Furthermore, the AI system enhanced 
the quality of tests covering acceptability, usability, and 
good quality ratings (A, B, or C grades) for FEV1 and 
FVC performed by GPs. Consequently, the results seem 
to demonstrate that our approach could help GPs who 
were not specialized professionals to carry out spirom-
etry testing with high quality.

Quality control of spirometry testing with information 
and communications technology is not a new idea, and 
it has been shown that such approaches do improve the 
performances of clinicians in primary care [19]. Nowa-
days, we regularly use them to interpret chest computed 

Fig. 2  Flowchart of the algorithm training and testing data acquisition, selection, and division. 16,502 spirometry files were retrieved from the 
First Affiliated Hospital of Guangzhou Medical University. After exclusion of files with no curves or curves that could not be resolved, 15,693 files 
remained, files were randomly divided into training and internal testing sets. Additional 219 spirometry files retrieved from the multicenter (three 
hospitals) of the National Clinical Research Center for Respiratory Disease were used for external testing. FEV1  forced expiratory volume in 1 s, 
FVC forced vital capacity
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tomography, or PFT, to analyze lung irregularities, or as 
indicators for respiratory disease diagnosis and exacer-
bation [20–24]. Although automated assessment qual-
ity of spirometry had been evaluated before [11, 25], 

none has become a clinical reality covering multiple 
regions around the world. Firstly, there is marked dif-
ficulty in assaying data from various spirometers. Sec-
ondly, there are a lot of guidelines that can be selected 

Fig. 3  Flowchart of data acquisition from ten primary care units. 171, 431, and 840 curves from 72, 148, and 281 files performed during month 0, 
month 1, and month 2 in ten primary care units by 30 GPs, respectively. GPs general practitioners; AI artificial intelligence

Table 1  Acceptability and usability assessment in the internal and external test set (n = 4592 and 360 curves, respectively)

FEV1 forced expiratory volume in 1 s, FVC forced vital capacity, PPV positive predictive value, NPV negative predictive value

Task Balanced accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Internal test set

FEV1 Acceptability 95.1 97.8 92.4 99.6 69.6

FEV1 Usability 92.4 99.4 85.4 99.7 72.2

FVC Acceptability 93.6 97.5 89.6 98.9 79.4

FVC Usability 94.3 99.5 89.0 99.8 74.7

External test set

FEV1 Acceptability 97.7 99.6 95.8 98.0 99.1

FEV1 Usability 100.0 100.0 100.0 100.0 100.0

FVC Acceptability 95.4 99.6 91.3 94.9 99.2

FVC Usability 100.0 100.0 100.0 100.0 100.0
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to assess spirometry quality [4, 17, 18, 26], which may 
cause controversy and puzzles for non-specialized clini-
cians. Different recommendations on spirometry quality 
control to use will influence the interpretation of spirom-
etry tests. The usefulness and strength of our approach 
lie in the ability to meet the updated criteria in order to 
increase the accuracy, precision, and quality of spiromet-
ric measurements.

Leveraging the deep learning-based model, we 
approached FEV1 and FVC acceptability and usability as 
having both quantitative criteria and visual criteria on 
the spirometry. As such, the deep learning model is able 
to detect subtle characteristics and artifacts that are chal-
lenging for humans to identifies and incorporates into a 
powerful quality assurance model. More concretely, the 
model can learn high-level features corresponding to dif-
ferent artifacts by training on a large number of known 
quality control cases, then it can generate the type of 
the anomaly and its position during the test phase given 
input data, a process that is similar to how students learn 
new knowledge. The most recent work proposed by Das 
et al. [11] formulated this quality assurance task as a clas-
sification problem and tackled it by using a CNN model. 
However, we argued that this method could only classify 

the acceptability and usability of spirometry curves. On 
the contrary, the object detection module we used could 
not only classify the image type but also locate the posi-
tion of the abnormalities simultaneously. This feature 
could serve as interpretable guidance for the GPs. In 
addition, our approach could provide explicit feedback 
to the operator. Warning messages and suggested correc-
tions are also remotely provided to the operator in real-
time online, thereby, the operator in primary care could 
decide whether there’s a need to do an additional maneu-
ver. Furthermore, the departments need to undertake 
regional spirometry quality assessment, then they can 
use our model for retrospective evaluation spirometry 
from communities under its management.

In our study, the most common visual criteria that 
could not be achieved by the human experts were glot-
tic closure and cough although they have a visual inspec-
tion of flow–volume and volume–time curves. Therefore, 
our model was focus on dealing with these visual artifacts 
better in line with clinical practice. Another advantage of 
this research was that the algorithms could integrate into 
the spirometry system software of various equipment.

The poor performance of GPs in primary care on qual-
ity assurance of spirometry using the baseline data was 
observed in this study, which is in accordance with previ-
ous studies [6, 27, 28]. The baseline data confirmed the 
need for assistance on quality control of the tests at the 
primary care level. Our data demonstrated that the AI 
system increases good quality (A + B + C grades) tests 
for FEV1 and FVC by ~ 21% and ~ 36% from month 0 to 
month 2. The results generated a beneficial impact on 
spirometry quality assurance.

A limitation of the current study was that the test 
sample we used may not entirely reflect the prevalence 
of quality artifacts of spirometry tests that operators 
in primary care confront in daily practice. We did not 

Table 2  Rating assessment in the internal and external test set 
(n = 1569 and 182 files, respectively)

See Table 1 legends for abbreviations

Task Accuracy (%)

Internal test set

FEV1 quality rating 94.3

FVC quality rating 92.2

External test set

FEV1 quality rating 95.6

FVC quality rating 92.3

Table 3  FEV1 and FVC quality assessment in primary care units

Data are presented as absolute numbers in the case of frequencies. GPs  general practitioners, AI  artificial intelligence; see Table 1 legends for expansion of 
abbreviations

GPs with regular practice GPs with AI-assistance

Task, n (%) Month 0 Month 1 Month 2 P value

Acceptable N = 171 curves N = 431 curves N = 840 curves

FEV1 maneuvers 140 (81.9%) 359 (83.3%) 771 (91.8%)  < .0001

FVC maneuvers 120 (70.2%) 343 (79.6%) 751 (89.4%)  < .0001

 Usable (including acceptable) N = 171 curves N = 431 curves N = 840 curves

FEV1 maneuvers 151 (88.3%) 396 (91.9%) 833 (99.2%)  < .0001

FVC maneuvers 152 (88.9%) 398 (92.3%) 833 (99.2%)  < .0001

Good quality ratings (A, B, or C grades) N = 72 files N = 148 files N = 281 files

FEV1 tests 51 (70.8%) 117 (79.1%) 258 (91.8%)  < .0001

FVC tests 38 (52.8%) 107 (72.3%) 250 (89.0%)  < .0001
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explore the criterion of the leak since we only labeled 
two files, one reason is that a leak rarely occurred in 
skilled technicians. But with the application of this 
model in primary care, this criterion will be incorpo-
rated. Additionally, we did not test the level of agree-
ment of authors when labeled the quality anomaly. 
Furthermore, the time to evaluate the performance 
of the model to help GPs was short, which may limit 
sustained assessment of the impact of the AI sys-
tem. Future longer time and additional centers will be 
included.

Conclusions
To conclude, we developed a high-precision deep 
learning-based model for automated quality control of 
spirometry. The AI system established on this model 
could provide strong assistance for improving the GPs’ 
performance. It can be used with high scalability across 
the healthcare tiers.
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