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Abstract 

There is a need for timely, accurate diagnosis, and personalised management in lung diseases. Exhaled breath reflects 
inflammatory and metabolic processes in the human body, especially in the lungs. The analysis of exhaled breath 
using electronic nose (eNose) technology has gained increasing attention in the past years. This technique has great 
potential to be used in clinical practice as a real-time non-invasive diagnostic tool, and for monitoring disease course 
and therapeutic effects. To date, multiple eNoses have been developed and evaluated in clinical studies across a wide 
spectrum of lung diseases, mainly for diagnostic purposes. Heterogeneity in study design, analysis techniques, and 
differences between eNose devices currently hamper generalization and comparison of study results. Moreover, many 
pilot studies have been performed, while validation and implementation studies are scarce. These studies are needed 
before implementation in clinical practice can be realised. This review summarises the technical aspects of available 
eNose devices and the available evidence for clinical application of eNose technology in different lung diseases. 
Furthermore, recommendations for future research to pave the way for clinical implementation of eNose technology 
are provided.
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Background
The field of pulmonary medicine has rapidly evolved 
over the last decades, with increasing knowledge about 
pathophysiology and aetiology leading to better targeted 
treatment strategies. Nevertheless, many chronic lung 
diseases have non-specific, often overlapping symptoms, 
which delays the diagnostic process and timely start of 
adequate treatment. Moreover, even specific disease enti-
ties can be very heterogeneous with varying phenotypes, 

and thus disease courses and optimal treatment strate-
gies vary per patient. Accurate, non-invasive, real-time 
diagnostic tools and biomarkers to predict disease course 
and response to therapy are currently lacking in most 
lung diseases, but are indispensable to achieve a person-
alised approach for individual patients.

An emerging tool that has the potential to meet this 
need is an electronic nose (eNose). This device ‘smells’ 
exhaled breath for clinical diagnostics, a concept prob-
ably as old as the field of medicine itself. Exhaled breath 
contains thousands of molecules, also known as vola-
tile organic compounds (VOCs). These VOCs can be 
divided into compounds derived from the environment 
(exogenous VOCs) and compounds that are the result 
of biological processes in the body (endogenous VOCs). 
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Endogenous VOCs can be associated with normal physi-
ology, but also with pathophysiological inflammatory 
or metabolic activity [1, 2]. Identification of individual 
VOCs using techniques as gas chromatography or mass 
spectrometry is a specific but time-consuming exercise. 
An eNose can be used in real-time to recognise patterns 
of VOCs and has therefore potential as point-of-care tool 
in clinical practice.

The aim of this paper is to review the current clinical 
evidence on eNose technology in lung disease, regarding 
diagnosis, monitoring of disease course and therapy eval-
uation. In addition, technical aspects and available eNose 
devices are discussed.

eNose technology
In the time of Hippocrates, it was already acknowledged 
that exhaled breath can provide information about health 
conditions [3]. For instance, a sweet acetone breath 
odour indicates diabetes, a fishy smell suggests liver dis-
ease, and wounds with smell of grapes point towards 
pseudomonas infections [4]. Initial breath analysis stud-
ies were performed using gas chromatography or mass 
spectrometry. Throughout the last decades, more tech-
niques were developed for breath analysis, for example 
ion mobility spectrometry, selected ion flow tube mass 
spectrometry and laser spectrometry [5]. Although these 
techniques became more advanced during the years and 
are very precise in identifying individual VOCs, they are 
very complex, laborious and thus not suitable as a real-
time clinical practice tool.

Exhaled breath analysis by use of eNose technology 
is recently gaining increasing attention. An eNose is 
defined as “an instrument which comprises of an array 
of electronic-chemical sensors with partial specificity 
and an appropriate pattern recognition system, capable 

of recognising simple or complex odours” [6]. Sensors 
are used in eNoses to generate a singular response pat-
tern. The sensors can generally be divided into three 
categories: electrical, gravimetric, and optical sensors. 
Each type responds to analytes (i.e. VOCs) in a spe-
cific way, and all types have a high sensitivity. Each sen-
sor has advantages and disadvantages, without one type 
being superior in general. Electrical sensors consist of an 
electronic circuit connected to sensory materials. Upon 
binding with specific analytes, an electrical response is 
provided [7–10]. Consequently, a variation in electrical 
property of the sensor surface can be detected. Electri-
cal sensors are low-cost, but are sensitive to temperature 
changes and have a limited sensor life [11]. Gravimet-
ric (or mass sensitive) sensors label analytes based on 
changes in mass, amplitude, frequency, phase, shape, 
size, or position. Gravimetric sensors contain a complex 
circuitry and are sensitive to humidity and temperature 
[11]. Finally, optical sensors detect a change in colour, 
light intensity or emission spectra upon analyte binding. 
Optical sensors are insensitive to environmental changes, 
but are the most technically complex sensor-array sys-
tems and are not portable due to breakable optics and 
components. Due to the high complexity, they are more 
expensive than the other sensor types [11]. For each type 
of sensor, a more in depth explanation can be found in 
the Additional file 1.

Detection and recognition of odours by an eNose is 
similar to the functioning of the mammalian olfactory 
system (Fig. 1). First, an odour is detected (by olfactory 
receptors in a human nose or eNose sensors), which 
sends off various signals (to the cortex or software). 
Then, these signals are pooled together and processed 
into a pattern. This pattern can be recognised as a par-
ticular smell (e.g. a flower) [12]. As a result, an eNose can 

Fig. 1  Schematic comparison of eNose technology and the olfactory system [12]
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differentiate between diseases by analysing and compar-
ing the smelled ‘breathprints’ (i.e. VOC patterns) with 
those previously learned. The devices are hand-held, 
patient friendly, easy-to-use and feasible as point-of-care 
test.

Analysis methods
To analyse eNose breathprints, pattern recognition by 
machine learning is most commonly used. A machine 
learning model uses algorithms which automatically 
improve due to experience with previously presented 
data. These models are in general established using a five 
step process: data collection, data preparation, model 
building, model evaluation, and model improvement. 
Machine learning is categorised into unsupervised, 
supervised, and reinforcement learning [13]. In super-
vised learning, the algorithms are trained with labelled 
data input, the desired output is thus known. On the 
contrary, unsupervised learning allows the algorithm to 
recognise patterns in the data, and groups data without 
providing labels. Lastly, reinforcement learning encom-
passes the training of the machine learning models to 
generate decision sequences. The latter is not used in the 
eNose studies reviewed in this paper.

Several machine learning models have been proposed 
as appropriate algorithms for modelling complex non-
linear relationships in medical research data, such as 
breathprints. These models include, amongst others, 
artificial neural networks (mimicking the structure of 
animal brains to model functions), ensemble neural net-
works (many neural networks working together to solve 
a problem), and support vector machines (SVM, creating 
a hyperplane which allows the modelling of highly com-
plex relationships) [14, 15]. A comparison between eNose 
studies show that SVM algorithm is most frequently used 
(10 out of 17 studies in 2019) [15]. Possibly, this is due to 
the fact that this is the easiest model to use for research-
ers new to machine learning. Another factor can be the 
existence of many programming languages with well-
supported libraries for SVM algorithms. SVM also pos-
sesses a high accuracy, is not very prone to overfitting, 
and is not overly influenced by noisy data [15]. Nonethe-
less, there is no consensus about the optimal model for 
breathprint analysis.

Available eNoses
Various eNose devices have been developed and studied 
in different lung diseases. Table  1 provides an overview 
of the specifications of devices used in studies reviewed 
in this paper. The choice of an eNoses device may, among 
others, depend on the measurement setting. For example 
for the BIONOTE, Cyranose 320, PEN3, and Tor Vergata 
eNoses the exhaled breath is captured into sample bags 

or cartridges which makes it possible to collect on-site 
and store samples for later analyses. In other settings, 
it could be preferable that the eNose is easily portable, 
like the Aeonose. The SpiroNose is the only eNose that 
is capable of adjusting for disturbances from ambient air 
using its external sensors.

The stage of development towards a clinically imple-
mented tool differs substantially per device and disease. 
Before clinical implementation, each specific eNose 
has to be tested as a proof of concept and consecutively 
in substantial cohorts for each specific disease. Subse-
quently, data validation and clinical implementation 
needs to be assessed in real-life cohorts. To give more 
insights in the stage of development for each eNose per 
lung disease, we divided studies in five different stages: 
(1) proof of concept study; (2) cohort size of diseased 
participants less than fifty; (3) cohort size of diseased 
participants equal or more than fifty; (4) study cohort 
with an external validation cohort; (5) evaluation of clini-
cal implementation. An overview of the progress per 
eNose and disease is visualised in Fig.  2. To the best of 
our knowledge, none of the devices are currently used in 
clinical pulmonology practice.

Current clinical application
On 21 October 2020, a systematic literature search was 
performed in the databases Embase, Medline (Ovid), and 
Cochrane Central. Search terms and selection criteria 
are described in the Additional file 2. Table 2 provides an 
overview of design and results of all studies in this review.

Asthma
Asthma is a chronic lung disease characterised by revers-
ible airflow obstruction with airway inflammation and 
hyperresponsiveness. Common symptoms, such as 
cough, chest tightness, shortness of breath and wheez-
ing, are variable in severity and often non-specific [17]. 
Various studies, both in children and adults, showed 
that eNose technology can differentiate asthma patients 
from healthy controls with a good accuracy [18–25]. Two 
studies also demonstrated that breathprints of asthma 
patients were significantly different than breathprints of 
chronic obstructive pulmonary disease (COPD) patients 
[19, 26]. Interestingly, two studies reported better per-
formance of eNose technology than conventional inves-
tigations (spirometry or an exhaled nitric oxide (FeNO) 
test) for detecting asthma. These studies were performed 
in patients with an established asthma diagnosis [21, 22]. 
Diagnostic performance further increased when eNose 
technology was combined with a FeNO test (accuracy 
95.7%) [21]. Moreover, even after loss of control and 
reaching stable disease with oral corticosteroids (OCS) 
treatment eNose technology could differentiate asthma 
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from healthy controls, while the diagnostic value of 
FeNO decreased. In the same study, breathprint signifi-
cantly predicted response to subsequent OCS treatment, 
while sputum eosinophils, FeNO values and, hyperre-
sponsiveness did not [22].

The existence of multiple asthma pheno- and endo-
types with different underlying pathophysiological 
mechanisms is increasingly acknowledged [27]. In recent 
years, many eNose studies have attempted to identify dif-
ferent clusters of asthma patients, using both supervised 
and unsupervised methods [28–31]. For example, super-
vised clustering for eosinophilic, neutrophilic and pauci-
granulocytic phenotypes revealed significant differences 
in breathprints between groups [30]. One study identified 
three clusters using unsupervised breathprint analysis 
in a group of severe asthmatic patients, corresponding 
with different inflammatory profiles. During follow-up, 
30 of 51 patients migrated to another cluster; migration 
was associated with changes in sputum eosinophil count 
[31]. Two other longitudinal studies showed changes in 
breathprint when asthma control was lost after with-
drawal of corticosteroids in previously stable asthma 
patients, and also after recovery [22, 32]. A pilot study, 

in which bronchoconstriction was induced in stable 
asthma patients, found that changes in airway calibre did 
not alter breathprints. Moreover, breathprints remained 
stable during the day in individual patients [20]. This 
implies that inflammatory processes and not (acute) air-
way obstruction influence breathprints. Overall, these 
findings suggest that eNose technology is a promising 
tool for phenotyping and monitoring asthmatics. Longer 
follow-up studies are required to examine whether clus-
ter-migration or change in breathprint are also related to 
actual clinical course.

A currently ongoing study is evaluating whether eNose 
technology can be used to predict response to monoclo-
nal antibody therapy (NCT03988790).

Paediatric asthma
In general, the diagnosis of asthma in children is chal-
lenging. Lung function tests are often difficult to perform 
and do not always provide a diagnosis. Interestingly, a 
study in 45 children demonstrated that eNose measure-
ments were fairly well repeatable, both in healthy and 
asthmatic participants [33].

Fig. 2  Radar plot of development stages per eNose and disease. Studies were divided into five different stages: (1) proof of concept study; 
(2) cohort size of diseased participants less than fifty; (3) cohort size of diseased participants equal or more than fifty; (4) study cohort with an 
external validation cohort; (5) evaluation of clinical implementation. The highest stage reached for each eNose per lung disease is displayed. eNose 
prototypes are not included. BIONOTE  biosensor-based multisensorial system for mimicking nose tongue and eyes, CF  cystic fibrosis, COPD  chronic 
obstructive pulmonary disease, ILD  interstitial lung disease, OSA  obstructive sleep apnoea, PEN  portable electronic nose.
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Table 2  Literature overview eNose technology in lung disease

Study participants Outcome 
measures

Results eNose Statistical 
breathprint 
analysis

Asthma
Dragonieri, 
2007 [18]

n = 20 asthma
 • n = 10 mild
 • n = 10 severe
n = 20 HC
 • n = 10 old
 • n = 10 young

Diagnostic 
accuracy

Mild vs young HC
CVV 100%

Severe vs old HC
CVV 90%

Mild vs severe
CVV 65%

Cyranose 
320

PCA; CDA

Fens 2009 
[19]

n = 20 asthma
n = 30 COPD
n = 20 non-smoking HC
n = 20 smoking HC

Diagnostic 
accuracy

COPD vs asthma
CVA 96%

COPD vs smoking HC
CVA 66%

Non-smoking 
vs smoking HC
Not significant

Cyranose 
320

PCA

Lazar 2010 
[20]

n = 10 asthma
 • induction of bronchoconstriction 
with methacholine or saline
n = 10 controls

Disease 
course

Bronchoconstric-
tion causes no 
significant change 
in breathprint

Cyranose 
320

PCA; mixed 
model 
analysis

Montuschi 
2010 [21]

n = 27 asthma
n = 24 HC

Diagnostic 
accuracy

eNose only
Acc 87.5%

eNose + FeNO
Acc 95.8%

Tor Vergata PCA; feed-
forward 
neural 
network

Fens 2011 
[26]

Training: [19]
n = 20 
asthma
n = 20 COPD

Validation:
n = 60 asthma
 • n = 21 fixed obstruc-
tion
 • n = 39 classic
n = 40 COPD

Diagnostic 
accuracy

Validation: Classic 
asthma vs COPD
Sens 85%
Spec 90%
AUC 0.93 (0.84–1.00)
Acc 83%

Validation: Fixed asthma 
vs COPD
Sens 91%
Spec 90%
AUC 0.95 (0.87–1.00)
Acc 88%

Validation: 
Fixed vs classic 
asthma
No significant 
difference

Cyranose 
320

PCA; CDA

Van der 
Schee 2013 
[22]

n = 25 asthma
n = 20 HC

Diagnostic 
accuracy

Before OCS
Sens 80.0%
Spec 65.0%
AUC 0.766 ± 0.14

After OCS
Sens 84.0%
Spec 80%
AUC 0.862 ± 0.12

Before OCS 
(FeNO only)
AUC 
0.738 ± 0.15

Cyranose 
320

PCA; CDA

n = 18 asthma
• maintenance ICS, stop ICS (4 weeks) 
and OCS (2 weeks)

Therapeutic 
effect

OCS responsive 
vs not
Sens 90.9%
Spec 71.4%
AUC 0.883 (± 0.16)

n = 25 asthma
• maintenance ICS, stop ICS (4 weeks) 
and OCS (2 weeks)
• n = 13 Loss of control (LOC)

Disease 
course

LOC vs no LOC
Sens 90.9%
Spec 71.4%
AUC 0.814 ± 0.17

Correlation sputum eos—
breathprint
R = 0.601

Plaza 2015 
[30]

n = 24 eosinophilic asthma
n = 10 neutrophilic asthma
n = 18 paucigranulocytic asthma

Diagnostic 
accuracy

Neutro vs pauci
Sens 94%
Spec 80%
AUC 0.88
CVA 89%

EoS vs neutro
Sens 60%
Spec 79%
AUC 0.92
CVA 73%

EoS vs pauci
Sens 55%
Spec 87%
AUC 0.79
CVA 74%

Cyranose 
320

PCA; CDA

Brinkman 
2017 [32]

n = 22 asthma, induced LOC
• maintenance ICS, stop ICS (8 weeks) 
and restart ICS

Disease 
course

Baseline vs LOC
Acc 95%

LOC vs recovery
Acc 86%

Correlation 
sputum eos—
breathprint
Not significant

Cyranose 
320

PCA

Bannier 
2019 [23]

n = 20 asthma (age > 6 years)
n = 22 HC

Diagnostic 
accuracy

Sens 74%
Spec 74%
AUC 0.79

Aeonose ANN

Brinkman 
2019 [31]

n = 78 severe asthma
• n = 51 longitudinal follow-up

Clustering 3 clusters (baseline), acc 93%
 Differences: chronic OCS use, percent serum 
eosinophil and neutrophil count

Follow-up 
(18 months)
n = 21 cluster 
stable
n = 30 migrated

Cyranose 
320, Tor 
Vergata, 
Comon 
Invent

PCA; Ward 
clustering; 
Non-
hierarchical 
K-means 
clustering; 
PLS-DA; 
PAM; Topo-
logical data 
analysis
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Table 2  (continued)

Study participants Outcome 
measures

Results eNose Statistical 
breathprint 
analysis

Cavaleiro 
Rufo 2019 
[34]

n = 64 suspected asthma (age 
6–18 years)
• n = 45 asthma
• n = 29 persistent
• n = 16 intermittent
• n = 19 no asthma

Diagnostic 
accuracy

Asthma vs no 
asthma
Sens 77.8%
Spec 84.2%
AUC 0.81 (0.69–0.93)
Acc 79.7%

Persistent vs no asthma
Sens 79.7%
Spec 68.6%
AUC 0.81 (0.70–0.92)
Acc 79.7%

Intermittent vs 
no asthma
Not significant

Cyranose 
320

PCA; 
Hierarchical 
clustering

Dragonieri 
2019 [24]

Training:
n = 14 AAR​
n = 14 rhinitis
n = 14 HC

Validation:
n = 7 AAR​
n = 7 rhinitis
n = 7 HC

Diagnostic 
accuracy

Training:
AAR vs HC
AUC 0.87 (0.70–0.97)
CVA 75.0%

Validation:
AAR vs HC
AUC 0.77 (0.62–0.93)
CVA 67.4%

Validation:
AAR vs rhinitis
AUC 0.92 
(0.84–1.00)
CVA 83.1%

Cyranose 
320

PCA; CDA

Abdel-Aziz 
2020 [118]

Training:
n = 486 
atopic asthma 
(age > 4 years)

Validation:
n = 169 atopic asthma 
(age > 4 years)

Diagnostic 
accuracy

Training:
AUC 0.837–0.990
Sens, spec and acc 
only visually avail-
able

Validation:
AUC 0.18–0.926
Sens, spec and acc only 
visually available

Cyranose 
320, Tor 
Vergata, 
Comon 
Invent, 
SpiroNose

PLS-DA; 
adaptive 
least abso-
lute shrink-
age and 
selection 
operator; 
gradient 
boosting 
machine

Farraia 2020 
[28]

Training:
n = 121 
asthma 
suspected 
(age > 6 years)

Validation:
n = 78 asthma sus-
pected
(age > 6 years)

Clustering Training: 3 clusters (hierarchic), differences:
food/drink intake 2 h prior to sampling, per-
centage of asthma diagnosis in group, PEF%, 
age < 12 y

Validation: 
3 clusters 
(hierarchic), dif-
ferences: food/
drink intake 
2 h prior to 
sampling

Cyranose 
320

Unsu-
pervised 
hierarchic 
clustering; 
Non-
hierarchical 
K-means 
clustering; 
PAM

Tenero 2020 
[25]

n = 28 asthma (age 6–16 years)
• n = 9 controlled
• n = 7 partially controlled
• n = 12 uncontrolled
n = 10 HC

Diagnostic 
accuracy

HC + controlled vs. partially + uncontrolled
Sens 79%
Spec 84%
AUC 0.85 (0.72–0.98)

Cyranose 
320

Penalized 
logistic 
regression
PCA

Chronic obstructive pulmonary disease (COPD)
Fens 2011 
[45]

n = 28 GOLD I + II
• airway inflammation (sputum 
eosinophil cationic protein and 
myeloperoxidase)

Disease 
course

Correlation eosino-
phil cationic protein 
and breathprint
r = 0.37

Correlation myeloperoxi-
dase and breathprint
Not significant

Airway inflam-
mation vs no
Sens 50–73%
Spec 77–91%
AUC 0.66–0.86

Cyranose 
320

PCA

Hattesohl 
2011 [37]

n = 23 COPD (pure exhaled breath, 
PEB)
n = 10 COPD (exhaled breath con-
densate, EBC)
n = 10 HC (EBC, PEB)
n = 10 AATd (EBC, PEB)

Diagnostic 
accuracy

COPD vs HC
Sens 100%
Spec 100%
CVV PEB 67.6%
CVV EBC 80.5%

COPD vs AATd
Sens 100%
Spec 100%
CVV PEB 58.3%
CVV EBC 82.0%

HC vs AATd
Sens 100%
Spec 100%
CVV PEB 62.0%
CVV EBC 59.5%

Cyranose 
320

LDA

n = 11 AATd COPD (PEB)
• augmentation therapy

Therapeutic 
effect

Before vs 6 d after 
therapy
Sens 100%
Spec 100%
CVV 53.3%

Fens 2013 
[42]

n = 157 COPD Clustering 4 clusters (acc 97.4%)
Differences: airflow limitation, health related QoL, sputum pro-
duction, dyspnoea, smoking history, co-morbidity, radiologic 
density, gender

Cyranose 
320

Hierarchi-
cal cluster 
analysis
Non-
hierarchical 
K-means 
clustering
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Study participants Outcome 
measures

Results eNose Statistical 
breathprint 
analysis

Sibila 2014 
[41]

n = 10 COPD bacterial colonised
n = 27 COPD non-colonised
n = 13 HC

Diagnostic 
accuracy

Colonised vs non-
colonised
Sens 82%
Spec 96%
AUC 0.922
CVA 89%

HC vs non-colonised
Sens 81%
Spec 86%
AUC 0.937
CVA 83%

HC vs colonised
Sens 80%
Spec 93%
AUC 0.986
CVA 87%

Cyranose 
320

PCA; CDA

Cazzola 
2015 [38]

n = 27 COPD
• n = 8 AECOPD ≥ 2 per year
• n = 19 AECOPD < 2 per year
n  = 7 HC

Diagnostic 
accuracy

COPD vs HC
Sens 96%
Spec 71%
CVA 91%

AECOPD ≥ 2 vs < 2 per y
Not significant

Prototype 
(6 QMB sen-
sors)

PLS-DA

Shafiek 2015 
[39]

n = 50 COPD
• n = 17 sputum PPM growth
n = 93 AECOPD
• n = 42 sputum PPM growth
n = 30 HC

Diagnostic 
accuracy

COPD vs HC
Sens 70–72%
Spec 70–73%

COPD vs AECOPD no PPM
Sens 89%
Spec 48%
(with PPM not significant)

AECOPD PPM 
vs AECOPD no 
PPM
Sens 88%
Spec 60%

Cyranose 
320

LDA; SLR

n = 61 AECOPD
• during and 2 months after recovery

Disease 
course

During vs recovery
Sens 74%
Spec 67%

Van Geffen 
2016 [46]

n = 43 AECOPD
• n = 18 with viral infection
• n = 22 with bacterial infection

Diagnostic 
accuracy

With vs without viral 
infection
Sens 83%
Spec 72%
AUC 0.74

With vs without bacterial 
infection
Sens 73%
Spec 76%
AUC 0.72

Aeonose ANN

De Vries 
2018 [43]

Training:
n = 321 
asthma/
COPD

Validation:
n = 114 asthma/COPD

Clustering 5 clusters
Differences: ethnicity, systemic eosinophilia/ neutrophilia, 
FeNO, BMI, atopy, exacerbation rate

SpiroNose PCA; Unsu-
pervised 
Hierarchical 
clustering

Finamore 
2018 [49]

n = 63 COPD
• n = 32 n6MWD worsened 1 year
• n = 31 n6MWD stable or improved 
1 year

Disease 
course

n6MWD change 
predicted by eNose
Sens 84%
Spec 88%
CVA 86%

n6MWD change pre-
dicted by eNose + GOLD
Sens 81%
Spec 78%
CVA 79%

BIONOTE PLS-DA

Montuschi 
2018 [50]

n = 14 COPD
• maintenance ICS, stop ICS (4 weeks) 
and restart ICS

Therapeutic 
effect

Maintenance vs 
restart ICS
Change in 15 of 32 
Cyranose sensors; 
3 of 8 Tor Vergata 
sensors

Maintenance vs restart 
ICS
Spirometry + breathprint 
prediction model
AUC 0.857

Cyranose 
320, Tor 
Vergata

Multilevel 
PLS; KNN

Scarlata 
2018 [44]

n = 50 COPD
• standard inhalation therapy 
(12 weeks)

Therapeutic 
effect

Baseline vs after 
12 w
Significant decline 
in VOCs

BIONOTE PLS-DA

n = 50 COPD Clustering 3 clusters
Differences: BODE index, number of comorbidities, MEF75, 
KCO, pH/pCO2 arterial blood

Unsu-
pervised 
K-means 
clustering

Van Velzen 
2019 [47]

n = 16 AECOPD
• before, during and after recovery

Disease 
course

Before vs during
Sens 79%
Spec 71%
CVA 75%

During vs after
Sens 79%
Spec 71%
CVA 75%

Before vs after
Sens 57%
Spec 64%
CVA 61%

Cyranose 
320, Tor 
Vergata, 
Comon 
Invent

PCA

Rodríguez-
Aguilar 2020 
[40]

n = 116 COPD
• n = 88 smoking, n = 28 household 
air pollution associated
• n = 64 GOLD I-II, n = 52 GOLD III-IV
n = 178 HC

Diagnostic 
accuracy

COPD vs HC
Sens 100%
Spec 97.8%
AUC 0.989
Acc 97.8% (CDA), 
100% (SVM)

Smoking vs air pollution 
associated
Not significant

GOLD I–II vs 
GOLD III–IV
Not significant

Cyranose 
320

PCA; CDA; 
SVM
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Table 2  (continued)

Study participants Outcome 
measures

Results eNose Statistical 
breathprint 
analysis

Cystic fibrosis (CF)
Paff 2013 
[52]

n = 25 CF
n = 25 primary ciliary dyskinesia 
(PCD)
n = 23 HC

Diagnostic 
accuracy

CF vs HC
Sens 84%
Spec 65%
AUC 0.76

CF vs PCD
Sens 84%
Spec 60%
AUC 0.77

Exacerbation CF
Sens 89%
Spec 56%
AUC 0.76

Cyranose 
320

PCA

Joensen 
2014 [53]

n = 64 CF
• n = 14 pseudomonas infection
n = 21 PCD
n = 21 HC

Diagnostic 
accuracy

CF vs HC
Sens 50%
Spec 95%
AUC 0.75

CF vs PCD
Not significant

Pseudomonas 
vs. non-infected 
CF
Sens 71.4%
Spec 63.3%
AUC 0.69 
(0.52–0.86)

Cyranose 
320

PCA

De Heer 
2016 [54]

n = 9 CF colonised A. fumigatus
n = 18 CF not colonised

Diagnostic 
accuracy

Sens 78%
Spec 94%
AUC 0.80–0.89
CVA 88.9%

Cyranose 
320

PCA; CDA

Bannier 
2019 [23]

n = 13 CF (age > 6 years)
n = 22 HC

Diagnostic 
accuracy

Sens 85%
Spec 77%
AUC 0.87

Aeonose ANN

Interstitial lung disease (ILD)
Dragonieri 
2013 [58]

n = 31 sarcoidosis
• n = 11 untreated
• n = 20 treated
n = 25 HC

Diagnostic 
accuracy

Untreated vs HC
AUC 0.825
CVA 83.3%

Untreated vs treated
CVA 74.2%

Treated vs HC
Not significant

Cyranose 
320

PCA; CDA

Yang 2018 
[59]

Training: 80% 
of
n = 34 
pneumo-
coniosis
n = 64 HC

Validation: 20% of
n = 34 pneumo-
coniosis
n = 64 HC

Diagnostic 
accuracy

Training:
Sens 64.3–67.9%
Spec 88.0–92.0%
AUC 0.89–0.91
Acc 80.8–82.1%

Validation:
Sens 33.3–66.7%
Spec 71.4–78.6%
AUC 0.61–0.86
Acc 65.0–70.0%

Cyranose 
320

LDA; SVM

Krauss 2019 
[60]

n = 174 ILD
• n = 51 IPF
• n = 25 CTD-ILD
n = 33 HC
n = 23 COPD

Diagnostic 
accuracy

IPF vs HC
Sens 88%
Spec 85%
AUC 0.95

CTD-ILD vs HC
Sens 84%
Spec 85%
AUC 0.90

IPF vs CTD-ILD
Sens 86%
Spec 64%
AUC 0.84

Aeonose ANN

Dragonieri 
2020 [61]

n = 32 IPF
n = 36 HC
n = 33 COPD

Diagnostic 
accuracy

IPF vs HC
AUC 1.00 (1.00–1.00)
CVA 98.5%

IPF vs COPD
AUC 0.85 (0.75–0.95)
CVA 80.0%

IPF vs 
COPD + HC
AUC 0.84
CVA 96.1%

Cyranose 
320

PCA; CDA; 
LDA

Moor 2020 
[57]

Training:
n = 215 ILD
• n = 57 IPF
• n = 158 
non-IPF
n = 32 HC

Validation:
n = 107 ILD
 • n = 28 IPF
 • n = 79 non-IPF
n = 15 HC

Diagnostic 
accuracy

Training + validation:
ILD vs HC
Sens 100%
Spec 100%
AUC 1.00
Acc 100%

Training:
IPF vs non-IPF ILD
Sens 92%
Spec 88%
AUC 0.91 (0.85–0.96)
Acc 91%

Validation:
IPF vs non-IPF 
ILD
Sens 95%
Spec 79%
AUC 0.87 
(0.77–0.96)
Acc 91%

SpiroNose PLS-DA

Lung cancer (LC)
Machado 
2005 [75]

Training:
n = 14 LC
n = 20 HC
n = 27 other 
lung disease

Validation:
n = 14 LC
n = 30 HC
n = 32 other lung 
disease

Diagnostic 
accuracy

Training: LC vs 
HC + other
CVA 71.6% (CDA)

Validation: LC vs 
HC + other
Sens 71.4%
Spec 91.9%
Acc 85% (SVM)

Cyranose 
320

SVM
PCA
CDA

Hubers 2014 
[71]

Training:
n = 20 LC
n = 31 HC

Validation:
n = 18 LC
n = 8 HC

Diagnostic 
accuracy

Training:
Sens 80%
Spec 48%

Validation:
Sens 94%
Spec 13%

Cyranose 
320

PCA



Page 10 of 22van der Sar et al. Respir Res          (2021) 22:246 

Table 2  (continued)

Study participants Outcome 
measures

Results eNose Statistical 
breathprint 
analysis

Schmekel, 
2014 [88]

n = 22 LC
• n = 10 survival > 1 year
• n = 12 survival < 1 year
n = 10 HC

Disease 
course

 < 1 y vs HC
R = 0.95–0.98

 < 1 y vs > 1 y
R = 0.86–0.97

Prediction 
model survival 
days
R = 0.99

Applied 
Sensor AB 
model 2010

PCA; PLS; 
ANN

McWilliams 
2015 [68]

n = 25 LC
n = 166 smoking HC

Diagnostic 
accuracy

Sens 84–96%
Spec 63.3–81.3%
AUC 0.84

Cyranose 
320

Classifica-
tion and 
regression 
tree; DFA

Gasparri 
2016 [76]

Training:
n = 51 LC
n = 54 HC

Validation:
n = 21 LC
n = 20 HC

Diagnostic 
accuracy

Training + validation:
Sens 81%
Spec 91%
AUC 0.874

Training:
Sens 90%
Spec 100%

Validation:
Sens 81%
Spec 100%

Prototype 
(8 QMB sen-
sors)

PLS-DA

Rocco 2016 
[16]

n = 100 (former) smokers
• n = 23 LC

Diagnostic 
accuracy

Detection LC
Sens 86%
Spec 95%
AUC 0.87

BIONOTE PLS-Toolbox; 
PLS-DA

Van Hooren 
2016 [81]

n = 32 LC
n = 52 head-neck SCC

Diagnostic 
accuracy

Sens 84–96%
Spec 85–88%
AUC 0.88–0.98
Acc 85–93%

Aeonose ANN

Shlomi 2017 
[67]

n = 30 benign nodule
n = 89 LC
• n = 16 early stage LC
• n = 53 EGFR tested (n = 19 muta-
tion)

Diagnostic 
accuracy

Early stage LC vs 
benign
Sens 75%
Spec 93.3%
Acc 87.0

EGFR mutation vs wild 
type
Sens 79.0%
Spec 85.3%
Acc 83.0%

Prototype 
(40 nano-
material-
sensors)

DFA

Tirzite 2017 
[83]

n = 165 LC
n = 79 HC
n = 91 other lung disease

Diagnostic 
accuracy

LC vs HC + other
Sens 87.3–88.9%
Spec 66.7–71.2%
CVV 72.8%

LC vs HC
Sens 97.8–98.8%
Spec 68.8–81.0%
CVV 69.7%

LC stages
Not significant

Cyranose 
320

SVM

Huang 2018 
[70]

Training: 80% 
of
n = 56 LC
n = 188 HC

Validation: 20% of
n = 56 LC
n = 188 HC
External:
n = 12 LC
n = 29 HC

Diagnostic 
accuracy

Validation:
LC vs HC
Sens 100, 92.3%
Spec 88.6, 92.9%
AUC 0.96, 0.95
Acc 90.2, 92.7%

External validation:
LC vs HC
Sens 75, 83.3%
Spec 96.6, 86.2%
AUC 0.91, 0.90
Acc 85.4, 85.4%

Cyranose 
320

LDA; SVM

Van de Goor 
2018 [73]

Training:
n = 52 LC
n = 93 HC

Validation:
n = 8 LC n = 14 HC

Diagnostic 
accuracy

Training:
Sens 83%
Spec 84%
AUC 0.84
Acc 83%

Validation:
Sens 88%
Spec 86%
Acc 86%

Aeonose ANN

Tirzite 2019 
[77]

n = 119 LC smoker
n = 133 LC non-smoker
n = 223 HC + other lung disease
• n = 91 smoking

Diagnostic 
accuracy

LC non-smoker vs 
HC + other
Sens 96.2%
Spec 90.6%

LC smoker vs HC + other
Sens 95.8%
Spec 92.3%

Cyranose 
320

LRA

Kononov 
2020 [78]

n = 65 LC
n = 53 HC

Diagnostic 
accuracy

Sens 85.0–95.0%
Spec 81.2–100%
CVA 88.9–97.2%
AUC 0.95–0.98

Prototype (6 
MOS)

PCA; Logis-
tic regres-
sion; KNN; 
Random 
forest; LDA; 
SVM

Krauss 2020 
[79]

n = 91 LC active disease
• n = 51 incident LC
n = 29 LC complete response
n = 33 HC
n = 23 COPD

Diagnostic 
accuracy

LC active vs HC
Sens 84%
Spec 97%
AUC 0.92

Incident LC vs HC
Sens 88%
Spec 79%
AUC 89%

Aeonose ANN

Lung cancer—(non-)small cell lung cancer ((N)SCLC)

 Dragonieri 
2009 [69]

n = 10 NSCLC
n = 10 COPD
n = 10 HC

Diagnostic 
accuracy

NSCLC vs HC
CVV 90%

NSCLC vs COPD
CVV 85%

Cyranose 
320

PCA; CDA
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 Kort 2018 
[72]

n = 144 NSCLC
n = 18 SCLC
n = 85 HC
n = 61 suspected, LC excluded

Diagnostic 
accuracy

NSCLC vs HC
Sens 92.2%
Spec 51.2%
AUC 0.85

NSCLC vs HC + LC 
excluded
Sens 94.4%
Spec 32.9%
AUC 0.76

SCLC vs HC
Sens 90.5%
Spec 51.2%
AUC 0.86

Aeonose ANN

 De Vries 
2019 [87]

Training:
n = 92 NSCLC
 • n = 42 
response
 • n = 50 no 
response

Validation:
n = 51 NSCLC
 • n = 23 response
 • n = 28 no response

Therapeutic 
effect
(anti-PD-1 
therapy)

Training:
CVV 82%
AUC 0.89 (0.82–0.96)

Validation:
AUC 0.85 (0.7–0.96)
Sens 43%
Spec 100%

SpiroNose LDA

 Mohamed 
2019 [80]

n = 50 NSCLC
n = 50 HC

Diagnostic 
accuracy

Sens 92.9%
Spec 90%
Acc 97.7%

PEN3 PCA; ANN

 Kort 2020 
[74]

n = 138 NSCLC
n = 143 controls
 • n = 59 suspected, LC excluded
 • n = 84 HC

Diagnostic 
accuracy

NSCLC vs controls
(eNose data only)
Sens 94.2%
Spec 44.1%
AUC 0.75

NSCLC vs controls
(multivariate)
Sens 94.2–95.7%
Spec 49.0–59.7%
AUC 0.84–0.86

Aeonose ANN; 
Multivari-
ate logistic 
regression

 Fielding 
2020 [82]

n = 20 bronchial SCC
 • n = 10 in situ
 • n = 10 advanced stage
n = 22 laryngeal SCC
 • n = 12 in situ
 • n = 10 advanced stage
n = 13 HC

Diagnostic 
accuracy

BSCC in situ vs HC
Sens 77%
Spec 80%
Misclassification rate 
28%

BSCC vs LSCC adv
Sens 100%
Spec 80%
Misclassification rate 10%

Cyranose 
320

Bootstrap 
forest

Lung cancer—Malignant Pleural Mesothelioma (MPM)

 Chapman 
2012 [86]

Training:
n = 10 MPM
n = 10 HC

Validation:
n = 10 MPM
n = 32 HC
n = 18 benign ARD

Diagnostic 
accuracy

MPM vs HC
Training: CVA 95%
Validation: Sens 90%
Spec 91%

MPM vs ARD
Validation: Sens 90%
Spec 83.3%

MPM vs ARD 
vs HC
Validation: Sens 
90%
Spec 88%

Cyranose 
320

PCA

 Dragonieri 
2012 [85]

n = 13 MPM
• internal validation with training set: 
n = 8, validation set: n = 5
n = 13 HC
n = 13 AEx

Diagnostic 
accuracy

MPM vs HC
Sens 92.3%
Spec 69.2%
AUC 0.893
CVA 84.6%
Validation: AUC 0.83
CVA 85.0%

MPM vs AEx
Sens 92.3%
Spec 85.7%
AUC 0.917
CVA 80.8%
Validation: AUC 0.88
CVA 85.9%

MPM vs AEx 
vs HC
AUC 0.885
CVA 79.5%

Cyranose 
320

PCA; CDA

 Lamote 
2017 [84]

n = 11 MPM
n = 12 HC
n = 15 AEx
n = 12 benign ARD

Diagnostic 
accuracy

MPM vs HC
Sens 66.7% 
(37.7–88.4)
Spec 63.6% 
(33.7–87.2)
AUC 0.667 (0.434–
0.900)
Acc 65.2% 
(44.5–82.3)

MPM vs benign ARD
Sens 75.0% (45.9–93.2)
Spec 64% (33.7–87.2)
AUC 0.758 (0.548–0.967)
Acc 48.9–85.6% 
(48.9–85.6)

MPM vs benign 
ARD + AEx
Sens 81.5% 
(63.7–92.9)
Spec 54.5% 
(26.0–81.0)
AUC 0.747 
(0.582–0.913)
Acc 73.7% 
(58.1–85.8)

Cyranose 
320

PCA

Pulmonary infections
De Heer 
2016 [100]

n = 168 bottles with strain
• n = 135 bacteria + yeast
• n = 30 medium only
• n = 62 mould (A. fumigatus and R. 
oryzae)

Diagnostic 
accuracy
(in vitro)

Mould vs other
Sens 91.9%
Spec 95.2%
AUC 0.970 (0.949–
0.991)
Acc 92.9%

Cyranose 
320

PCA; CDA
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Suarez-
Cuartin 
2018 [101]

n = 73 bronchiectasis
• n = 41 colonised (n = 27 pseu-
domonas)
• n = 32 non-colonised

Diagnostic 
accuracy

Colonised vs non-
colonised
AUC 0.75
CVA 72.1%

Pseudomonas vs other 
PPM
AUC 0.96
CVA 89.2%

Pseudomonas 
vs non-colo-
nised
AUC 0.82
CVA 72.7%

Cyranose 
320

PCA

Pulmonary infections—Ventilator-associated pneumonia (VAP)

 Hanson 
2005 
[104]

n = 19 VAP (clinical pneumonia 
score, CPIS ≥ 6)
n = 19 controls (CPIS < 6)

Diagnostic 
accuracy

Correlation CPIS 
-breathprint
R2 = 0.81

Cyranose 
320

PLS

 Hockstein 
2005 
[105]

n = 15 VAP (pneumonia score ≥ 7)
n = 29 HC (ventilated)

Diagnostic 
accuracy

Acc 66–70% Cyranose 
320

KNN

 Humphreys 
2011 [99]

n = 44 VAP suspected
• 98 BAL samples
• Groups: gram-positive, gram-nega-
tive, fungi, no growth
n = 6 HC (ventilated)

Diagnostic 
accuracy
(in vitro)

Differentiation 
groups (LDA)
Sens 74–95%
Spec 77–100%
Acc 83%

Differentiation groups 
(cross-validation)
Sens 56–84%
Spec 81–97%
Acc 70%

Prototype 
(24 MOS)

PCA; LDA

 Schnabel 
2015 
[106]

n = 72 VAP suspected
• n = 33 BAL + 
• n = 39 BAL−
n = 53 HC (ventilated)

Diagnostic 
accuracy

BAL + VAP vs HC
Sens 88%
Spec 66%
AUC 0.82 (0.73–0.91)

BAL + vs BAL− VAP
Sens 76%
Spec 56%
AUC 0.69 (0.57–0.81)

DiagNose Random 
Forest; PCA

 Chen 2020 
[15]

Training: 80% 
of
n = 33 VAP
n = 26 HC 
(ventilated)

Validation: 20% of
n = 33 VAP
n = 26 HC (ventilated)

Diagnostic 
accuracy

Training:
AUC 0.823 
(0.70–0.94)

Validation:
Sens 79% (± 8)
Spec 83% (± 0)
AUC 0.833 (0.70–0.94)
Acc 0.81 (± 0.04)

Cyranose 
320

KNN; Naive 
Bayes; deci-
sion tree; 
neural net-
work; SVM; 
random 
forest

Pulmonary infections—Tuberculosis (TB)

 Fend 2006 
[109]

n = 188 TB
n = 142 TB excluded

Diagnostic 
accuracy
(in vitro)

Sens 89% (80–97)
Spec 88% (85–97)

Blood-
hound 
BH-114

PSA; DFA; 
ANN

 Bruins 2013 
[107]

Training:
n = 15 TB
n = 15 HC

Validation:
n = 34 TB
n = 114 TB excluded
n = 46 HC

Diagnostic 
accuracy

Training:
Sens 95.9% 
(92.9–97.7)
Spec 98.5% 
(96.2–99.4)

Validation: TB vs HC
Sens 93.5% (91.1–95.4)
Spec 85.3% (82.7–87.5)

Validation: TB vs 
TB excl
Sens 76.5% 
(57.98–88.5)
Spec 74.8% 
(64.5–82.9)

DiagNose ANN

 Coronel 
Teixeira 
2017 
[108]

Training:
n = 23 TB
n = 46 HC

Validation:
n = 47 TB
n = 63 
HC + asthma + COPD

Diagnostic 
accuracy

Training:
Sens 91%
Spec 93%

Validation:
Sens 88%
Spec 92%

Aeonose Tucker 
3–like 
algorithm; 
ANN

 Mohamed 
2017 
[110]

n = 67 TB
n = 56 HC

Diagnostic 
accuracy

Sens 98.5% 
(92.1–100)
Spec 100% 
(93.5–100)
Accuracy 99.2%

PEN3 PCA; ANN

 Saktiawati 
2019 
[111]

Training:
n = 85 TB
n = 97 
HC + TB 
excluded

Validation:
n = 128 TB
n = 159 TB
excluded

Diagnostic 
accuracy

Training:
Sens 85% (75–92)
Spec 55% (44–65)
AUC 0.82 (0.72–0.88)

Validation:
Sens 78% (70–85)
Spec 42% (34–50)
AUC 0.72 (0.66–0.78)

Aeonose ANN

 Zetola 2017 
[112]

n = 51 TB
n = 20 HC

Diagnostic 
accuracy

Sens 94.1% 
(83.8–98.8)
Spec 90.0% 
(68.3–98.8)

Prototype 
(QMB sen-
sors)

PCA; KNN
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Table 2  (continued)

Study participants Outcome 
measures

Results eNose Statistical 
breathprint 
analysis

Pulmonary infections—Aspergillosis

 De Heer 
2013 
[102]

n = 11 neutropenia
• n = 5 probable/proven aspergillosis
• n = 6 no aspergillus

Diagnostic 
accuracy

Sens 100% (48–100)
Spec 83.3% (36–100)
AUC 0.933
CVA 90.9% (59–100)

Cyranose 
320

PCA; CDA

 De Heer 
2016 [54]

n = 9 CF colonised A. fumigatus
n = 18 CF not colonised

Diagnostic 
accuracy

Sens 78%
Spec 94%
AUC 0.80–0.89
CVA 88.9%

Cyranose 
320

PCA; CDA

Pulmonary infections—Corona Virus Disease (COVID-19)

 Wintjens 
2020 
[114]

n = 219 screened
• n = 57 COVID-19 positive

Diagnostic 
accuracy

Sens 86% (74–93)
Spec 54% (46–62)
AUC 0.74
CVA 62%

Aeonose ANN

Obstructive sleep apnoea (OSA)
Greulich 
2013 [89]

n = 40 OSA
n = 20 HC

Diagnostic 
accuracy

OSA vs HC
Sens 93%
Spec 70%
AUC 0.85

Cyranose 
320

PCA

N = 40 OSA
• 3 months CPAP ventilation

Therapeutic 
effect

Before vs after CPAP
Sens 80%
Spec 65%
AUC 0.82

Incalzi 2014 
[95]

n = 50 OSA
• 1 night CPAP ventilation

Therapeutic 
effect

Change in breath-
print (visually dif-
ferent, no statistical 
analysis)

BIONOTE PCA; PLS-DA

Dragonieri 
2015 [90]

n = 19 OSA
n = 14 obese
n = 20 HC

Diagnostic 
accuracy

Obese OSA vs HC
CVA% 97.4
AUC 1.00

Obese OSA vs obese
CVA% 67.6
AUC 0.77

Obese vs HC
CVA% 94.1
AUC 0.94

Cyranose 
320

PCA; CDA; 
KNN

Kunos 2015 
[96]

n = 17 OSA
n = 9 non-OSA sleep disorder
n = 10 HC
• 7AM and 7PM sample
n = 26 HC
–7AM sample

Diagnostic 
accuracy

OSA 7AM vs 7PM
Significantly dif-
ferent

Non-OSA or HC 7AM vs 
7PM
Not significantly different

(Non-)OSA 7AM 
vs HC 7AM
Significantly 
different
Acc 77–81%

Cyranose 
320

PCA

Dragonieri 
2016 [92]

Training:
n = 13 OSA
n = 15 COPD
n = 13 
overlap

Validation:
n = 6 OSA
n = 6 COPD
n = 6 overlap

Diagnostic 
accuracy

Training:
OSA vs overlap
CVA 96.2%
AUC 0.98

Validation:
OSA vs overlap
CVA 91.7%
AUC 1.00

Validation:
OSA vs COPD
CVA 75%
AUC 0.83

Cyranose 
320

PCA; CDA

Scarlata 
2017 [91]

n = 40 OSA
• n = 20 hypoxic
n = 20 obese
n = 20 COPD
n = 56 HC

Diagnostic 
accuracy

OSA vs HC
Acc 98–100%

Non-hypoxic vs hypoxic 
OSA
Acc 60–80%

HC vs COPD
Acc 100%

BIONOTE PLS-DA

Other—Acute respiratory distress syndrome (ARDS)
Bos 2014 
[115]

Training:
n = 40 ARDS
n = 66 HC

Validation:
n = 18 ARDS
n = 26 HC

Diagnostic 
accuracy

Training:
Sens 95%
Spec 42%
AUC 0.72

Validation:
Sens 89%
Spec 50%
AUC 0.71

Cyranose 
320

Sparse-
partial least 
square 
logistic 
regression

Other—Lung transplantation (LTx)
Kovacs  
2013 [117]

n = 16 LTx recipients
n = 33 HC

Diagnostic 
accuracy

LTx recipients vs HC
Sens 63%
Spec 75%
AUC 0.825

Cyranose 
320

PCA; Linear 
regression
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Moreover, two studies showed that eNose technology 
distinguishes children with asthma from healthy controls 
[23, 25, 34]. An eNose seemed to be more accurate for 
diagnosing asthma than spirometry with bronchodilation 
only [34]. Also, uncontrolled asthma could be differenti-
ated from controlled asthma and healthy controls [25]. 
Furthermore, eNose technology accurately distinguished 
children with persistent asthma from healthy controls, 
but not the ones with intermittent asthma [34]. This was 
possibly due to more airway inflammation reflected in 
the breathprints of persistent asthmatics. Hence, eNose 
technology could potentially facilitate easier and ear-
lier diagnosis of asthma in children, and guide therapy 
in clinical practice. However, large validation studies 
focusing on diagnosing asthma in children are currently 
lacking.

COPD
Although COPD is one of the major causes of death 
worldwide, epidemiological studies indicate that it 
remains largely underdiagnosed [35]. COPD is a complex, 
heterogeneous disease with several phenotypes, which 
can overlap with asthma and pulmonary infections, 
among others. Furthermore, the diagnosis is delayed 
in patients whose symptoms are attributed to (undiag-
nosed) heart failure [36]. Hence, there is an unmet clini-
cal need for accurate timely diagnosis. Also better disease 
course prediction and therapy guidance is warranted.

Several studies have evaluated the ability of eNose 
technology to diagnose COPD. Exhaled breath analysis 
discriminated between COPD and (smoking) healthy 
controls with an accuracy of 66–100% [19, 37–41]. Even 
though these are promising results, most studies were 
relatively small and lacked a validation cohort. Several 
studies aimed to distinguish subgroups within COPD by 
performing unsupervised analyses on breathprint data 
[42–44]. De Vries et  al. performed unsupervised clus-
ter analysis in a combined group of asthma and COPD 
patients [43]. Interestingly, they identified and validated 
five clusters which mainly differed based on clinical and 
inflammatory characteristics (eosinophil and neutrophil 
count) rather than diagnosis. Two other studies iden-
tified 3–4 unsupervised clusters based on breathprint 
data. The clusters differed regarding several clinical and 
demographic features [42, 44]. However, in both stud-
ies, clusters were determined by different clinical param-
eters, showing the need for further (validation) studies. A 
recent study indicated that breathprints of patients with 
COPD associated with air pollution did not differ from 
smoking-associated COPD [40]. Also, no differences 
in breathprint between Global Initiative for Chronic 
Obstructive Lung Disease (GOLD) stage I-II versus 
GOLD stage III-IV were detected in another study [40]. 
The breathprint of patients with smoking-related COPD 
and patients with alpha-1-antitripsin, however, could be 
distinguished with an accuracy of 82% in a small single-
centre study [37].

Table 2  (continued)

Study participants Outcome 
measures

Results eNose Statistical 
breathprint 
analysis

Therapeutic 
effect

Correlation breath-
print—tacrolimus 
levels
R = -0.63

Cyranose 
320

PCA; Linear 
regression

Other—Pulmonary embolism (PE)
Fens 2010 
[116]

n = 20 PE
• n = 7 comorbidity
n = 20 PE excluded
• n = 13 comorbidity

Diagnostic 
accuracy

Comorbidity: PE vs 
excluded
Acc 65%
AUC 0.55

No comorbidity: PE vs 
excluded
Acc 85%
AUC 0.81

No comor-
bidity: PE 
vs excluded 
(breath-
print + Wells)
AUC 0.90

Cyranose 
320

PCA

An overview of eNose technology studies in lung diseases. Studies are divided per diagnosis and displayed in chronological order. Study results shown in sensitivity/
specificity, AUC and CVA (if available). In case of a training and validation set, participant numbers and results of both set are shown. All presented results are statistical 
significant (p < 0.05) unless stated otherwise

 AATd  alpha-1-antitrypsin deficiency, acc accuracy, AUC​  area under the curve, AAR​  extrinsic asthma with allergic rhinitis, AEx  asbestos exposure, ANN  artificial 
neural network, ARD  benign asbestos related disease, BMI  body mass index, CDA  canonical discriminant analysis, CVA/CVV  cross-validated accuracy/value, d  days, 
DFA  discriminate function analysis, EBC  exhaled breath condensate, AECOPD  acute COPD exacerbation, EGFR  epidermal growth factor receptor, eos  eosinophils, 
FeNO  exhaled nitric oxide test, FVC  forced vital capacity, GOLD  global initiative for chronic obstructive lung disease, HC  healthy control (not suspected for studied 
disease, not diagnosed with other pulmonary disease), ICS  inhaled corticosteroids, IPF  idiopathic pulmonary fibrosis, KNN  k-nearest neighbours, LDA  linear 
discriminant analysis, MOS  metal oxide sensor, n6MWD  normalised six minute walking distance, OCS  oral corticosteroids, PAM  partitioning around medoids, 
PCA  principal component analysis, PEB  pure exhaled breath, PLS-DA  partial least squares discriminant analysis, PPM  potentially pathogenic microorganism, 
QMB  quartz microbalance, QoL  quality of life, ROC receiver operator characteristics, SCC  squamous cell carcinoma (B  bronchial, L  laryngeal), sens  sensitivity, SLR  Sensor 
Logic Relations, spec  specificity, SVM  support vector machines, TLC total lung capacity
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eNose technology can theoretically be useful in early 
detection of inflammation and acute exacerbation of 
COPD (AECOPD), as inflammatory processes influence 
breathprints. This hypothesis was confirmed in a cross-
sectional study evaluating the association of breathprints 
with different inflammation markers in sputum; eNose 
breathprints highly correlated with inflammatory activity 
[45]. In patients with an AECOPD, presence of viral and 
bacterial infection was accurately detected by an eNose 
[46]. In another group of AECOPD patients, patients with 
colonisation of potentially pathogenic microorganisms 
had a significantly different breathprint than AECOPD 
patients that were not colonised. Besides, AECOPD 
patients’ breathprints differed from stable COPD patients 
without microorganism colonisation [39]. Stable COPD 
patients with bacterial colonisation were also significantly 
different from those without (area under the curve (AUC) 
0.922) [41]. Two prospective longitudinal studies indicated 
that the breathprint before, during and after recovery of 
an AECOPD differed [39, 47]. Confirming these results 
in larger cohort studies might lead the way to use breath-
prints for earlier detection and (targeted) treatment of 
infections and AECOPDs. This is interesting as treatment 
may improve outcomes and prevent hospitalizations [48].

Regarding prognostic value of eNose technology, one 
study demonstrated that eNose data correlated better to 
change in 6-min walking distance over one year, than the 
current GOLD classification [49]. A few studies evaluated 
the effect of initiation and withdrawal of inhalation medi-
cation on breathprints. Two studies found significant 
changes in breathprint after start of inhalation therapy 
[44, 50]. A designed multidimensional model, combining 
eNose technology with spirometry, gave a better indica-
tion of treatment response (AUC 0.857) than spirometry 
only (AUC 0.561) [50]. This small pilot study shows the 
potential of integrating eNose technology in standard 
practice. However, it remains to be elucidated whether 
eNose technology can serve as a marker for therapy com-
pliance of inhaled medication.

Cystic fibrosis
Cystic fibrosis (CF) is associated with bronchiectasis, 
recurrent infectious exacerbations, and progressive dete-
rioration of lung function due to exacerbations [51].

A few studies using different eNoses showed that 
patients with CF could accurately be distinguished 
from healthy controls and asthma patients based on 
their breathprint [23, 52, 53]. Two studies showed con-
flicted results regarding differentiation of CF from pri-
mary ciliary dyskinesia (PCD) patients, a bronchiectatic 
lung disease that mimics symptoms of CF [53]. While 
Paff et al. showed that CF and PCD could be adequately 

discriminated, Joensen et  al. found no significant differ-
ences [52, 53]. This was possibly due to methodological 
differences, such as different breath collection methods 
and a more heterogeneous patient population in the lat-
ter study. Furthermore, eNose technology adequately 
discriminated between patients with and without exac-
erbations, with and without chronic Pseudomonas aer-
uginosa colonisation, and patients with and without 
Aspergillus fumigatus colonisation [52–54]. It would be 
of great interest to investigate whether early stage respir-
atory infections and exacerbations can also be detected 
and eventually be predicted by eNose technology. This 
will possibly increase the chance of successful eradication 
and slowing down pulmonary function decline.

Interstitial lung disease
Interstitial lung disease (ILD) is a heterogeneous group 
of relatively uncommon diseases causing fibrotic and/or 
inflammatory changes in interstitial lung tissue. Disease 
course and treatment strategies widely vary for different 
ILDs, and even within individual ILDs disease course 
often varies. Diagnosis is based on integration of clinical 
data with imaging and if needed pathology data. Diagno-
sis is often complex and diagnostic delays are common 
[55, 56]. eNose technology has the potential to replace 
invasive procedures, and aid the diagnostic process to 
facilitate timely and accurate diagnosis.

A large single centre cohort, including various ILDs, 
found that breathprints of ILD patients could be dis-
tinguished from healthy controls with 100% accuracy. 
Results were confirmed in a validation cohort [57]. A 
few other studies compared individual ILDs with healthy 
controls and COPD patients [58–61]. Breathprints of 
patients with idiopathic pulmonary fibrosis (IPF), ILD 
associated with connective tissue disease and pneumo-
coniosis were significantly different from healthy con-
trols [59–61]. In sarcoidosis patients, the breathprint of 
patients with untreated sarcoidosis differed from healthy 
controls, implying that eNose technology may be used 
for initial diagnosis. This study found that breathprints of 
treated sarcoidosis patients were not significantly differ-
ent from healthy controls, but the number of participants 
was small [58]. Comparing different ILDs, eNose technol-
ogy distinguished IPF from non-IPF ILD patients with an 
accuracy of 91% in both training and validation cohort. 
Exploratory analyses indicated that individual ILDs can 
also be discriminated adequately [57]. However, groups 
were relatively small and, thus, results should be vali-
dated and confirmed in larger cohorts. A currently ongo-
ing large multicentre study is investigating the potential 
of eNose technology to identify individual diseases, pre-
dict disease course, and response to treatment in fibrotic 
ILDs (NCT04680832).
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Lung cancer
Worldwide, lung cancer is the leading cause of cancer 
deaths and has the highest incidence of all cancer types. 
More than 80% of patients suffering from lung cancer 
are former or current tobacco smokers [62]. Early diag-
nosis is clearly associated with better outcomes, and lung 
cancer screening has shown to reduce mortality [63, 64]. 
Nevertheless, early diagnosis remains challenging, since 
initial clinical presentation often overlaps with COPD or 
other smoking-related diseases, and symptoms often only 
appear in late stages [65]. Low-dose CT scan is currently 
the best available tool for screening. However, this type 
of screening is only cost-effective in a selected group of 
former and current smokers [66]. Also, differentiation of 
benign from malignant nodules is not possible with CT 
scan results; therefore, detected nodules warrant fur-
ther invasive investigations. eNose could possibly serve 
as non-invasive and less costly screening tool to identify 
malign pulmonary neoplasms. Two studies used eNose 
technology in high-risk patients enrolled for lung can-
cer screening. Both studies found a higher specificity for 
detecting lung cancer with eNose compared to low-dose 
CT scan; thus, the use of eNose technology as screen-
ing tool can potentially reduce the false-positive rate 
and prevent unnecessary (invasive) testing [16, 67]. It is 
important to note that not all lesions classified as benign 
were histologically proven in these studies.

Whether an eNose can differentiate lung cancer 
patients from healthy controls, patients with benign lung 
nodules or (former) smokers, has been investigated in dif-
ferent cohorts. All studies in (non-) small cell lung cancer 
((N)SCLC) showed significant results, albeit with a wide 
range in reported sensitivity (71–99%) and specificity 
(13–100%) [68–80]. Smoking status of participants did 
not seem to influence accuracy of an eNose for detecting 
cancer [77]. One small study showed that patients with 
and without an EGFR (epidermal growth factor recep-
tor) mutation had distinct breathprints [67]. It has not 
been evaluated whether eNoses can recognise  specific 
types of lung cancer in a cohort with different subtypes. 
Recognition of subtypes seems plausible, as differentia-
tion of lung cancer from head-neck cancer was possible 
with eNose technology [81, 82]. eNose technology did 
not discriminate between different stages of lung cancer 
[83]. One recent study in NSCLC combined eNose data 
with relevant clinical parameters (such as age, number of 
pack years, and presence of COPD), and showed a higher 
accuracy for lung cancer detection than using eNose data 
only. These results highlight the potential of eNose tech-
nology as additional diagnostic procedure [74]. Some 
small studies indicated that eNose technology was also 
able to differentiate patients suffering from malignant 
pleural mesothelioma (MPM) and healthy controls. 

Differentiation of MPM from benign asbestosis disease 
and asymptomatic asbestos exposure had a high sensitiv-
ity too [84–86].

Prediction of response to therapy is investigated for 
anti-programmed death (PD)-1 receptor therapy in 
NSCLC patients. Breathprints were collected before 
start of pembrolizumab or nivolumab therapy. Exhaled 
breath data could predict which patients would respond 
to therapy with an AUC of 0.89, confirmed in a validation 
cohort. By setting a cut-off value to obtain 100% speci-
ficity, the investigators were able to detect 24% of non-
responders to anti-PD-1 therapy. In this regard, eNose 
seems to be more accurate than the currently used bio-
marker PD-L1 [87]. Another study is currently registered 
for recruiting until July 2021 and will evaluate the effect 
of immunotherapy on breathprints of exhaled breath and 
sweat in lung cancer patients (NCT03988192).

Schmekel et  al. investigated the ability of eNose to 
predict prognosis in patients with end stage lung can-
cer. They collected breathprints before start and several 
times after start of palliative chemotherapy and applied 
different prediction models. Patients with less than one 
year survival and more than one year survival could be 
separated based on breathprint [88]. The authors suggest 
to use this eNose-based prediction for choosing a certain 
treatment strategy, but this needs confirmation in studies 
first.

Obstructive sleep apnoea
At the moment, the gold standard for diagnosing 
obstructive sleep apnoea (OSA) is (poly)somnography 
which is a costly and time-consuming test. eNose tech-
nology has been investigated as an alternative modality to 
diagnose this condition and assess treatment effect.

It was shown that breathprints from OSA patients and 
healthy controls can be distinguished reliably [89–91]. 
However, it remains questionable whether breathprints 
distinguishes true OSA, or if the breathprint is just a 
reflection of a metabolic syndrome or underlying inflam-
mation caused by obesity. In one of the studies this ques-
tion was more apparent as groups were not matched for 
body mass index [89]. Dragonieri et al. found that eNose 
technology did discriminate obese patients with and 
without OSA, with moderate accuracy [90]. Neverthe-
less, another study could not confirm those results [91].

Other researchers investigated OSA, OSA-COPD over-
lap syndrome and COPD. OSA could be distinguished 
from the overlap syndrome, but eNose technology could 
not discriminate well between the overlap syndrome and 
COPD. Also here it is not clear whether true OSA can be 
detected or other factors, such as COPD, are picked up 
[91, 92]. Whether included patients also suffer from heart 
failure is not clearly displayed in these studies, although 
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it is known that many heart failure patients suffer from 
OSA and that heart failure might influence breathprint 
[93, 94].

The effects of continuous positive airway pressure 
(CPAP) treatment in patients with OSA has also been 
studied. The breathprint of OSA patients changed sig-
nificantly already after one night of CPAP treatment 
[95]. Significant difference in breathprint was also found 
before and after three months of CPAP treatment [89]. It 
remains to be elucidated what this change in breathprint 
indicates. Possibly, the alteration in breathprint could 
serve as a marker for metabolic success, therapeutic 
benefit or treatment adherence. Furthermore, it must be 
noted that the breathprints of patients with OSA differed 
between morning and evening [96]. Hence, diurnal vari-
ance must be taken into account when using an eNose for 
patients with OSA.

Pulmonary infections
Pathogenic micro-organisms, such as viruses, bacteria or 
fungi, can cause severe pulmonary infections. Identifica-
tion of specific micro-organisms with sputum cultures 
can take up to several days, and is only possible if a speci-
men with sufficient quality is obtained. Specificity and 
sensitivity also depend on the causative micro-organism, 
experience of laboratory observer, and prior treatment 
[97]. Therefore, reported sensitivity of detecting bacte-
ria in sputum culture ranges between 57 and 95%, and 
specificity between 48 and 87% [98]. Detection of specific 
micro-organisms using eNose technology can potentially 
reduce misuse of antibiotics and facilitate timely start of 
guided therapy.

Until now, two in  vitro studies aimed to differen-
tiate micro-organisms by analysing breathprints of 
their headspace air [99, 100]. Mould species were 
discriminated from other samples (bacteria, yeasts, 
and control medium) with a high accuracy (92.9%). 
Furthermore, different mould species seemed to 
have different breathprints [100]. Another study per-
formed eNose analyses on bronchoalveolar lavage 
samples, and demonstrated accurate discrimination 
between Gram-positive bacteria, Gram-negative bac-
teria, fungi, and samples without growth of micro-
organisms [99]. In vivo, breathprints of bronchiectasis 
patients significantly differed between those colonised 
with Pseudomonas Aeruginosa and those colonised 
with other pathogenic micro-organisms or non-colo-
nised [101]. For detection of aspergillus colonisation 
or invasive aspergillosis in specific patient groups 
(CF and neutropenic patients), studies revealed a 
high accuracy of eNose breathprint analysis [54, 102]. 
These studies did not include a validation cohort or 
healthy control group.

Ventilator-associated pneumonia (VAP) is a common 
nosocomial infection in ventilated patients and has an 
incidence and mortality around 9% [98, 103]. In most 
eNose studies, bacterial growth in sputum or a clinical 
pneumonia score was used to define VAP [15, 104–106]. 
Two studies showed that obtained breathprints highly 
correlated with a clinical pneumonia score, imply-
ing that eNose technology might be used to predict the 
probability of a VAP [104, 105]. Two case–control stud-
ies in patients with VAP and ventilated patients without 
pneumonia showed conflicting results; Schnabel and col-
leagues concluded that eNose technology lacked sensitiv-
ity and specificity, whereas a recently published study of 
Chen and colleagues found a good accuracy for detect-
ing VAP [15, 106]. This shows the need for more research 
on this topic before eNose can be used to determine the 
need for more (invasive) diagnostics in ill patients, such 
as performing bronchoscopy.

In pulmonary tuberculosis (TB) patients, detection and 
screening with eNose technology has been studied in dif-
ferent countries and compared to different control groups 
[107–112]. As TB is the leading cause of death from an 
infection caused by a single micro-organism, and as it has a 
high prevalence in developing countries, establishing a fast 
non-invasive cheap screening tool is much needed [113]. 
In one study, eNose technology differentiated TB from 
non-TB quite accurately, suggesting that it can potentially 
serve as a screening tool. Detection of TB had a sensitiv-
ity of 89% and a specificity of 91% compared to positive 
cultures. This sensitivity and specificity exceeded Ziehl–
Neelsen staining [109]. However, all studies with proven 
TB and healthy participants in the training cohort, had a 
lower accuracy when validating the results in a cohort also 
including suspected TB patients [107, 108, 111]. Thus, 
more research is necessary before eNose technology can 
be used as a population-wide screening tool.

Due to the Corona Virus Disease (COVID-19) pan-
demic, much research effort is being put in the evaluation 
of eNose technology as a fast and non-invasive tool for the 
detection of COVID-19 (NCT04475562, NCT04475575, 
NCT04558372, NCT04379154, NCT04614883, NL8694). 
To date, one study tested the accuracy of eNose technology 
for COVID-19 screening prior to surgery in non-sympto-
matic patients and found a negative predictive value up to 
0.96. Reverse transcription-polymerase chain reaction on a 
pharyngeal swab and antibody testing were used to confirm 
presence or absence of COVID-19 [114].

Other
A number of eNose studies have been performed in other 
lung diseases. In acute respiratory distress syndrome 
(ARDS), eNose technology could discriminate between 
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mechanically ventilated patients with and without ARDS, 
with moderate accuracy in a training and validation 
cohort [115].

One small proof-of-principle study has been performed 
in patients with suspected pulmonary embolism, defined 
as a high clinical probability according to the Well’s score 
or elevated D-dimer. Breathprints of non-comorbid 
patients with and without pulmonary embolism could 
be distinguished with an accuracy of 85%. However, in 
patients with comorbidities known to influence VOCs 
(e.g. cancer, diabetes) the accuracy dropped [116].

Finally, eNose technology could be useful for follow-
up and monitoring lung transplant recipients. One study 
found a significant association between breathprint and 
plasma tacrolimus levels, suggesting that eNoses might 
be used for non-invasive therapeutic drug monitoring 
[117].

A clinical trial in lung transplant recipients is currently 
conducted (NL9251) looking at discrimination of stable 
lung transplant recipients, acute cellular rejection, and 
chronic lung allograft rejection.

Discussion
In the past decades, multiple eNoses have been developed 
and tested in numerous clinical studies for a wide spec-
trum of lung diseases. So far, the vast majority of studies 
evaluated the ability of eNose technology to distinguish 
lung diseases from healthy controls, and to discriminate 
between different diagnoses. A small number of stud-
ies have been performed for prognostic or therapeutic 
purposes, and only a handful of studies have focused on 
clustering patients by breathprint and identifying pheno-
types. Results in lung diseases are overall very promising, 
but several issues should be addressed before eNoses can 
be implemented in daily clinical practice.

One of the issues is the use of various eNose devices 
with different qualifications, types of sensors and breath 
sample collection methods as summarised in Table 1. It is 
not possible to point out the best eNose device or select 
one optimal sensor type, as each setting, disease and 
research aim can require different features. For example, 
a portable device might be optimal for an acute care set-
ting, direct sampling without collection bags might be 
useful in low resource areas and as point-of-care tech-
nique, and a device that corrects for ambient air will 
probably generate more comparable results in multicen-
tre use and settings with unstable or varying environ-
mental conditions.

Given important differences between the various 
devices, it is difficult to compare data of the different 
eNose devices. Hence, each eNose needs to be validated 
for every clinical application. This implies that knowledge 
about characteristics of eNose devices is essential before 

initiating eNose research, as the type of device cannot 
easily be changed during the trajectory of developing a 
clinical tool. Additionally, the influence of endogenous 
(e.g. comorbidities, ethnicity, age) and exogenous factors 
(e.g. smoking, nutrition, drug use, measurement environ-
ment) on breathprints needs to be further elucidated.

Furthermore, studies differ significantly with regards 
to study design (e.g. patient selection, number of partici-
pants, and presence of a validation cohort). As illustrated 
in Fig. 2, the majority of studies so far can be considered 
as pilot or exploratory studies, and have small numbers 
of participants. The most important goal of these studies 
is to test new hypotheses, which can be further assessed 
and confirmed in larger studies with external validation. 
However, these validation studies are not often con-
ducted. This lack of validation is a major issue in devel-
opment of a clinical useful breath biomarker, as breath 
analysis results are not always interchangeable between 
research settings due to a combination of the above men-
tioned factors. To ensure optimal outcomes, compari-
son and generalisability of eNose studies, the design and 
analysis methods should ideally be based on specific pre-
defined research aims.

Moreover, most studies do not explain the rationale for 
choosing a certain machine learning model for analys-
ing eNose data. This prevents insights in and discussion 
regarding the optimal analysis techniques and algo-
rithms. Machine learning models are complex to execute 
and interpret, and if not used in the right way are prone 
for overfitting. To avoid inadequate modelling, data 
scientists should always be involved in these complex 
analyses and models should be validated independently 
to exclude overfitting. To allow for comparison of differ-
ent modelling techniques, we recommend an extensive 
world-wide shared database per eNose with FAIR (find-
able, accessible, interoperable, and reusable) and open 
source data, including patient characteristics and other 
pre-test probabilities. This database would ensure opti-
mal training, validation, and application of models.

Finally, a factor that hampers eNose implementation is 
the need for a strong gold standard to establish a diag-
nosis or to evaluate therapeutic effect. High quality data 
input is required for optimal validity when developing a 
new technique. Some of the diseases mentioned in this 
review lack a gold standard, and even if a gold standard 
does exist, there is always a range of uncertainty. There 
is a potential for unsupervised machine learning mod-
els in this regard, as such analyses could help to identify 
previously unrecognised phenotype clusters. Discovering 
such new clusters can help to generate hypotheses about 
the existence of unravelled disease subtypes or overlap 
between diagnoses, and might eventually guide new diag-
nostic standards.
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In conclusion, eNose technology in the field of lung 
diseases is promising and at the doorstep of the pulmo-
nologist’s office. To facilitate clinical implementation, 
we recommend conducting prospective multicentre tri-
als including validation in external cohorts with a study 
design and analysis method relevant for the research aim, 
and sharing databases on open source platforms. If sup-
ported by sufficient evidence, research can subsequently 
be extended to clinical implementation studies, and 
finally, use in daily practice.

We believe that eNose technology has the potential to 
facilitate personalised medicine in lung diseases through 
establishing early, accurate diagnosis and monitoring dis-
ease course and therapeutic effects.
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