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Abstract 

Background:  Inhalation of fungal spores is a strong risk factor for severe asthma and experimentally leads to 
development of airway mycosis and asthma-like disease in mice. However, in addition to fungal spores, humans are 
simultaneously exposed to other inflammatory agents such as lipopolysaccharide (LPS), with uncertain relevance to 
disease expression. To determine how high dose inhalation of LPS influences the expression of allergic airway disease 
induced by the allergenic mold Aspergillus niger (A. niger).

Methods:  C57BL/6J mice were intranasally challenged with the viable spores of A. niger with and without 1 μg of LPS 
over two weeks. Changes in airway hyperreactivity, airway and lung inflammatory cell recruitment, antigen-specific 
immunoglobulins, and histopathology were determined.

Results:  In comparison to mice challenged only with A. niger, addition of LPS (1 μg) to A. niger abrogated airway 
hyperresponsiveness and strongly attenuated airway eosinophilia, PAS+ goblet cells and TH2 responses while enhanc-
ing TH1 and TH17 cell recruitment to lung. Addition of LPS resulted in more severe, diffuse lung inflammation with 
scattered, loosely-formed parenchymal granulomas, but failed to alter fungus-induced IgE and IgG antibodies.

Conclusions:  In contrast to the strongly allergic lung phenotype induced by fungal spores alone, addition of a rela-
tively high dose of LPS abrogates asthma-like features, replacing them with a phenotype more consistent with acute 
hypersensitivity pneumonitis (HP). These findings extend the already established link between airway mycosis and 
asthma to HP and describe a robust model for further dissecting the pathophysiology of HP.
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Background
Asthma, including both allergic and non-allergic forms, 
is one of the most common chronic disorders affecting 
both children and adults. Allergic or atopic asthma, also 
termed extrinsic or T2 high asthma, is the most common 
form, characterized by a predominant TH2 cell immune 
response hallmarked by the production of the cytokines 
interleukin 4 (IL-4) and IL-5, and IL-13, eosinophilic 
inflammation, airway hyperreactivity, and increased 
serum IgE levels [1, 2]. Although immediate-type hyper-
sensitivity to environmental antigens (atopy) is both a 
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risk factor for and part of the pathophysiology of aller-
gic asthma, exposure to fungi leading to airway mycosis, 
a form of non-invasive airway fungal infection, is also 
essential to disease expression [3–5]. In contrast, non-
allergic asthma, also termed intrinsic or T2 low asthma, 
is not linked to atopy or eosinophilia, but instead to 
enhanced Th17 responses and neutrophilia while retain-
ing airway hyperreactivity. Although airway mycosis has 
not been formally demonstrated in non-atopic asthma, 
fungal exposure is a strong risk factor for non-allergic 
asthma [6].

In addition to fungi, other environmental exposures, 
including lipopolysaccharide (LPS), appear to critically 
influence the expression of asthma. Humans with asthma 
concomitantly exposed to household LPS show reduced 
allergic sensitization [7]. Similarly, children raised in 
some farms appear to be protected from asthma and 
atopy, a beneficial effect that was traced to LPS expo-
sure [8–11]. In contrast, exposure to some farm environ-
ments has been linked to higher asthma prevalence [12] 
and experimentally, LPS has been shown to promote the 
expression of allergic airway disease, a model of asthma, 
in mice [13].

Molecular elucidation of the complex relationship 
between LPS exposure and expression of allergic airway 
disease has been elusive, but evidence thus far indicates 
that LPS dose critically influences allergic outcomes, with 
higher LPS doses corresponding with protection and 
lower doses potentially exacerbating allergic inflamma-
tion. In this study, we examined the effect of high dose 
of LPS (1 µg) on airway mycosis-induced allergic airway 
disease in mice; in a parallel manuscript, we explore the 
effect of lower doses (10–100  ng) of LPS in the same 
model (Zeng et  al. submitted). We demonstrate herein 
that the combined effect of fungal challenge with high 
dose LPS abrogates key features of asthma and instead 
results in a pattern of inflammation and lung histology 
that more closely resembles hypersensitivity pneumonitis 
(HP; extrinsic allergic alveolitis). Our findings highlight 
the complex effect that multiple airway exposures have 
on lung inflammation and the expanding role of airway 
mycosis in diverse lung disease contexts.

Methods
Mice
The C57BL/6J mice were purchased from The Jackson 
Laboratory (Bar Harbor, ME) and maintained at Baylor 
College of Medicine under specific pathogen-free (SPF) 
conditions. The female mice used were 5–8 weeks of age 
at the start of each experiment. All experimental proto-
cols were approved by the Institutional Animal Care and 
Use Committee of Baylor College of Medicine and fol-
lowed federal guidelines.

Intranasal (in) challenge
The mice were randomly sorted into groups of 3–5 
mice as needed for the experiment and challenged 
with 50  µL of PBS (Sigma-Aldrich) or viable Asper-
gillus niger spores (4 × 105 spores) in the presence or 
absence of 1  μg LPS (Esherichia coli O127:B8, Sigma) 
3 times per week for a total of 8 challenges, allowed to 
rest, and euthanized the following day as described in 
the Fig. 1A.

Airway physiology
Bronchial responsiveness was determined by assessing 
the increase in respiratory system resistance (RRS) to 5 
increasing intravenous acetylcholine doses, measured 
by whole body, semi-invasive plethysmography as pre-
viously described [14].

Sample collection and single cell suspensions
Mice were intubated with a 20G ½ catheter (Smith 
Medical) and lavaged with 1.6  mL PBS. Cells were 
isolated from bronchoalveolar lavage fluid (BALF) by 
centrifugation and supernatant stored at − 80  ℃ for 
cytokine analysis. Lung homogenates were prepared 
from PBS perfused lungs by incubating mechanically 
processed lung tissue in digestion buffer with 2 mg/mL 
collagenase type II (Worthington), 0.04 mg/mL DNase I 
(Sigma-Aldrich), 20% FBS (Gibco) in 1X HBSS (Gibco) 
for 30  min at 37 ℃ and passed through a 70um mesh 
basket (Fisher Scientific). Lung homogenates were fur-
ther processed for flow cytometric analysis or cultured 
in complete RPMI 1640 medium (GenClone) at 37 ℃ 
with 5% CO2 overnight. Lung cell culture supernatants 
were collected the next day and stored at − 80℃ for 
cytokine analysis by multiplex.

Cytokine and chemokine analysis
The indicated cytokines and chemokines were meas-
ured in BALF or lung supernatant by using mouse 
cytokine/chemokine magnetic bead and mouse Th17 
magnetic bead panel kits (Millipore) on a Luminex-
based multianalyte platform (Bio-Plex; Bio-Rad, Her-
cules, CA) following the manufacture’s recommended 
procedures.

Flow cytometric analysis
For flow cytometric analysis of inflammatory cells, 
single-cell suspensions of BALF cells or lung single-
cell suspensions were preincubated with a blocking 
cocktail of anti-mouse CD16/32 (clone 93, Biolegend) 
for 10  min at 4  ℃. Differential staining of inflamma-
tory cells recruited to the lungs, cells were labeled with 
CD11b-PE (clone M1/70, Invitrogen), CD11c-APC 
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(clone HL3, BD Pharmingen), Siglec-F-PerCP-Cy5.5 
(clone E50-2440, BD Pharminge), Ly6G/C-APC-Cy7 
(clone HL3, BD Pharmingen), CD3-eFluor450 (clone 
17A2, ThermoFisher), CD19-BV510 (clone 6D5, Biole-
gend), CD4-BV785 (clone RM4-5, Biolegend), CD8a-
BV711 (clone 53–6.7, Biolegend) and Fixable Blue 
dead cell stain (ThermoFisher) in filtered FACS buffer 
containing 1% BSA (GenDEPOT) and 0.4% 0.5  M 
EDTA (Gibco). Then lysing solution (BD Biosciences) 
was used to lyse red blood cells. For the intracellular 
cytokine staining, disaggregated lung cells were stimu-
lated with 50  ng/mL PMA (Biogems) and 500  ng/mL 
ionomycin (Biogems) in the presence of brefeldin A 
(Biolegend) for 4 h at 37 ℃. Surface markers and viabil-
ity were stained (CD4-APC (clone RM4-5, Biolegend), 
CD3ε-APC-Cy7 (clone 145-2C11, Biolegend), Fixable 
Blue dead cell stain), following by red blood cell lysed, 
permeabilized and intracellular cytokines IFN-γ-BV750 
(clone XMG1.2, BD Bioscience), IL-5-PE (clone 
TRFK5, BD Pharmingen), IL-13-Alexa Fluor 488 (clone 
eBio13A, ThermoFisher) and IL-17A-BV650 (clone 
TC11-18H10.1, Biolegend) were stained in accordance 
to the protocol of Cytofix/Cytoperm Plus Kit (BD Bio-
sciences). Finally, the labeled cells were acquired on a 

BD LSRFortessa cytometry (BD Biosciences) and ana-
lyzed by using FlowJo 10.4 software (Ashland, OR). 
Gates were determined by comparison of FMO and 
fully stained samples, and absolute cell numbers were 
quantified by addition of precision count beads (Bioleg-
end) in accordance to the manufactures protocol.

Fungal antigen preparation
Fungal antigen was prepared as previously described [5]. 
Briefly, hyphae mats were collected from conidia incu-
bating in autoclaved Sabouraud broth (BD Difco) and 
ground colloidally in a planetary ball mill (Retsch/Ver-
der Scientific, Newtown, Pa) with 2-mm zirconium oxide 
balls in PBS. After centrifuge, the supernatant was passed 
through a 0.22 μm filter (VWR) and protein concentra-
tion was determined by BCA protein assay kit (Thermo 
Scientific). Small aliquots were stored at − 80 ℃ until use.

ELISA immunoglobulin assay
Immunoglobulins in serum were semi-quantified as opti-
cal density (O.D.) readings via sandwich ELISA. Briefly, 
sera were added to anti-mouse IgE capture antibody (BD 
Pharmingen) or fungal antigen coated ELISA-grade plate 
(Corning), followed by incubation with biotin IgE or 

Fig. 1  LPS attenuates fungal-induced asthma to promote neutrophilia (A) Mice were challenged intranasally with 4 × 105 Aspergillus niger (AN) 
conidia and/or 1 μg LPS for 3 weeks as diagramed. The effects on airway hyperreactivity (B) and inflammatory cells in bronchoalveolar lavage 
fluid (BALF) (C, D) were determined. Results are presented as the mean ± SEM (n ≥ 3 in each group). *p < 0.05 compared with PBS administration; 
#p < 0.05 between the indicated groups. Data are from one of two representative and independent experiments
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IgG1 or IgG2a (BD Pharmingen) or HRP-conjugated IgG 
(Southern BioTech). Sav-HRP (BD Biosciences) was used 
to bind with HRP-unconjugated detection antibodies 
and the activity of HRP was detected by TMB substrates 
(Thermo Scientific).

Histology
Lungs were inflated with 10% neutral-buffered formalin 
(Sigma-Aldrich) at 25  cm H2O. Paraffin-embedded sec-
tions (5um) were stained with hematoxylin and eosin 
(H&E), periodic acid-Schiff (PAS) (Thermo Scientific) or 
Masson’s Trichrome (Thermo Scientific) for histopatho-
logic analysis according to the manufacturer’ s protocols. 
Two slides of whole fixed and stained lung (5  μg) were 
prepared for each mouse (n = 5 per group) and reviewed 
for pathologic changes and quantification of granulomas. 
Each slide contained the entire mouse lung separated into 
individual lobes and sectioned so as to capture peripheral 
and central lung.

Statistics
Data were analyzed with GraphPad Prism 8 and pre-
sented as the mean ± SEM. Datasets were tested for nor-
mality and homogeneity of variances, and comparisons 
were made with one-way ANOVA with Dunnett’s test or 
Student’s unpaired t test or two-way ANOVA with Benja-
mineni, Krieger and Yekutieli post test. p < 0.05 was con-
sidered statistically significant.

Results
High dose LPS attenuates key features of airway 
mycosis‑induced allergic airway disease
Low doses of LPS have previously been shown to elicit 
allergic airway disease in mice, but less is known about 
the effect of higher LPS doses. To investigate this, we 
challenged mice intranasally with 1  µg LPS over two 
weeks with and without concomitant exposure to the 
viable spores of A. niger (Fig.  1A). As expected, chal-
lenge of mice with A. niger, which results in an active 
airway infection (airway mycosis), induced airway hyper-
reactivity as assessed by increases in respiratory system 
resistance (RRS) in response to intravenous acetylcholine 
challenge accompanied by predominant airway eosino-
philia as compared to PBS challenged controls (Fig.  1B, 
C; Additional file 1: Fig. S1A) [1]. In contrast, the addi-
tion of LPS to A. niger spores abrogated airway hyper-
reactivity and eosinophilia, and instead induced a robust 
neutrophilia. LPS challenge alone failed to induce airway 
hyperreactivity, but also elicited a substantial neutro-
philia (Fig. 1B, C).

Total inflammatory cells in bronchoalveolar lavage 
fluid (BALF) and lungs were significantly increased in all 
challenged mice when compared to naïve animals, but 

both LPS treated groups had significantly fewer cells in 
BALF as compared to the fungal challenge alone (Fig. 1C) 
although total lung inflammatory cells were preserved 
after addition of LPS to A. niger (Additional file  1: Fig. 
S1B). Macrophage abundance was increased in all treated 
groups relative to PBS, but analysis of lymphocyte popu-
lations showed marked recruitment of B cells only to the 
airways in fungal-challenged mice (Fig.  1D), a pattern 
that was largely matched by analysis of whole lung (Addi-
tional file 1: Fig. S1B). Mice challenged with fungus and 
LPS had significantly more T cells recruited to airways 
and lungs when compared to LPS or fungus alone, due 
to enhanced CD8+ T cell recruitment (Fig.  1D; Addi-
tional file  1: Fig. S1B). Thus, high-dose LPS challenge 
abrogates airway mycosis-induced airway hyperreactivity 
and eosinophilic inflammation, replacing these features 
of asthma with a neutrophilic inflammatory process with 
enhanced T cell recruitment.

LPS suppresses TH2 and A. niger‑induced CD4+ T helper 
cell recruitment to lung
We conducted additional studies to determine how high 
dose LPS influences the recruitment of T effector cells to 
the lung using flow cytometry and intracellular cytokine 
staining (Fig. 2A). Expressed as a fraction of total CD4+ T 
cells, LPS challenge alone failed to elicit recruitment of 
any effector T cell, but challenge with A. niger resulted in 
the robust recruitment of IL-5 and IL-13 secreting cells, 
consistent with a substantial TH2 response, together with 
IL-17A-secreting TH17 cells (Fig.  2B, D). Intriguingly, 
addition of LPS to A. niger spores abrogated expression 
of TH2 cytokines without affecting the relative abundance 
of TH17 cells. Enumeration of lung T effector cells under 
the same challenge conditions confirmed these observa-
tions but extended them by revealing that addition of LPS 
to A. niger resulted in the significant recruitment of IFN-
γ-secreting TH1 cells. (Fig. 2B, C). Notably however, even 
in the combined challenge group, TH1 cell abundance 
was far lower than other T effector cells (Fig. 2C vs D.).

We further quantified cytokines secreted from 
deaggregated whole lung under the same challenge con-
ditions (Fig. 3). The TH1 cytokine IFN-γ was again most 
highly secreted from lungs of fungus and LPS-challenged 
mice. Significant secretion of the TH2 cytokines IL-4 and 
IL-13 and the TH2-related chemokine CCL11 (eotaxin) 
was observed from lungs of A. niger challenged mice, but 
this was extinguished by addition of LPS. In contrast, the 
TH17-related cytokine IL-17A was secreted from lung to 
a significant degree only in mice challenged with both A. 
niger and LPS, a pattern that was matched by the pro-
inflammatory cytokines TNF-α and IL-1β (Fig.  3). The 
enhanced effect of A. niger and LPS challenge on IL-17A 
secretion was not matched by equivalent increases in 
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Th17 cells (Fig.  2D), suggesting the possible contribu-
tion of other IL-17A-secreting cells including γδ, ILC3, 
and TC17 cells. Secretion of the neutrophilia-inducing 
chemokine CXCL1 was significantly increased in super-
natants from both mouse groups challenged with LPS, 
potentially accounting for the neutrophilia observed in 
the same groups (Fig. 1C). Similar to TH2 cytokines, the 
immunosuppressive cytokine IL-10 was secreted to a 
significant degree only in mice challenged with A. niger. 
Taken together, these findings confirm that high dose 
LPS potently suppresses airway mycosis-dependent lung 
TH2 immune responses in the lungs that drive asthma 
development.

Fungus‑specific immunoglobulin secretion is unaffected 
by LPS
LPS exposure powerfully modifies pulmonary immune 
responses, including systemic immunoglobulin secre-
tion [15]. To address the potential of LPS to skew 
immunoglobulin production in our model, we quan-
tified total and antigen specific serum antibodies. 
Circulating IgE was significantly increased in fungal 
challenged groups and was not impacted by LPS chal-
lenge (Fig.  4A). Antigen specific total IgG and fun-
gus-specific IgG1 were also observed in both fungus 
challenge groups, but also not significantly affected by 

Fig. 2  LPS attenuates TH2 inflammatory cytokine production by CD4+ T cells in lung. A Flow cytometric gating scheme on whole lung cells. B The 
percentage of different T helper cells in the lung. Total number of C IFN-γ+ and D IL-5, IL-13, and IL-17A positive CD3+ CD4+ cells in lungs. Results 
are presented as the mean ± SEM (n ≥ 4 in each group). *p < 0.05 compared with PBS administration. #p < 0.05 between indicated groups. Data are 
from one of two representative and independent experiments
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treatment with LPS (Fig. 4B, C). Fungus-specific IgG2a 
was undetectable in all groups (data not shown).

In addition to systemic antibody, airway antigen expo-
sure leads to the accumulation of immunoglobulins 
within the airways [16], which can be markedly enhanced 
by exposure to LPS [17]. In contrast to these studies that 
did not involve fungal challenge, exposure of mice to 
inhaled LPS failed to augment the airway immunoglobu-
lins already induced by fungal challenge (Fig. 4D). Thus, 
humoral responses to fungal infection are maintained in 
the serum and airway despite the phenotypic switch away 
from a dominant TH2 immune response induced by high 
dose LPS (Additional file 2: Table S1).

The combination of A. niger and LPS elicits granulomatous 
lung inflammation
Finally, we conducted careful histologic analyses of 
mouse lung to understand the effect of high dose LPS 
addition to A. niger (Additional file 3: Table S2). Com-
pared to PBS-challenged mice, all other challenged 

mice showed increased cellular infiltration and peri-
bronchovascular bundle cellularity suggestive of the 
development of tertiary lymphoid tissue (TLT; Fig. 5A) 
[18]. Goblet cell metaplasia that was readily found in 
A. niger-challenged mice was absent in LPS-treated 
mice with airway mycosis (Fig. 5B). Trichrome staining 
failed to show significant fibrosis in any of the challenge 
groups (Fig. 5C). Unexpectedly, we identified (Fig. 5A) 
and quantified (Fig. 5D) multiple loosely-formed gran-
ulomas including occasional multinucleated giant cells 
admixed with lymphocytes and histiocytes primarily 
in the lung parenchyma of LPS and A. niger challenged 
mice, although some granulomas were found in mice 
challenged only with A. niger (Fig. 5D). Together, these 
histologic observations confirm that addition of high 
dose LPS to A. niger challenge abrogates canonical fea-
tures of asthma. The histologic findings when viewed 
together with the immunological data overall support a 
disease pattern that most closely resembles hypersensi-
tivity pneumonitis.
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Fig. 3  Effect of LPS on cytokines and chemokines in lung culture supernatants measured by Multiplex Luminex-based assay. Results are presented 
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Discussion
Using improved culture techniques, numerous common 
environmental fungi are readily identified from spon-
taneously produced human sputa [4, 19–21] and these 
fungi all have the potential to induce airway mycosis and 
asthma-like allergic airway disease in mice [1, 22]. These 
observations together with extensive epidemiologic [23–
26], hypersensitivity [27–33], antifungal clinical trial [34, 
35], and other studies [5, 36–41] support the relatively 
recent recognition that airway mycosis underlies severe, 
treatment-refractory forms of asthma [2]. However, in 
addition to fungal spores, humans routinely inhale other 
pro-inflammatory environmental agents such as LPS. To 
further understand the relationship between LPS expo-
sure and airway mycosis in the pathogenesis of inflam-
matory airway disease, we have exposed mice to the 
combination of high-dose LPS and the viable spores of A. 
niger in comparison to mice challenged separately with 
these agents. We have shown that the combination of 
LPS and A. niger spores abrogates the typical TH2-biased 
eosinophilic inflammation that, together with TH17 cells, 
are highly characteristic of severe allergic asthma [42] 
and fungal-challenged mice with fungus-induced allergic 

airway disease [22]. We have further shown that high 
dose LPS challenge of mice with airway mycosis alters 
the peri-bronchovascular inflammation and goblet cell 
metaplasia typical of asthma to a more diffuse neutrophil 
and TH17-cell-predominant inflammatory infiltrate that 
includes occasional poorly formed pulmonary paren-
chymal granulomas. Combined with the preservation of 
IgE responses, the findings collectively yield a pattern of 
inflammation and lung injury that most closely resem-
bles hypersensitivity pneumonitis (HP; extrinsic allergic 
alveolitis) and indicate that HP exists along a continuum 
of airway mycosis-induced diseases that include both 
asthma and HP.

HP is an interstitial inflammatory lung disease charac-
terized by alveolitis, peribronchial granuloma formation 
and, in advanced stages, fibrosis [43]. The prevalence of 
HP is estimated to be 1–30 per 100,000, but the nonspe-
cific clinical presentation and similarity in clinical find-
ings to that of other common pulmonary inflammatory 
conditions makes estimations of disease occurrence dif-
ficult [44]. Certain subpopulations like farmers have a 
considerably higher occurrence (Farmer’s lung), pre-
sumably due to their occupational exposure to multiple 

Fig. 4  The serum and BALF antibody levels were detected by ELISA. A Total IgE; B Anti-fungi IgG; C Anti-fungi IgG1. D BALF Anti-fungal antibody. 
Results are presented as the mean ± SEM (n ≥ 5 in each group). *p < 0.05 between indicated groups. Data are from one of three representative and 
independent experiments
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environmental antigens. HP has been associated with 
more than 300 antigenic inorganic/chemical compounds, 
plant and animal proteins, and infectious bacterial and 
fungal pathogens [44]. Only a small percentage of anti-
gen-exposed individuals will develop HP, however, sug-
gesting that a genetic predisposition to disease may exist. 
HP can be subdivided into acute, subacute, and chronic 
forms depending on the severity and duration of disease, 
but the essential steps in the immunopathogenesis and 
progression of this disease are not fully understood [43].

The most common strategy to model HP acutely relies 
on repeatedly challenging mice with bacterial extracts 
from the thermophilic actinomycete Saccharopolyspora 
rectivirgula (SA; formerly Micropolyspora faeni), which 
is a hay-derived pathogen commonly associated with 
farmers lung [45–47]. Aspergillus species are also consid-
ered causative agents of Farmer’s lung and Mushrooms 
worker’s lung, two separately defined HP subtypes. The 
classification of different types of HP due to occupa-
tion highlights the disparity in studying what likely is a 
complex interaction of environmental and host interac-
tions that result in an uncommon disease such as HP. It 
is likely that Farmer’s lung, mushroom worker’s lung, Hot 
tub lung and Breeder’s lung diseases are all considered 
HP due to markers of immune dysregulation that mani-
fest similarly. Identification of the common inflammatory 
pathways of these different types of HP would shed light 
on the underlying disease mechanisms.

Early studies showed that TH1 immune responses 
promote HP through the combined effect of IFN-γ and 
IL-12 to promote neutrophil activation and recruit-
ment to the lung [48]. Subsequent studies found that the 
TH1-defining transcription factor T-bet restrains TH17 
immune responses to attenuate HP in mice [49]. More 
recent studies have shown an essential role for IL-17A 
and neutrophils in the development of peribronchiolar 
inflammation in acute HP [46, 50]. Although a role for 
both TH1 and TH17 immunity in the development of such 
inflammation is clear, S. rectivirgula-based antigen chal-
lenge models fail to elicit the pulmonary granulomas that 
typify acute HP, instead demonstrating the emergence of 
bronchus associated lymphoid tissue (BALT) and other 
TLT. Moreover, fungi such as Aspergillus spp. have also 
been epidemiologically and serologically linked to HP 
and a more complex immune response that includes TH2 
cell activation in more severe and chronic forms of HP 

[51, 52]. Notably, inclusion of fungi and viable organisms 
of any type in models of HP has been lacking thus far.

Unexpectedly, we found that the combination of via-
ble A. niger spores and high-dose LPS reproduces key 
features of acute HP including the lack of airway hyper-
reactivity and eosinophilia; substantial neutrophilia; 
enhanced CD8+ cytotoxic T cells recruitment; and 
reduced or absent TH2 and predominant TH1 and TH17 
cytokines. Our model also replicates the poorly-formed 
granulomas seen in HP in addition to TLT, suggesting 
that the inclusion of viable fungi capable of inducing 
airway mycosis [1] may be critical to more accurately 
modeling HP. Inviable fungal spores are specifically 
immunologically inert due to their hydrophobin-coated 
exteriors [1, 53]. While formal diagnostic criteria for HP, 
including acute, subacute, and chronic forms are not 
widely agreed upon, the finding of poorly formed gran-
ulomas combined with neutrophilia and lack of fibrosis 
and eosinophils are most consistent with acute HP [52, 
54, 55]. The relatively short period of fungal challenge (2 
weeks) further supports a model of acute disease.

TLR4 agonists such as LPS and other pathogen associ-
ated molecular patterns (PAMPs) are powerful immune 
modifiers that can influence expression of HP-like dis-
ease in rodents. For example, LPS strongly augments 
airway IgG in mice challenged with Methanosphaera 
stadtmanae [17]. In a separate model of Mycobacterium 
immunogenum-induced pulmonary inflammation, addi-
tion of LPS augmented pulmonary pathology, including 
granulomatous changes [56]. Viruses such as influenza 
A induce pulmonary inflammation in part by signal-
ing through TLR3 and related receptors and have been 
recovered from the lower airways of patients with HP, 
suggesting a pathophysiological link [57]. Consistent 
with this concept, experimental models demonstrated 
enhanced features of HP when viral infection was super-
imposed on the standard antigenic challenge with non-
viable Saccharopolyspora rectivirgula [58, 59]. Although 
LPS profoundly altered the inflammatory and pathologic 
character of the mouse lung during viable fungal chal-
lenge, it did not alter pulmonary or systemic antibodies, 
further underscoring the unique nature of this new HP 
model.

Of note, the differential diagnosis of pulmonary syn-
dromes involving well-developed granulomas can be 
challenging, especially when sarcoidosis is a considera-
tion [60]. Our new model of acute HP is not a suitable 

(See figure on next page.)
Fig. 5  The effect of LPS on airway inflammation, mucus production and collagen deposition in lung tissue. A Hematoxylin and eosin (H&E) staining. 
Loosely-formed granulomas are indicated by arrows. B Periodic acid-Schiff (PAS) staining. Goblet cells are indicated by arrowheads. C Masson’s 
trichrome (Trichrome) staining. The scale bars in lowest magnification are 750 μm. The scale bars in higher magnification are 150 μm. The scale 
bar in highest magnification is 75 μm. D Quantification (mean ± SD) of loosely-formed granulomas from lungs of the different treatment groups. 
*p < 0.05 relative to all other groups. Data are from one of two representative and independent experiments
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Fig. 5  (See legend on previous page.)
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model for sarcoidosis as this idiopathic disorder can-
not be diagnosed as such in the context of a known 
infection. Sarcoidosis is furthermore characterized by 
the presence of innumerable well-formed granulomas, 
whereas our model demonstrates only uncommon, 
poorly-formed granulomas. It is the uncommon and 
poorly formed nature of the granulomas seen in this 
model that distinguish it from models of most other 
granulomatous disorders, especially sarcoidosis.

Subacute HP is characterized by the evolution of neu-
trophilic inflammation into a predominant lymphocytic 
infiltrate and the beginning of pulmonary fibrosis and 
reduced pulmonary function. The final, or chronic, 
stage of HP is marked by advanced pulmonary fibro-
sis, profound pulmonary ventilatory restriction, and 
hypoxemia that can be fatal. Removal from exposure 
to offending antigens is often, but not always, success-
ful in ameliorating disease. Our findings suggest for the 
first time that, much like asthma, progressive, unremit-
ting HP could be due to unresolved airway mycosis, but 
combined with either concomitant bacterial bronchitis 
or exposure to high dose LPS [or similar pathogen asso-
ciated molecular pattern (PAMP)]. Therefore, in any 
patient suspected of having HP, our studies suggest that 
an aggressive search for airway mycosis be conducted, 
including assessment of anti-fungal antibodies and 
culture of airway samples, especially sputum or bron-
choalveolar lavage fluid. Unfortunately, as we and oth-
ers have previously published [5, 21], standard airway 
specimen fungal culture methods are inadequate, usu-
ally yielding no organisms with perhaps the exception 
of Candida spp., although enhanced sputum culture 
methods have been described [4]. Although controlled 
clinical trials are needed, persistent evidence of fungal 
airway infection should prompt aggressive antifun-
gal management of the airway mycosis, which could 
potentially be lifesaving if found in especially refractory 
subacute and chronic HP. Future studies should there-
fore focus on establishing more clearly a link between 
HP and airway mycosis and expanding the currently 
described model to include features of subacute and 
chronic HP.
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