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Abstract 

Background:  Previous studies have shown inconsistent results regarding the impact of traffic pollution on the preva‑
lence of chronic obstructive pulmonary disease (COPD). Therefore, using frequency matching and propensity scores, 
we explored the association between traffic pollution and COPD in a cohort of 8284 residents in a major agricultural 
county in Taiwan.

Methods:  All subjects completed a structured questionnaire interview and health checkups. Subjects with COPD 
were identified using Taiwan National Health Insurance Research Databases. A hybrid kriging/LUR model was used to 
identify levels of traffic-related air pollutants (PM2.5 and O3). Multiple logistic regression models were used to calcu‑
late the prevalence ratios (PRs) of COPD and evaluate the role played by traffic-related indices between air pollutants 
and COPD. The distributed lag nonlinear model was applied in the analysis; we excluded current or ever smokers to 
perform the sensitivity analysis.

Results:  Increased PRs of COPD per SD increment of PM2.5 were 1.10 (95% CI 1.05–1.15) and 1.25 (95% CI 1.13–1.40) 
in the population with age and sex matching as well as propensity-score matching, respectively. The results of 
the sensitivity analysis were similar between the single and two pollutant models. PM2.5 concentrations were sig‑
nificantly associated with traffic flow including sedans, buses, and trucks (p < 0.01). The higher road area and the 
higher PM2.5 concentrations near the subject’s residence correlated with a greater risk of developing COPD (p for 
interaction < 0.01).

Conclusions:  Our results suggest that long-term exposure to traffic-related air pollution may be positively associated 
with the prevalence of COPD.
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Introduction
Chiayi County is located in the southwest part of Taiwan, 
and the Tropic of Cancer runs through it. It has the third 
largest agricultural land area in Taiwan. Therefore, the 
population density and industrial area of Chiayi County 

are not very dense. However, according to the environ-
mental resource database of the Taiwan Environmental 
Protection Administration (TWEPA, 2020), the popula-
tion of Chiayi County decreased from 563,365 in 2001 
to 507,068 in 2018. Nevertheless, the number of vehicles 
(including cars and motorcycles) increased from 448,824 
in 2001 to 523,851 in 2018. In other words, the number 
of vehicles owned by each person increased from 0.8 in 
2001 to 1.03 in 2018; indicating that everyone in Chiayi 
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County has one vehicle. Under such circumstances, the 
air pollution caused by traffic and its effects on human 
health is a subject worth exploring. According to data 
from the Taiwan Ministry of Health and Welfare, the 
age-standardized mortality rate of chronic lower respira-
tory tract in Chiayi County in 2009 was 14.5 per 100,000 
persons, and by 2018, it rose to 16.3 per 100,000 per-
sons. In contrast, Taiwan’s national data showed that in 
2009, it was 14.9 per 100,000 persons, and by 2018, it had 
dropped to 12.8 per 100,000 persons (Taiwan Ministry of 
Health and Welfare, 2020). These data show that the mor-
tality of respiratory disease in Chiayi County is gradually 
worsening compared with that of the whole country.

According to data from the Taiwan Air Quality Moni-
toring Network operated by Taiwan Environmental 
Protection Administration (2020), the most important 
pollutant in Chiayi County in the past six years (2014–
2019) was PM2.5. During these periods, there were 
approximately 28% of daily mean PM2.5 concentrations in 
Chiayi County that exceeded Taiwan’s air quality stand-
ard (35  μg/m3). It is suggested that traffic is one of the 
most important contributors of PM2.5 in Chiayi County.

Particulate matter (PM) is a complicated mixture of 
solid and liquid particles consisting of consists of organic 
chemicals, metals, sulfate, nitrate, and ammonium. In 
addition, ozone (O3) is a well-known strong oxidizing 
agent and a secondary pollutant produced by nitrogen 
oxides and volatile organic compounds. Since humans 
are exposed to air pollutants primarily by inhalation, the 
respiratory system is one of the most important target 
organs of the harmful effects of air pollutants. In  vitro 
studies have indicated exposure to variety of air pollut-
ants may cause damage to lung, trachea, or bronchus, 
especially for fine particulate matter [1, 2]. Studies have 
shown that these pollutants cause lung inflammation, 
alveolar epithelial damage, and impaired mitochondrial 
function of the bronchial epithelial cells [2, 3]. They are 
potential candidates that induce COPD in the residents 
of Chiayi County.

Previous epidemiological studies on the relationship 
between exposure to traffic pollution sources and COPD 
have shown inconsistent conclusions. Andersen et al. [4] 
used a Cox proportional hazards model to study the asso-
ciation between COPD and exposure to traffic-related air 
pollution in Denmark. Their results showed that long-
term exposure to traffic-related air pollution was associ-
ated with development of COPD. A cross-sectional study 
was conducted in Germany to investigate the effect of 
long-term exposure to PM10 from traffic on COPD. The 
results indicated that chronic exposure to PM10, NO2 and 
living near a major road might increase the risk of devel-
oping COPD and can have a detrimental effect on lung 
function [5]. Another cross-sectional study conducted in 

Southern Sweden also demonstrated that living close to 
traffic was associated with prevalence of COPD in adults 
[6]. However, a British nationwide cross-sectional study 
showed that close residential proximity to main roads did 
not increase the health risks of asthma, COPD, or aller-
gic disease [7]. Likewise, another city-based British study 
showed that there was no evidence to suggest that liv-
ing in close proximity to traffic is a major determinant of 
asthma, allergic disease, or COPD in adults [8]. Possible 
reasons for the different findings may be related to the 
assessment method of exposure concentration, culture 
differences as well as individual susceptibility to air pollu-
tion. Recently, studies have suggested that location-based 
air pollution data frequently have a far lower resolution 
than location-based health data. It is very likely to cause 
bias in assessing the relationship between exposure and 
response [9, 10].

One of the indicators for the development of COPD 
is decreasing lung function. A large-scale longitudinal 
cohort study conducted in Taiwan showed that for every 
5  μg/m3 increase in PM2.5 concentration, forced vital 
capacity (FVC) decreased by 1.18%, and forced expira-
tory volume in 1 s (FEV1) decreased by 1.46%. Compared 
with the participants exposed to PM2.5 in the first quar-
tile group, hazard ratio of developing COPD in the fourth 
quartile group was 1.23 (95% CI 1.09–1.39) [11]. Another 
population-based UK Biobank study found that exposure 
to PM2.5 is associated with decreased lung function and 
increased COPD prevalence, indicating that exposure 
to PM2.5 is a risk factor for COPD [12]. Furthermore, a 
population-based cohort study in the United States dem-
onstrated that even at relatively low levels, long-term 
exposure to traffic and PM2.5 decrease FEV1 and FVC. In 
addition, it accelerated the rate of lung function decline 
[13]. Therefore, further study the relationship between 
exposure to traffic pollution and COPD is suggested.

Findings from recent studies indicate that outdoor air 
pollution and some health outcomes have a nonlinear 
exposure–response relationship [14–16]. Therefore, in 
this study, we used the hybrid kriging/land-use regres-
sion (LUR) model to obtain the levels of traffic-related 
pollutants (PM2.5 and O3) and further explored the effects 
of these pollutants on COPD risk in a large-scale com-
munity-based population under different study designs 
and statistical analysis. In addition, we adopted the dis-
tributed lag nonlinear model (DLNM) in the analysis of 
non-linear relationship and search for potential index for 
PM2.5 as well as O3 increments. Also, we evaluated the 
roles that traffic-related factors played in the association 
between air pollutants and COPD risk, such as road area 
as well as the traffic load of different kinds of vehicles. 
Considering that smoking is a significant risk factor for 
COPD and increased exposure to PM2.5; we executed a 
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sensitivity analysis and approve the above results in the 
non-smokers.

Materials and methods
Study area and participants
The study population was derived from a Chiayi County 
Complex Health Screening (CCHS) program launched 
from 2012 to 2013 in Chiayi County, which comprises 18 
townships and has the highest percentage of elderly peo-
ple (18.6%) in Taiwan. This program aimed to explore the 
effects of air pollution on long-term health risk for a com-
munity-based general population ≥ 40 years. Community 
recruitment was conducted during 2012 and 2013 and 
all residents aged ≥ 40 years lived in Chiayi County were 
invited to participate in this health program by mailing 
leaflet. A total of 8284 community residents voluntarily 
participated in the study. As shown in Fig. 1, we excluded 
participants younger than 40 years of age (N = 462), those 
who did not live in Chiayi County (N = 975), and records 
with missing sex data (N = 55). The final analytic cohort 
consisted of 6792 participants. According to the previ-
ous Epidemiology and Impact of COPD (EPIC) Asia sur-
vey, prevalence of COPD in Taiwan was approximately 
10%  [17]. About 3,416 of sample size are needed for all 
population aged ≥ 40  years old in Chiayi (N = 280,000) 
to have a confidence level of 95% that the real value is 
within ± 1% of the surveyed value. Therefore, our sample 
size is large enough to represent the population in Chi-
ayi County. Written informed consent was obtained from 

all participants. This study was approved by the Research 
Ethics Committee of China Medical University Hospital, 
Taichung, Taiwan (DMR101-IRB061).

Collection of questionnaires and health examinations
Well-trained personnel carried out standardized per-
sonal interviews based on a structured questionnaire, 
which contained demographic data and lifestyle vari-
ables contained cigarette smoking and quantity of areca 
nut chewing, consumption of alcohol and other bever-
ages, participation in sport, consumption of three regu-
lar meals per day, and personal and familial history of 
cancer or other related diseases. In addition, all study 
population received health checkups, including baseline 
anthropometric and general biochemistry examinations 
such as blood pressure, plasma levels of triglycerides, 
total cholesterol, low-density lipoprotein cholesterol 
(LDL-C), high-density lipoprotein cholesterol (HDL-C), 
blood glucose, and blood creatinine after an 8-h fasting 
period. The biochemical data and self-reported data in 
the questionnaires were combined. Diabetes was defined 
as fasting glucose ≥ 126  mg/dL or use of insulin or oral 
hypoglycemic medications; hypertension was defined 
as systolic blood pressure (SBP) ≥ 140  mmHg, diastolic 
blood pressure (DBP) ≥ 90  mmHg, or antihypertensive 
medication use. Hyperlipidemia was defined as total cho-
lesterol ≥ 200 mg/dL or triglyceride ≥ 130 mg/dL or con-
firmed disease status. In addition, baseline information 
about demographic characteristics and lifestyle variables 

Fig. 1  Study protocol of recruitment in this study
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was acquired from the questionnaires. Quantified (yes/ 
no) or frequency (numbers/ week) data of cigarette 
smoking and areca nut chewing, consumption of alcohol 
and other beverages, sport and three regular meal habits, 
personal and familial history of cancer or other related 
diseases were also collected. The prevalent cases of heart 
diseases, arthritis, asthma, chronic kidney diseases, and 
cancer were defined if they self-reported “Yes” to “Have 
you ever had heart diseases?” in the medical history por-
tion of the questionnaire.

Outcome Assessment and sensitivity analysis
COPD diagnoses were identified with ICD-9-CM codes 
(491, 492, and 496) through linkage of Taiwan National 
Health Insurance Research Databases (TNHIRD); almost 
all residents (> 99%) in Taiwan have been joined this 
TNHIRD program since 1995. The accuracy of COPD 
diagnosis recorded in the NHIRD has been validated [18], 
which indicating the accuracy of diagnoses was excellent. 
There were 668 COPD cases in the original population 
(N = 6792). We then adopted 1:4 frequency-matching 
with age and gender to the non-COPD group; there were 
654 COPD cases and 2616 non-COPD controls. In addi-
tion, we constructed a propensity-score-matched popu-
lation of 451 COPD cases and 1804 controls by matching 
age, gender, categorized BMI, ethnicity, level of educa-
tion, marital status, and COPD-related comorbidity, 
including hypertension, diabetes, hyperlipidemia, heart 
diseases, arthritis, asthma, CKD, and cancer. Given that 
smoking habit is an important risk factor for COPD and 
increased exposure to PM2.5, we excluded current or ever 
smokers (N = 1272) and performed a sensitivity analysis 
through the similar methods of 1: 4 frequency-matching 
and propensity-score-matching (Fig. 1).

A hybrid kriging/land‑use regression (LUR) model for PM2.5, 
and O3 estimation
We adopted the air pollutant data (PM2.5 and O3) col-
lected from 71 Taiwan Environmental Protection Admin-
istration air quality monitoring stations between 2006 
and 2013 for PM2.5 and 2000–2013 for O3 to calibrate our 
previously developed hybrid kriging/LUR model [10, 19]. 
The model takes into consideration the land use patterns, 
such as green areas, major traffic roads, temple incense 
burning, and industrial areas to improve the accuracy 
of predicting the exposure concentration of pollutants. 
Besides the above factors, other important variables such 
as temperature, relative humidity, wind-related factors, 
and meteorological as well as topography factors were 
also considered in the sequent stepwise model selection. 
Variance inflation factor < 3 was selected for the collin-
earity test in the model and also the statistical criterion 
of stepwise variable selection used in this study was 0.1. 

Furthermore, to improve the accuracy of PM2.5 and O3 
variation predictions, the LUR model included the pre-
dicted concentration level from the kriging interpola-
tion as a variable. Therefore, the hybrid approach further 
included the kriging-based concentration estimations as 
a predictor variable to improve the prediction perfor-
mance of LUR. For data validity, the cross-validated R2 
and RMSE were 0.87 and 5.02 μg/m3 for PM2.5 and 0.70 
and 0.04 μg/m3 for O3, respectively. Finally, we calculated 
the overall average values of PM2.5 and O3 of all residents 
from the earliest start year to their corresponding year of 
recruitment (2012 or 2013).

Statistical analysis
Baseline characteristics of the COPD and non-COPD 
groups were compared using chi-square test for cat-
egorical variables. Multiple logistic regression mod-
els were used to evaluate the prevalence ratios (PRs) 
and 95% confidence interval (CI) for the associa-
tions between PM2.5, and O3 (exposure variables) with 
respect to the PRs of COPD (outcome variable). Statis-
tically significant variables of COPD shown in Tables 1 
and  2 were considered as covariate variables adjusted 
for by including them in final multiple logistic regres-
sion models. Also, two-pollutant models were used to 
assess the associations of PM2.5 with COPD; the two-
pollutant models included O3. Because the effect of O3 
on COPD risk disappeared after adjustment for PM2.5, 
we only explored the role of PM2.5 in the following 
analysis. Either b-spline or natural cubic was used for 
fitting the non-linear dose–response relationship of 
PM2.5 and COPD under different degrees of freedom. 
Selection of the degrees of freedoms in the final model 
was determined using the minimum Akaike informa-
tion criterion (DLNM package in the R program). To 
determine the important factors for PM2.5 increments, 
we contained all LUR-related indices with different cir-
cular buffers (500 m, 1000 m, 1500 m, 2000 m, 2500 m, 
3000  m, 4000  m, and 5000  m) in the model selection. 
These variables included normalized difference veg-
etation index (NDVI), area of industrial land, num-
ber of temples, distance from residence to municipal 
waste incinerator, area of traffic road. Among these 
variables, the overall value of R2 of the four indices 
including within a 5000  m circular buffer of NDVI, 
area of local road area, area of industrial land within a 
4000 m circular buffer, and amounts of temples within 
a 500  m circular buffer, was approximately 0.75 for 
PM2.5. We further evaluated the interactions of LUR-
related indices and levels of PM2.5 on PRs of COPD in 
the propensity-score-matched population using multi-
ple logistic regression models. The cut-off values were 
defined as median of LUR-related indices and PM2.5 
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in the non-COPD groups. Furthermore, we analyzed 
the associations between the daily traffic load of dif-
ferent types of vehicles and the annual PM2.5 level at 
traffic load monitoring stations in Chiayi County dur-
ing the study period by repeated measurements analy-
sis. Different correlation structures of repeated data 
were all used in the generalized estimating equation 
approach with calculating Pan’s quasilikelihood under 
the independence model information criterion (QIC). 
The correlation structure with the lowest QIC score 
was generally considered to be the best [20]. All data 

were analyzed using the SAS statistical package (SAS, 
version 9.4, Cary, NC) and R software version 3.6.3. A 
two-sided p-value < 0.05 was considered statistically 
significant.

Results
Basic characteristics and lifestyle‑related variables in COPD 
and non COPD population
Descriptive characteristics between study participants 
with and without COPD are shown in Table 1. There was 
approximately a 1:1 sex ratio of males to females, with 

Table 1  Descriptive characteristics between study participants with COPD and without COPD

Variables Frequency matching Propensity-score matching

Case Control p-values Case Control p-values

n = 654 n = 2616 n = 451 n = 1804

Age 66.00 ± 12.15 65.59 ± 12.16

 40–50 82 (12.54) 328 (12.54) 1.0000 63 (13.97) 237 (13.14) 0.6758

 50–60 112 (17.13) 448 (17.13) 86 (19.07) 389 (21.56)

 60–70 172 (26.30) 688 (26.30) 127 (28.16) 460 (25.50)

 70–80 210 (32.11) 840 (32.11) 135 (29.93) 555 (30.76)

  ≥ 80 78 (11.93) 312 (11.93) 40 (8.87) 163 (9.04)

Sex

 Male 301 (46.02) 1204 (46.02) 1.0000 205 (45.45) 811 (44.96) 0.8489

 Female 353 (53.98) 1412 (53.98) 246 (54.55) 993 (55.04)

BMI (Unit = 3.69)

 Underweight 22 (3.38) 52 (2.00) 0.0840 9 (2.00) 40 (2.22) 0.8965

 Ordinary 262 (40.31) 1078 (41.49) 191 (42.35) 794 (44.01)

 Overweight 188 (28.92) 816 (31.41) 142 (31.49) 541 (29.99)

 Obesity 178 (27.38) 652 (25.10) 109 (24.17) 429 (23.78)

Ethnicity

 Holo Taiwanese 546 (96.47) 2397 (96.73) 0.9405 434 (96.23) 1754 (97.23) 0.5352

 Hakka Taiwanese 9 (1.59) 35 (1.41) 7 (1.55) 21 (1.16)

 Mainland Chinese 11 (1.94) 46 (1.86) 10 (2.22) 29 (1.61)

Education

 Elementary school or below 401 (63.05) 1558 (60.67) 0.5312 272 (60.31) 1099 (60.92) 0.5820

 High school 170 (26.73) 738 (28.74) 119 (26.39) 440 (24.39)

 College or above 65 (10.22) 272 (10.59) 60 (13.30) 265 (14.69)

Marriage

 Married 534 (83.31) 2209 (86.83) 0.0191 384 (85.14) 1577 (87.42) 0.3291

 Single 20 (3.12) 43 (1.69) 12 (2.66) 50 (2.77)

 Widowed /divorce 87 (13.57) 292 (11.48) 55 (12.20) 177 (9.81)

 Hypertension 414 (63.79) 1582 (61.08) 0.2044 261 (57.87) 1068 (59.20) 0.6075

 Diabetes 75 (11.68) 347 (13.50) 0.0076 84 (18.63) 302 (16.74) 0.3419

 Hyperlipidemia 392 (61.15) 1669 (65.17) 0.0576 279 (61.86) 1135 (62.92) 0.6791

 Heart disease 94 (14.62) 268 (10.46) 0.0029 50 (11.09) 179 (9.92) 0.4642

 Arthritis 107 (16.77) 306 (11.95) 0.0012 57 (12.64) 173 (9.59) 0.0557

 Asthma 67 (10.47) 63 (2.46)  < 0.0001 13 (2.88) 54 (2.99) 0.9013

 CKD 18 3 (28.33) 728 (28.18) 0.9421 108 (23.95) 418 (23.17) 0.7274

 Cancer 18 (2.81) 37 (1.44) 0.0170 9 (2.00) 33 (1.83) 0.8153
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average age of 66  years. About half of the entire study 
population had a BMI that was categorized as overweight 
or obesity, 62% had an elementary level education or 
below, and 85% were married.

For comorbidities, the study population with COPD 
had a higher prevalence of diabetes, heart diseases, 
arthritis, asthma, and cancer (all p-values < 0.05). In addi-
tion, we constructed a propensity-score analysis, match-
ing the study population with similar distributions of 
COPD-related variables described above between the 
COPD and non-COPD groups.

The associations between lifestyles- and dietary-related 
variables and prevalent rate ratios of COPD are shown in 
Table 2. Approximately 10%-30% of the study population 
had habits of cigarette smoking, alcohol consumption, tea 
and coffee drinking, and betel consumption. Most of the 
subjects reported consuming less than 3 bottles of sugary 
drinks per week. Half of study population consumed one 

to three bowls of vegetables per day; however, about 60% 
had less than one bowl of fruit per day. Cigarette smok-
ing and betel consumption were significantly associ-
ated with COPD irrespective of age and sex matching as 
well as propensity-score matching. In addition, through 
age and gender matching, there was a significant differ-
ence in the distribution of alcohol drinking between the 
COPD group and the control group. However, by way 
of propensity score matching, this significant difference 
disappeared.

Linear and non‑linear relationships of PM2.5, O3, 
and prevalence risk of COPD
We further explored the associations between exposure 
to air pollution and prevalence ratios of COPD by adjust-
ing for risk factors shown in Tables 1 and 2. The results 
are presented in Fig.  2. The increased prevalence ratios 
of COPD per SD increment of PM2.5 were 1.10 (95% CI 

Table 2  Distributions of lifestyles- and dietary-related factors between study participants with COPD and without COPD

Variables Frequency matching Propensity-score matching

Case Control p-values Case Control p-values

n = 654 n = 2,616 n = 451 n = 1,804

Smoking

 Never 498 (76.62) 2120 (81.76) 0.0030 340 (75.56) 1478 (82.11) 0.0016

 Ever 152 (23.38) 473 (18.24) 110 (24.44) 322 (17.89)

Alcohol drinking

 No 525 (80.89) 2192 (84.54) 0.0243 370 (82.59) 1539 (85.60) 0.1109

 Yes 124 (19.11) 401 (15.46) 78 (17.41) 259 (14.40)

Tea drinking

 No 465 (71.76) 1824 (70.51) 0.5307 302 (67.41) 1232 (68.67) 0.6070

 Yes 183 (28.24) 763 (29.49) 146 (32.59) 562 (31.33)

Coffee drinking

 No 604 (93.21) 2382 (92.22) 0.3939 418 (93.30) 1639 (91.36) 0.1811

 Yes 44 (6.79) 201 (7.78) 30 (6.70) 155 (8.64)

Betel consumption

 No 575 (89.01) 2396 (92.51) 0.0037 397 (88.62) 1660 (92.27) 0.0128

 Yes 71 (10.99) 194 (7.49) 51 (11.38) 139 (7.73)

Sugary drink (bottle/week)

  < 3 574 (92.13) 2219 (90.53) 0.2191 405 (93.75) 1593 (92.40) 0.4827

 3–7 37 (5.94) 153 (6.24) 20 (4.63) 87 (5.05)

  ≥ 7 12 (1.93) 79 (3.22) 7 (1.62) 44 (2.55)

Vegetables consumption (bowl /day)

  < 1 258 (39.81) 970 (37.39) 0.3079 180 (40.00) 648 (36.06) 0.2776

 1–3 331 (51.08) 1411 (54.39) 231 (51.33) 994 (55.31)

  ≥ 3 59 (9.10) 213 (8.21) 39 (8.67) 155 (8.63)

Fruit consumption (bowl /day)

  < 1 391 (60.25) 1506 (58.06) 0.5457 269 (59.65) 1023 (56.93) 0.5533

 1–3 218 (33.59) 931 (35.89) 154 (34.15) 662 (36.84)

  ≥ 3 40 (6.16) 157 (6.05) 28 (6.21) 112 (6.23)
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1.05–1.15), and 1.25-fold (95% CI 1.13–1.40) in the popu-
lation with age and sex matching as well as propensity-
score matching, respectively (Fig.  2A). The significant 
results were also found in two-pollutant models, which 
included the levels of O3. In addition, for O3, there was 
about 11–12% significantly increased prevalence ratios of 
COPD per SD increment of O3 in two kinds of match-
ing population; however, after adjusting for PM2.5 in two-
pollutant models, the effects of O3 on COPD were not 
found. The detailed data of the above prevalence ratios 
are shown in Additional file 1: Table S1.

In the sensitivity analysis, we excluded the ever smok-
ers from the original cohort of 6792 residents and per-
formed a similar 1:4 matching to repeatedly explore the 
association between exposure to air pollution (PM2.5 and 
O3) and COPD. The results indicated that there were sig-
nificant positive associations between levels of PM2.5 and 
COPD, irrespective of whether a single or two-pollutant 
mode was used (Fig. 2B). For two-pollutant models, there 
were significantly 1.25-fold and 1.19-fold risks of COPD 
prevalence (both p < 0.05).

We further executed the DLNM analysis, which was set 
as the simple b-splines function with five degrees of free-
dom and with the minimum AIC value (2198.85) (Addi-
tional file 1: Table S2). Also, we selected the lowest 5% of 
PM2.5 levels as a reference value and the results showed 
a non-linear dose–response relationship of significant 
COPD prevalence and PM2.5 above 35 μg/m3 among pro-
pensity-score matching population. The spline results are 
displayed graphically in Fig. 3.

The role of traffic‑related variables for PM2.5 
and prevalence ratios of COPD
Since the novelty effect of PM2.5 was observed in the 
above results compared to O3, we only explored the 
role of PM2.5 in the following analysis. For the four 
important contributors of PM2.5 increment from 
model selection (NDVI, area of industrial land, num-
ber of temples, and area of traffic road) we evaluated 

Fig. 2  Associations between exposure to air pollution (PM2.5 and O3) and prevalence ratios of COPD in population with frequency matching (Black 
square) and with propensity-score matching (Black diamond) analyzed by single-pollutant model and two-pollutant model. A all population (B) 
non-smokers in the sensitivity analysis

Fig. 3  Non-linear relationships of PM2.5 levels and COPD in the 
propensity-score matching population
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the interactions of individual contributor and PM2.5 
levels on prevalence ratios of COPD in the propensity 
score matched population in Table  3. The results sug-
gest statistically significant dose–response relation-
ships between increasing levels of PM2.5 combined with 
increased amount of individual contributor for positive 
associations of COPD (all p < 0.01). Among the four 
aforementioned contributors, high PM2.5 levels com-
bined with high road area or with high area of indus-
trial land significantly interact on increased prevalence 
ratios of COPD (both p < 0.01) after adjusting for smok-
ing and betel consumption. Furthermore, we calculated 
the nearest distance from residential address to the 
surrounding bus station and analyzed the associations 
between the levels of PM2.5 and distance to bus sta-
tion through generalized linear regression model. For 
residents that lived within 1 km of the bus station, the 
results suggested residents who live farther away from 
the bus station have a low PM2.5 concentration after 
adjustment for townships and smoking habit (p = 0.004, 
data not shown).

For the role of area of traffic road on PM2.5 increment, 
we further analyzed the associations between the daily 
traffic load of different types of vehicles and annual PM2.5 
at traffic flow monitoring stations in Chiayi County dur-
ing 2009–2014 using repeated measurements analysis. 
The results showed an unstructured correlation struc-
ture had the lowest QIC score. It indicated a statistically 
significant positive association between traffic load and 
increased levels of PM2.5, especially for passenger cars, 
buses, and trucks (p < 0.01, p < 0.01, and p < 0.01, respec-
tively) (Table 4). It demonstrated that the PM2.5 concen-
trations in Chiayi County were significantly related to 
emissions from sedans, buses, and trucks.

Discussion
This present study adopted the hybrid kriging/LUR 
model included the kriging-based concentration estima-
tions as a predictor variable to improve the prediction 
performance of LUR and provided the individual level of 
exposure to ambient air pollutants. The results indicated 
a positive correlation between exposure to PM2.5 and 

Table 3  Interactions of air pollutants, and LUR-related variables on the PRs of COPD in propensity-scoring matched population

SD, standard deviation; NDVI, Normalized Difference Vegetation Index. aMultiple logistic regressions included confounding factors of cigarette smoking and betel 
consumption
* p < 0.05, **p < 0.01

LUR-related variables PM2.5 (μg/m3) OR (95% CI)a p Interaction

NDVI 0.28

  < 0.45  < 35 Reference

   ≥ 0.45  < 35 0.99 (0.75–1.30)

  < 0.45  ≥ 35 1.32 (0.81–2.15)

  ≥ 0.45  ≥ 35 1.79 (1.39–2.29) **

p Trend < 0.0001

Area of industrial land (m2/ grid)  < 0.01

  < 18.2  < 35 Reference

  ≥ 18.2  < 35 0.90 (0.69–1.18)

  < 18.2  ≥ 35 1.18 (0.85–1.63)

  ≥ 18.2  ≥ 35 2.18 (1.61–2.94) **

p Trend < 0.0002

Road area (m2)  < 0.01

  < 20.5  < 35 Reference

  ≥ 20.5  < 35 0.78 (0.60–1.02)

  < 20.5  ≥ 35 1.09 (0.79–1.50)

  ≥ 20.5  ≥ 35 2.05 (1.53–2.76) **

p Trend < 0.0001

Number of temples (*106 per m2) 0.34

  < 0  < 35 Reference

  ≥ 1  < 35 0.92 (0.67–1.27)

  < 0  ≥ 35 1.96 (1.48–2.60) **

  ≥ 1  ≥ 35 1.44 (1.08–1.93) *

p Trend = 0.0001
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PRs of COPD in a community-based population even 
excluding all smokers from the original cohort. Besides, 
traffic-related variables including road area, traffic load of 
sedans, buses, and trucks, as well as living near a bus sta-
tion were relative to PM2.5 increment.

Several epidemiological studies have shown that 
exposure to PM2.5 is related to COPD. It is estimated 
that long-term exposure to ambient PM2.5 contributes 
between 10.7% and 15.3% to COPD in Iran [21]. A meta-
analysis study demonstrated that exposure to PM2.5 is 
significantly associated with prevalence of COPD (OR: 
2.32, 95% CI 1.91–2.82) [22]. A Korean study showed that 
concentration of PM2.5 was associated with increased 
COPD-related hospital visits in Chuncheon [23]. The 
results of this investigation are consistent with those of 
the above studies. In addition, we used the DLNM model 
to analyze the dose–response relationship between 
exposure to PM2.5 and prevalence of COPD. Our results 
demonstrated that there was a non-linear relationship 
between PM2.5 and prevalence of COPD. As the concen-
tration of PM2.5 rose above 35  μg/m3, the prevalence of 
COPD increased significantly. This finding is very simi-
lar to another Taiwanese population-based study, which 
found that exposure to PM2.5 at concentrations greater 
than 38.98  μg/m3 increased susceptibility to COPD 
among nonsmokers [24].

The present study applied the hybrid kriging/LUR 
model to predict the exposure concentration of air pol-
lutants at residential addresses. This model has been 
used extensively to assess the effects of exposure to PM2.5 
on human health [25–27]. In the model, we consider 
the NDVI, the areas of the industrial land, the areas of 
the traffic road, and the number of temples, etc. to pre-
dict the exposure concentration of PM2.5 and ozone. We 
found that increased levels of PM2.5 were significantly 
associated with NDVI, areas of industrial land, traffic 

roads, and number of temples. Among them, the areas 
of industrial parks and traffic roads near the subject’s 
residency and the exposure concentration of PM2.5 have 
a multiplicative effect on the PRs of COPD. The results 
demonstrated that compared with the low traffic road 
area and low PM2.5 concentration, the population with 
high traffic road area and a high PM2.5 concentration 
near their homes had a 1.66 times greater risk (95% CI 
1.21–2.28) of developing COPD. In addition, we verified 
this association by calculating the nearest distance from 
the residential address of subjects to surrounding bus 
stations. A statistically significant negative association 
between the distance and levels of PM2.5 was observed 
(data not shown). The number of vehicles in Chiayi 
County increasing yearly is considered to be correlated 
to gradually increasing the risk of respiratory diseases in 
Chiayi County; this is even higher than the situation in 
Taiwan (Taiwan Ministry of Health and Welfare, 2020). 
Our data show that traffic is one of the main factors con-
tributing to the increasing development of COPD in Chi-
ayi County.

We used the data from the traffic flow monitoring sta-
tions (N = 74) in Chiayi County to analyze the relation-
ship between the daily traffic flow of various vehicles and 
the concentration of PM2.5 to explore the impact of dif-
ferent types of vehicles on the concentrations of PM2.5. 
Our results show that buses had the greatest impact on 
the variability of PM2.5 concentration, followed by sedans, 
and then trucks. The relationship between the traffic load 
of these three types of vehicles and PM2.5 showed a sta-
tistically significant correlation. Studies have suggested 
that diesel-fueled vehicles have a higher PM2.5 emission 
factor than that of gasoline-fueled vehicles. For example, 
a study in Taiwan showed that a sedan’s emission factor 
is 1.25  mg/km, while those of diesel engine trucks are 
as high as 185 mg/km [28]. Another Chinese study also 

Table 4  Association between PM2.5 levels and daily traffic load of different type of vehicles at traffic station in Chiayi County through 
the generalized estimating equation approach

Car type Mean (SD) Min–Max

Motorcycle (10,000/day) 0.25 (0.32) 0–1.53

Sedan (10,000/day) 0.92 (0.71) 0.05–2.84

Bus (1000/day) 0.16 (0.13) 0–0.7

Truck (1000/day) 0.54 (0.52) 0.01–1.93

Unstructured structure Exchangeable structure Autoregressive structure

Car type β SE p-value QIC β SE p-value QIC β SE p-value QIC

Motorcycle − 0.66 0.55 0.23 1880.28 0.65 0.61 0.29 1930.55 1.40 0.58 0.02 1920.68

Sedan 1.00 0.19  < 0.01 190.85 − 0.10 0.33 0.76 194.36 0.26 0.34 0.44 194.13

Bus 5.48 1.75  < 0.01 190.92 − 0.64 1.44 0.66 193.61 1.97 1.25 0.16 192.38

Truck 0.98 0.18  < 0.01 190.50 − 0.46 0.54 0.39 195.78 − 0.57 0.43 0.18 193.60
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showed that the emission factor for diesel-fueled vehicles 
is about 257  mg/km and for non-diesel-fueled vehicles 
is about 17 mg/km [29]. Both buses and trucks are die-
sel-fueled vehicles. Therefore, the findings of our study 
showed that the traffic flow of the buses and trucks had 
a positive correlation with the concentration of PM2.5. 
Since buses need to allow passengers to get on and off 
within a certain distance, the operations of their engines 
vary greatly in such conditions, which may be attributed 
to buses having the greatest impact on PM2.5 emissions.

Previous large-scale community-based studies suggest 
there are high frequencies of additional comorbidities 
among elderly people with COPD [30, 31], which is con-
sistent with our findings. A survey from the US Center 
for Disease Control and Prevention assistance found that 
the most common co-morbid chronic conditions among 
people with COPD included arthritis, asthma, cancer, 
and coronary artery disease [32]. Oxidative stress and 
systemic inflammation were the common mechanisms 
in the development and progression of COPD as well as 
other comorbidities [33, 34]. COPD is a state of systemic 
inflammation [35] and high levels of inflammatory mark-
ers are associated with the severity of airflow obstruction 
and cardiac injury [36]. Hypoxia induced expression of 
proinflammatory transcription factors lead to endothe-
lial dysfunction and then to atherosclerosis [37]. Lung 
infections were very important precipitating factors for 
acute exacerbation of COPD, and some of them acceler-
ated atherosclerosis and precipitated acute coronary syn-
drome by causing plaque instability [38]. COPD also had 
a detrimental effect on CAD through hypoxia, decreased 
respiratory muscle strength, and use of bronchodilators 
[39]. Inflammatory mediators, such as IL-17 and anti–
citrullinated protein antibodies, which play a role in 
arthritis, are also involved in the pathogenesis of COPD 
[40]. COPD, arthritis, and coronary artery disease share 
many of the same risk factors, such as sex, age, tobacco 
use, obesity, and sedentary lifestyle [41]. The abovemen-
tioned mechanisms must be considered to explain the 
association between COPD, CAD, and arthritis.

Our study has several limitations. We could not 
exclude the temporality of the association between air 
pollution and COPD. This may overlook pre-existing 
lung injury attributed to occupational exposure or life-
style factors such as smoking and increased sensitiv-
ity to exposure to air pollution. In addition, empirical 
duration in outdoor or indoor was not acquired in the 
analysis. However, smoking is an important source of 
indoor exposure to air pollution. Therefore, we con-
structed a sensitivity analysis to excluded the possible 
effect of smoking and still found a positive association 
between levels of PM2.5 and prevalence ratios of COPD. 
Another limitation is that the study population was 

volunteers participating in a community-based health 
screening; therefore, most participants tended to be 
healthy and this could underestimate the prevalence 
ratios of COPD. In addition, study participants with-
out sever COPD did not seek medical help and could 
not be acquired in our study, which may bias the pre-
sent results. Moreover, about 70% of study population 
was elder with average aged 65  years old (in Table  1) 
and they had no work. The data of outdoor activities 
duration were not well evaluated for elder population. 
Therefore, these variables were not further considered 
in our study. We did not collect chemical composition 
data of PM2.5 such as polycyclic aromatic hydrocarbons 
or heavy metals in this study. However, it is suggested 
that PAHs or heavy metals in PM2.5 may have a posi-
tive association with development of COPD [42, 43]. 
We recommended that follow-up studies could further 
analyze the impact of PM2.5 components on COPD to 
understand the mechanisms of PM2.5 on COPD.

Conclusion
The positive association between levels of PM2.5 and 
PRs of COPD was observed in a community-based 
population even excluding all smokers from the origi-
nal cohort. The results showed a non-linear relation-
ship of PM2.5 above 35 μg/m3 and prevalence of COPD 
in the DLNM analysis. Areas of industrial land as well 
as roads individually interacted with levels of PM2.5 on 
increased prevalence ratios of COPD. In the analysis of 
traffic flow, we found that sedans, buses, and trucks all 
had a significant positive association with the variations 
in PM2.5 concentration. It is suggested that traffic emit-
ted PM2.5 is an important factor in the development of 
COPD in Chiayi County. In the future, empirical meas-
urements of indoor and outdoor air pollution should be 
further expanded and explored with regard to the role 
of air pollution on COPD incidence.
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