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Abstract 

Background:  In this study, we tested whether a combination of radiomic features extracted from baseline pre-
immunotherapy computed tomography (CT) images and clinicopathological characteristics could be used as novel 
noninvasive biomarkers for predicting the clinical benefits of non-small cell lung cancer (NSCLC) patients treated with 
immune checkpoint inhibitors (ICIs).

Methods:  The data from 92 consecutive patients with lung cancer who had been treated with ICIs were retrospec-
tively analyzed. In total, 88 radiomic features were selected from the pretreatment CT images for the construction 
of a random forest model. Radiomics model 1 was constructed based on the Rad-score. Using multivariate logistic 
regression analysis, the Rad-score and significant predictors were integrated into a single predictive model (radiomics 
nomogram model 1) to predict the durable clinical benefit (DCB) of ICIs. Radiomics model 2 was developed based on 
the same Rad-score as radiomics model 1.Using multivariate Cox proportional hazards regression analysis, the Rad-
score, and independent risk factors, radiomics nomogram model 2 was constructed to predict the progression-free 
survival (PFS).

Results:  The models successfully predicted the patients who would benefit from ICIs. For radiomics model 1, the area 
under the receiver operating characteristic curve values for the training and validation cohorts were 0.848 and 0.795, 
respectively, whereas for radiomics nomogram model 1, the values were 0.902 and 0.877, respectively. For the PFS 
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Background
According to the latest epidemiological data, lung cancer 
is the most common malignant cancer and has the high-
est morbidity and mortality rates worldwide [1]. Non-
small cell lung cancer (NSCLC) accounts for more than 
85% of the cases of lung cancer [2]. Despite significant 
advances in cancer diagnosis and treatment techniques, 
the long-term survival rate of patients with lung tumor 
is only 10–15%, and once metastasis occurs, the 5-year 
survival rate is lower than 5% [3]. Therefore, enhancing 
the efficacy of treatments is essential for improving the 
overall prognosis of patients with advanced NSCLC.

Although cytotoxic therapy remains an important 
player in systemic treatment, many chemotherapy regi-
mens are associated with significant toxic effects [4].
Compared with traditional cytotoxic agents, tyrosine 
kinase inhibitors (TKIs) have led to more favorable out-
comes and have, thus, become the first-line treatment for 
patients with actionable driver mutations [5]. However, 
there are still many patients who do not have genetic 
mutations [6], who might benefit from immune check-
point inhibitors (ICIs), particularly antibodies targeting 
the programmed cell death-1 (PD1)–programmed cell 
death ligand-1 (PD-L1) axis, which can restore the anti-
tumor immune response of the body by blocking the 
immune suppression signals between the tumor and T 
cells [7]. A total of four ICIs have been approved by the 
Food and Drug Administration (FDA) for the treatment 
of lung cancer, including anti-PD1 antibodies (nivolumab 
and pembrolizumab) and anti-PD-L1 antibodies (atezoli-
zumab and durvalumab) [8]. Intriguingly, the use of ICIs 
has shifted from the advanced stage to earlier stages of 
lung cancer in an attempt to reach the ultimate goal of 
curing the disease completely [9]. Despite the substantial 
progress made in immunotherapy research and devel-
opment, only 20% of patients could derive benefits from 
ICIs [10]. Currently, PD-L1 expression and microsatel-
lite instability/mismatch repair deficiency are approved 
for clinical use as predictive biomarkers of the response 
of tumors to ICIs [11]. However, multicohort studies, 
such as CheckMate 026, have shown that although a 
high tumor mutation burden is positively correlated with 
the efficacy of ICIs [12], this parameter is not a perfect 

biomarker for the selection of patients for ICI therapy 
[13]. Hence, there is an important and urgent need to 
identify and develop predictive biomarkers for immu-
notherapy. Moreover, an increasing number of studies 
have pointed out that combining different biomarkers to 
reduce the assumptive risk associated with each one can 
improve the performance of the prediction [14].

Radiomics is a noninvasive method with diagnostic, 
prognostic, and predictive value, which involves the con-
version of image data into high-throughput image feature 
data, that can then be mined and used to describe the 
intensity, shape, and texture of tumors, and to quantify 
the heterogeneity of time and space of the tumor tissue 
[15–17]. The technique effectively transforms images into 
a high-dimensional recognizable feature space and uses 
statistical and/or machine learning methods to select 
the most valuable radiomic features for analyzing clini-
cal information. The ultimate goal is to construct a model 
with diagnostic, prognostic, or predictive value that will 
provide valuable information for the establishment of an 
accurate individualized diagnosis and treatment strategy 
[18–20]. The nomogram is a graphical diagram that is 
easy to interpret and contains different kinds of predic-
tors. In recent years, it has become an important tool 
for cancer research experts [21, 22]. In several studies, 
radiomics-based models may have a predictive and prog-
nostic value in different kinds of cancers. When radiomic 
features are combined with clinicopathological factors, 
the model accuracy may further increase [23–25]. How-
ever, the predictive performance of the current prog-
nostic prediction models are generally not very good 
[26–28].

Therefore, this study aims to construct radiom-
ics nomogram models based on CT radiomic features 
and clinicopathological characteristics to predict the 
tumor response after ICIs and prognosis of patients with 
NSCLC.

Methods
Patients
We collected data from 149 patients with lung cancer at 
the Affiliated Jinling Hospital, Medical School of Nanjing 
University, between June 2015 and December 2019. The 

prediction, the Harrell’s concordance indexes for the training and validation cohorts were 0.717 and 0.760, respec-
tively, using radiomics model 2, whereas they were 0.749 and 0.791, respectively, using radiomics nomogram model 2.

Conclusions:  CT-based radiomic features and clinicopathological factors can be used prior to the initiation of immu-
notherapy for identifying NSCLC patients who are the most likely to benefit from the therapy. This could guide the 
individualized treatment strategy for advanced NSCLC.

Keywords:  Non-small cell lung cancer, Radiomics, Machine learning, Immune checkpoint inhibitors, Survival 
outcome
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institutional review board of the Affiliated Jinling Hospi-
tal, Medical School of Nanjing University, approved this 
retrospective study and waived the informed consent 
requirements from the patients. However, consent was 
obtained from the patients upon publishing their images 
and clinical information. The inclusion criteria were the 
following: patients of 18 years of age or older; a diagno-
sis of lung cancer, as confirmed using histopathology, 
according to the eighth edition of the American Joint 
Commission on Cancer TNM classification and stag-
ing system; and patients receiving immunotherapy. The 
exclusion criteria were as follows: patients who missed 
the follow-up (n = 20); patients with a treatment duration 
of less than 6  months before progressive disease (PD) 
(n = 25); and patients with partial loss of images (n = 12). 
In total, 92 patients met the inclusion criteria and were 
randomly divided at a 7:3 ratio into the training cohort 
(n = 64) and the validation cohort (n = 28) (Fig.  1). For 
each patient, the baseline clinicopathological characteris-
tics were obtained from their medical records, including 
the age, sex, smoking status, cancer family history, his-
tological subtype, TNM classification and staging, blood 
cell counts (platelets, white blood cells, neutrophils, 

lymphocytes, and monocytes), levels of thyroid tran-
scription factor 1 (TTF-1), Ki-67, C-reactive protein 
(CRP), carcinoembryonic antigen, and neuron-specific 
enolase, PD-L1 expression, line of therapy, and immuno-
therapy regimen. The time from the beginning of immu-
notherapy to the date of disease progression was defined 
as progression-free survival (PFS). The endpoint of this 
study was the clinical benefit of immunotherapy, which 
was defined as either a durable clinical benefit (DCB: 
complete response, partial response (PR), or stable dis-
ease (SD) lasting > 6 months) or no durable clinical ben-
efit (NDB: PD or SD that lasted ≤ 6 months).

Image acquisition
All patients underwent non-enhanced CT imaging of the 
lungs using one of three multidetector row CT systems 
(SOMATOM Definition Flash, SOMATOM Emotion, or 
SOMATOM Perspective, all from Siemens Healthineers 
AG, Erlangen, Germany). After removing any metal-
lic foreign bodies from the chest area, the patient was 
placed in the supine position with both hands raised. The 
CT scan was conducted using the spiral scanning mode 
and ranged from the thoracic entrance to the underlying 

Fig. 1  Flow diagram of the enrollment of patients with non-small cell lung cancer
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layer of the lung, with a single breath-hold scan at the 
end of inspiration. The following CT acquisition param-
eters were used: 120 or 130 kVp; 160 mAs; detector col-
limation: 6 × 1.25  mm, 64 × 0.625  mm, or 64 × 0.6  mm; 
rotation time: 0.5 or 0.8  s; matrix size: 512 × 512; field 
of view: 350 × 350  mm). Each patient was subjected to 
a whole-lung scan, and the CT image retrieved from the 
picture archiving and communication system was recon-
structed using a standard kernel. The slice thickness of 
the CT images ranged from 1 to 1.25 mm.

Image segmentation and radiomic feature extraction
This study followed and adhered to the Image Biomarker 
Standardization Initiative (IBSI) guidelines [29] and the 
radiomics prototype software program used (Radiom-
ics, Frontier, Siemens) was IBSI-compliant. A volume of 
interest was drawn semiautomatically around the tumor 
by a chest radiologist (Y.B., 9  years of experience) and 
was confirmed by another chest radiologist (Z.J., 15 years 
of experience). Both radiologists were blinded to the 
clinical information of the patients. First, we imported 
the CT images into Radiomics prototype software. In the 
segmentation module of Radiomics, a few segmentation 

tools are available for the semiautomatic delineation 
of the tumor in three dimensions. The segmentation is 
semiautomatically produced by drawing a line across the 
boundary of the tumor. Then, using an automatic algo-
rithm, the tool finds neighboring voxels with the same 
gray level in the three-dimensional (3D) space, generat-
ing random walker-based lesion segmentation for solid 
and subsolid lung lesions [30]. If the segmentation was 
incorrect, the operators could correct it manually in the 
3D domain using the Radiomics prototype. As a result, 
a total of 110 features (viz., 18 first-order, 75 texture, and 
17 size and shape features) were extracted from the CT 
images using Radiomics. To test the intraclass repro-
ducibility, the data from 25 randomly selected patients 
were segmented twice by one radiologist (Y.B.) within 
a 1-month period. To test the interclass reproducibility, 
the same 25 sets of data were segmented by two radiolo-
gists (Y.B. and Z.J.). Spearman correlation analysis was 
used to assess the differences between the features gen-
erated at different times and by different radiologists, 
as well as between the twice-generated features by the 
same radiologist. Interclass and intraclass correlation 
coefficients (ICCs) were used to evaluate the intra- and 

Fig. 2  Workflow for developing the radiomics nomogram models. CT image segmentation was performed using manual semiautomatic 
segmentation using radiomics prototype software (Radiomics, Frontier, Siemens). The radiomic features from the volumes of interest were 
then computed using the CT images on the prototype. A predictive model was constructed on the basis of the CT-derived radiomic features 
using the random forest (RF) method to output a radiomics score (Rad-score) for each patient. The Rad-score was combined with significant 
clinicopathological factors for multivariate logistic regression analysis to develop radiomics nomogram model 1 to predict the durable clinical 
benefit (DCB). Radiomics nomogram model 2 was established to predict the progression-free survival (PFS) and was developed via multivariate 
logistic regression analysis of the Rad-score and significant risk factors combined
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inter-observer agreement of the feature extraction, in 
which an ICC value greater than 0.80 indicated a good 
agreement. As a result, 88 features were retained for fur-
ther analysis (Fig. 2).

Predictive model construction and model testing
A model for predicting the clinical benefits of immuno-
therapy was constructed on the basis of the CT-derived 
radiomic features, using the random forest (RF) method. 
Patients with DCB were labeled as positive, and those 
with NDB, as negative. The RF algorithm has a compa-
rably low tendency to overfit and is well suited for data-
sets with a large number of heterogeneous predictors 
and cluster-correlated observations; thus, it was adopted 
for the machine learning-based prediction model. The 
RF method was used to construct the prediction model 
because of its high variance bias trade-off capability. It 
is a classification algorithm consisting of many decision 
trees, in which each tree represents a weak classifier. A 
combination of trees can achieve an improved model 
performance. The split quality was measured according 
to the Gini impurity. Hyperparameter optimization was 
performed. The RF model was evaluated in an additional 
independent cohort study, for which potentially unseen 
test patients were randomly selected. The performance 
of the model was assessed based on its receiver operat-
ing characteristic (ROC) curve, area under the ROC 
curve (AUC), accuracy, sensitivity, and specificity. Finally, 
radiomics model 1 was established based on 15 impor-
tant radiomic features (Fig.  3a). The forest consisted of 
five trees, and the maximum depth of the tree was set as 
2. Three features were considered when looking for the 
best split. Ultimately, a radiomics score (Rad-score) was 
assigned to each patient.

Clinicopathological factors plus radiomics model 
development and radiomics nomogram model 
construction
The clinicopathological factors were analyzed using 
univariate logistic regression analysis, in which the pre-
dictors with a p value lower than 0.10 were included to 
find those of significance. Through multivariate logistic 

Fig. 3  Receiver operating characteristic curves for the different 
models. a 15 important radiomic features were used to build the 
predictive models. b Receiver operating characteristic curves 
showing the differences between the training cohort and the 
validation cohort in radiomics model 1. c Receiver operating 
characteristic curves showing the differences between the training 
cohort and the validation cohort in radiomics nomogram model 1

▸



Page 6 of 15Yang et al. Respir Res          (2021) 22:189 

Table 1  Demographic and clinical characteristics of the patients

Characteristic Training cohort Validation cohort p-value
(n = 64) (n = 28)

Sex, n. (%) 0.086

 Female 14 (21.88) 11 (39.29)

 Male 50 (78.12) 17(60.71)

Age(years), mean (SD) 20.44 (8.98) 20.04 (8.99) 0.844

Smoking status, n. (%) 0.656

 No 34 (53.10) 17 (60.7)

 Yes 30 (46.90) 11 (39.3)

Family history, n. (%) 0.754

 No 62 (96.90) 26 (92.9)

 Yes 2 (3.10) 2 (7.1)

TTF-1, n. (%) 0.070

 Negative 42 (65.60) 12 (42.9)

 Positive 22 (34.40) 16 (57.1)

Ki-67, n. (%) 0.560

 Low expression 33 (51.60) 17 (60.7)

 High expression 31 (48.40) 11 (39.3)

Histologic type, n. (%) 0.120

 Adenocarcinoma 32 (50.00) 20 (71.43)

 Squamous cell carcinoma 28 (43.80) 6 (21.43)

 NOS 4 (6.20) 2 (7.14)

Stage, n. (%) 0.257

 Ш 23 (35.90) 6 (21.40)

 IV 41 (64.10) 22 (78.60)

T stage, n. (%) 0.842

 0 1 ( 1.60) 0 ( 0.00)

 1 8 (12.50) 3 (10.70)

 2 20 (31.20) 11 (39.30)

 3 9 (14.10) 5 (17.90)

 4 26 (40.60) 9 (32.10)

N stage, n. (%) 0.821

 0 6 (9.38) 3 (10.70)

 1 5 (7.81) 1 (3.60)

 2 25 (39.06) 13 (46.40)

 3 28 (43.75) 11 (39.30)

M stage, n. (%) 0.176

 0 22 (34.40) 5 (17.90)

 1 42 (65.60) 23 (82.10)

Lymph node metastasis, n. (%) 0.880

 No 9 (14.10) 5 (17.90)

 Yes 55 (85.90) 23 (82.10)

Intrapulmonary metastasis, n. (%) 0.466

 No 39 (60.90) 20 (71.40)

 Yes 25 (39.10) 8 (28.60)

Brain metastasis, n. (%) 0.330

 No 55 (85.90) 21 (75.00)

 Yes 9 (14.10) 7 (25.00)

Liver metastasis, n. (%) 1.000

 No 59 (92.20) 026 (92.90)
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regression analysis, the multimodal features, Rad-score, 
and significant predictors were then integrated into a 
single predictive model, whereupon radiomics nomo-
gram model 1 was constructed for the training cohort. 
Calibration curves were plotted to assess the calibration 
of radiomics nomogram model 1. Decision curve analy-
sis was conducted to determine the clinical usefulness of 
the radiomics model and radiomics nomogram model by 

quantifying the net benefits at different threshold prob-
abilities for the training and validation cohorts.

Clinicopathological factor analysis
The clinicopathological factors were analyzed using 
univariate Cox proportional hazards (CPH) regression 
analysis. Those factors with a p value lower than 0.10 
and the Rad-score were then combined for multivari-
ate CPH regression analysis to identify the independent 
risk factors, which were subsequently analyzed using the 
Kaplan–Meier curve and log-rank test. The final model 
was selected via backward stepwise elimination, with the 
Akaike information criterion as the stopping rule [31].

Construction of the radiomics nomogram model 2
The same Rad-score was used to construct radiom-
ics model 2. The multimodal features and parameters, 
including the Rad-score and independent risk factors, 
were integrated into a single predictive model using mul-
tivariate CPH regression analysis, upon which radiom-
ics nomogram model 2 was developed for the training 
cohort. The prognostic abilities of the generated models 

Table 1  (continued)

Characteristic Training cohort Validation cohort p-value
(n = 64) (n = 28)

 Yes 5 ( 7.80) 2 (7.10)

Bone metastasis n. (%) 1.000

 No 44 (68.80) 019 (67.90)

 Yes 20 (31.20) 9 (32.10)

Pleural metastasis n. (%) 0.073

 No 54 (84.38) 19 (67.86)

 Yes 10 (15.62) 9 (32.14)

White blood cell, (median [IQR]) 6.40 [4.47, 7.78] 6.15 [5.00, 8.33] 0.333

Neutrophil, (median [IQR]) 69.05 [62.65,73.78] 65.20 [58.50, 71.08] 0.203

Monocyte, (median [IQR]) 8.65 [6.83, 11.03] 6.70 [5.27, 9.45] 0.952

CRP, (median [IQR]) 18.10 [5.05, 19.85] 12.00 [1.17, 18.83] 0.330

CEA, (median [IQR]) 13.60 [3.88, 84.30] 11.30 [2.80, 84.30] 0.568

NSE, (median [IQR]) 14.25 [10.35, 19.10] 15.05 [12.00, 19.10] 0.513

PD-L1 expression, n. (%) 0.9276

 < 1% 30 (46.88) 12 (42.86)

 ≥ 1% 12 (18.75) 6 (21.43)

 Unknown 22 (34.37) 10 (35.71)

Therapy line, n. (%) 0.7251

 1st 23 (35.94) 9 (32.14)

 ≥ 2nd 41 (64.06) 19 (67.86)

Immunotherapy regimen, n. (%) 0.9366

 PD-1 inhibitors 36 (56.25) 16 (57.14)

 PD-1 inhibitors + chemotherapy 28 (43.75) 12 (42.86)

CRP C-reactive protein, CEA carcinoembryonic antigen, NSE neuron-specific enolase, NOS not otherwise specified, four are adenosquamous carcinoma and two are 
small cell lung cancer

Table 2  Multivariable logistic regression analysis for nomogram 
model construction

OR odds ratio

Odds ratio 95%CI P

Lower Upper

Rad score 1.270105 3.832 3.418108  < 0.001

Age 0.910 0.184 0.989 0.045

Stage n1 0.075 5.88010–5 4.0456 0.260

Stage n2 6.030 0.421 86.171 0.171

Stage n3 1.990 0.139 23.380 0.584

Stage M 0.153 0.022 0.777 0.035
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were evaluated using the training cohort and validated 
using the validation cohort. The discrimination perfor-
mance of the prognostic models was assessed using Har-
rell’s concordance index (C-index), which ranges from 
0.5 (indicating a random distribution of the data) to 1.0 
(indicating a perfect prediction of the observed survival 
information by the model). Calibration curves of the 
nomogram were subsequently drawn for the 2-year PFS 
of the patients. The calibration curves were used to deter-
mine the independent risk factors, as well as to indicate 
both the PFS probabilities predicted by the prognostic 
models and the observed probabilities.

Statistical analysis
The differences in the clinicopathological factors between 
the training and validation datasets were assessed using 
the Mann–Whitney U test, for continuous variables, and 
the χ2 test, for categorized variables. The discrimination 
power of the models was measured based on the AUC 
and the C-index. Delong test was used to compare two 
AUCs, and the log-likelihood ratio was used to assess 
the increase in the predictive power of the C-index. The 
radiomics nomogram model 2 score was calculated and 
used to assess risk stratification. Survival curves were 
generated using the Kaplan–Meier method and com-
pared using the two-sided log-rank test. The optimal 
cutoff point for continuous prognostic markers in the 
survival analysis was determined using X-tile software 
(version 3.6.1; Yale University School of Medicine, New 
Haven, CT, USA). A calibration curve was generated to 
demonstrate the goodness of the fit, which is a graphical 

representation of the relationship between the observed 
and the predicted survival. The Greenwood-Nam-
D’Agostino (GND) method was applied to measure the 
statistical significance of the goodness-of-fit test results. 
The prediction error of the models, which was assessed 
using the “Boot632plus” split method by performing 100 
iterations to calculate the estimates of the prediction 
error curves, was summarized as the integrated Brier 
score, which represents a valid measure of the overall 
model performance and can range from 0 (for a perfect 
model) to 0.25 (for a noninformative model with a 50% 
incidence on the outcome). The RF model was established 
using Python software (Python Scikit-learn package com-
prising Python version 3.7 and Scikit-learn version 0.21; 
http://​scikit-​learn.​org/). The construction of radiomics 
nomogram model 2, the assessment of the model, and 
decision curve analysis (DCA) were performed using R 
software (version 3.4.4; http://​www.r-​proje​ct.​org). All the 
codes are available at https://​github.​com/​tomat​o0821 7/
immune. All statistical tests were two-sided, with a sig-
nificance level of 0.05.

Results
Clinicopathological characteristics of the patients
The baseline clinical characteristics of the patients in 
the training and validation cohorts are listed in Table 1. 
There were no significant differences in sex, age, smoking 
status, family history, histology type, cancer stage, TTF-
1, and Ki-67 (p = 0.070–1.000) between the two cohorts.

Table 3  Predictive performance of the two models in the training and validation cohorts

Radiomics model1 Radiomics nomogram model1

Training cohort Validation cohort Training cohort Validation cohort

AUC (95%CI) 0.848 (0.743–0.952) 0.795 (0.581–1.000) 0.902 (0.811–0.994) 0.877 (0.735–1.000)

Accuracy (%) 0.766 0.714 0.875 0.893

Sensitivity (%) 0.625 1.000 0.857 0.800

Specificity (%) 0.906 0.704 0.884 0.944

Positive predictive value (%) 0.870 0.111 0.783 0.889

Negative predictive value (%) 0.707 1.000 0.927 0.895

Fig. 4  Development of radiomics nomogram model 1. a Nomogram based on independent predictors (Rad-score, Age, N stage and M stage). 
b Calibration curves of the nomogram in the training cohort. The horizontal axis is the predicted incidence of the durable clinical benefit (DCB), 
whereas the vertical axis is the observed incidence of the DCB. The dotted line on the diagonal is the reference line at which the predicted value 
is equal to the actual value. The orange line is the calibration curve. c Decision curve analysis for each model. The y-axis measures the net benefit, 
which was calculated using true-positive and false-positive results. Radiomics nomogram model 1 had the highest net benefit among all positive 
predictions (line labeled “All”), all negative predictions (line labeled “None”), and models (line labeled “radiomics model 1”) at the threshold from 0.1 
to 0.9

(See figure on next page.)

http://scikit-learn.org/
http://www.r-project.org
https://github.com/tomato0821
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Fig. 4  (See legend on previous page.)
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Prognostic model performance and development 
of the radiomics nomogram model 1
In total, 15 CT-derived radiomic features were used 
to build radiomics model 1. Logistic regression analy-
sis had identified the Rad-score (OR, 1.270 × 105), age 
(OR, 0.910), and stage M (OR, 0.153) as being inde-
pendent predictors (Table  2). Multivariate logistic 
regression analysis of the Rad-score combined with 
the clinicopathological factors, was used to build the 
model, which was designated as radiomics nomogram 
model 1. After tenfold cross-validation, radiomics 
model 1 was found to have an AUC value of 0.848, a 
sensitivity value of 0.625, a specificity value of 0.906, an 
accuracy value of 0.766, a positive predictive value of 
0.870, and a negative predictive value of 0.707 for the 
training cohort, whereas it had an AUC value of 0.795, 
a sensitivity value of 1.000, a specificity value of 0.704, 
an accuracy value of 0.714, a positive predictive value 
of 0.111, and a negative predictive value of 1.000 for the 
validation cohort (Fig.  3b). For radiomics nomogram 
model 1, the AUC value was 0.902, the sensitivity value 
was 0.857, the specificity value was 0.884, the accu-
racy value was 0.875, the positive predictive value was 
0.783, and the negative predictive value was 0.927 for 
the training cohort, whereas the AUC value was 0.877, 
the sensitivity value was 0.800, the specificity value 
was 0.944, the accuracy value was 0.893, the positive 
predictive value was 0.889, and the negative predictive 
value was 0.895 for the validation cohort (Fig.  3c and 
Table 3). The independent predictors were presented as 
radiomics nomogram model 1 (Fig. 4a). The calibration 
curve for the probability of DCB and NDB in the train-
ing and validation cohorts demonstrated a good agree-
ment between the predicted and actual values (Fig. 4b). 

The Brier scores also showed the good performance of 
the model, with values of 0.178 and 0.187 for the train-
ing and the validation cohorts, respectively. Decision 
curve analysis was performed to determine the clinical 
usefulness of radiomics nomogram model 1 by quan-
tifying the net benefits at different threshold prob-
abilities. The results showed that radiomics nomogram 
model 1 had a higher overall net benefit than radiomics 
model 1 across the majority of the range of reasonable 
threshold probabilities (Fig. 4c).

Clinicopathological factor analysis
The clinicopathological factors were analyzed using 
univariate CPH regression analysis to test the hazard 
ratio of each factor and to determine its significance 
in the probability of PFS. The factors with a p value 
lower than 0.10 were then combined for multivariate 
CPH regression analysis to identify the independent 
risk factors, whereupon the Rad-score (HR, 0.005)and 
M stage (HR, 2.449) were found to be the independent 
risk factors of the patients (Table 4). These risk factors 
were then analyzed using the Kaplan–Meier curve and 
log-rank test, with the latter in the cases of significant 
discrimination between the two groups. Figure  5a–c 
shows the PFS probability of the patients in the high-
risk or low-risk cohorts.

Prognostic prediction model performance 
and development of radiomics nomogram model 2
For radiomics model 2, the C-indexes were 0.717 and 
0.760 for the training and validation cohorts, respectively, 
whereas for radiomics nomogram model 2, the values 
were 0.749 and 0.791, respectively (Table  5). The risk 
factors were presented as the nomogram (Fig.  6a). The 
calibration curve showed that the predicted probability 
was significantly close to the actual PFS of patients, with 
a p = 0.21 in the GND goodness-of-fit test (Fig. 6b). The 
Brier scores also showed the good performance of the 
model, with values of 0.187 and 0.209 for the training and 
test datasets, respectively. The decision curve analysis of 
the clinical usefulness of radiomics nomogram model 2 
showed that the model had a higher overall net benefit 
than radiomics model 2 across the majority of the range 
of reasonable threshold probabilities (Fig. 6c).

Table 4  Multivariable Cox proportional hazards regression 
analysis for nomogram model construction

HR hazard ratio, CRP C-reactive protein

HR 95%CI P

Lower Upper

Rad score 0.005 4.572*10–3 0.043  < 0.001

CRP 1.015 0.996 1.035 0.130

M stage 2.449 1.138 5.269 0.020

(See figure on next page.)
Fig. 5  Predictive performances of the Rad-score, C-reactive protein (CRP) level, and M stage (a) Kaplan–Meier analysis of the Rad-score. The patients 
were stratified into high- and low-risk groups based on the Rad-score (A, p < 0.0001, log-rank test). b Kaplan–Meier analysis of the CRP level. The 
patients were stratified into high- and low-risk groups based on the CRP level (B, p < 0.0001, log-rank test). c. Kaplan–Meier analysis of M stage. The 
patients were stratified into high- and low-risk groups on the basis of M stage (C, p = 0.03, log-rank test)
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Fig. 5  (See legend on previous page.)



Page 12 of 15Yang et al. Respir Res          (2021) 22:189 

Discussion
In this study, an RF model based on the radiomic fea-
tures of CT images and a radiomics model 1 based on the 
Rad-score were established, following which multivariate 
logistic regression analysis of the Rad-score, combined 
with the clinicopathological factors, was carried out to 
construct a radiomics nomogram model (radiomics nom-
ogram model 1) for distinguishing patients who received 
DCB from those who received NDB after ICI treatment. 
Then, a second radiomics model (radiomics model 2) 
based on the Rad-score was established, following which 
multivariate CPH regression analysis of the Rad-score, 
combined with independent risk factors, was conducted 
to establish a second radiomics nomogram model (radi-
omics nomogram model 2) for predicting the PFS after 
immunotherapy. The ultimate goal is to use these models 
to identify patients who can benefit from immunother-
apy, to provide guidance for individualized immunother-
apy, and to establish a reference for the advancement of 
precision medicine.

Multivariate logistic regression analysis of the Rad-
score and the significant clinicopathological factors com-
bined showed that the Rad-score, age, and M stage were 
independent predictors, indicating that patients with 
a higher Rad-score, a younger age, and in the M0 stage 
can benefit from immunotherapy. The prediction mod-
els had good prediction performances. Radiomics model 
1 had an AUC value of 0.848 for the training cohort, 
whereas it had an AUC value of 0.795 for the validation 
cohort. The independent predictors (Rad-score, age, N 
stage and M stage) were used to build radiomics nomo-
gram model 1, whose performance was good, with an 
AUC value of 0.902 in the training cohort, and an AUC 
value of 0.877 in the validation cohort. Mu et  al. [32], 
based on the radiomics of pretreatment 18F-FDG PET/
CT images, predicted the clinical benefit of checkpoint 

blockade immunotherapy for patients with advanced 
NSCLC. Their results showed that the multiparametric 
radiomics signature could predict the DCB for patients, 
with AUC values of 0.86 (95%CI, 0.79–0.94), 0.83 (95%CI, 
0.71–0.94), and 0.81 (95%CI, 0.68–0.92) for the train-
ing, retrospective test, and prospective test cohorts, 
respectively. Trebeschi et al. [33] performed an artificial 
intelligence-based characterization of each lesion on 
the pretreatment contrast-enhanced CT imaging data 
to develop and validate a noninvasive machine learning 
biomarker for distinguishing between anti-PD1 immu-
notherapy responding and non-responding patients with 
advanced melanoma and NSCLC. Their results showed 
that the biomarker achieved a significant performance 
for NSCLC lesions (AUC = 0.83, p < 0.001) and borderline 
significance for melanoma lymph nodes (AUC = 0.64, 
p = 0.05). After combining these lesion-wide predictions 
at the patient level, the immunotherapy response could 
be predicted with an AUC value of up to 0.76 for both 
cancer types (p < 0.001). Thus, the performance of our 
prediction model is more encouraging than that of previ-
ous studies, possibly due to the following reasons. First, it 
may be attributed to our implementation of a cross-vali-
dation approach and use of a performance-driven feature 
selection strategy and the RF algorithm for model train-
ing (which is overfitting-robust) to build a reliable model 
with higher performance. These strategies have been pro-
posed in previous studies to achieve a better model per-
formance [34, 35]. Additionally, independent predictors 
were selected to construct the models, and the combina-
tion of these clinical predictors may have improved the 
model performance.

Moreover, the same Rad-score was used to construct 
radiomics model 2, whose C-indexes were 0.717 and 
0.760 for the training and validation cohorts, respec-
tively. The Rad-score was combined with significant 

Table 5  Harrell’s concordance indexes for the different modalities

C-index, concordance index

Modalities Training cohort (n = 64) Validation cohort (n = 28)

C-index 95%CI Brier score C-index 95%CI Brier score

Radiomics model2 0.717 (0.612, 0.822) 0.178 0.760 (0.574, 0.946) 0.187

Radiomics nomogram mode2 0.749 (0.643, 0.854) 0.187 0.791 (0.605, 0.978) 0.209

Fig. 6  Development of radiomics nomogram model 2. a Nomogram based on independent risk factors (Rad-score, M stage, and C-reactive protein 
(CRP) level). b Calibration curves of the nomogram in the training cohort. The horizontal axis is the predicted incidence of progression-free survival 
(PFS), whereas the vertical axis is the observed incidence of PFS. The gray line on the diagonal is the reference line at which the predicted value 
is equal to the actual value. The red line is the calibration curve. c Decision curve analysis for each model. The y-axis measures the net benefit, 
which was calculated using true-positive and false-positive results. Radiomics nomogram model 2 had the highest net benefit among all positive 
predictions (line labeled “All”), all negative predictions (line labeled “None”), and models (line labeled “radiomics model 2”) at a threshold from 0.1 to 
0.9

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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factors (p < 0.10) for multivariate CPH regression analy-
sis to identify the independent risk factors, whereupon 
the Rad-score and M stage were identified as such for 
patients. It was demonstrated that disease progression 
after the receival of immunotherapy was more common 
in the patients with a lower Rad-score and in the M1 
stage. Radiomics nomogram model 2 was established 
using the same three independent risk factors and the 
C-indexes were 0.749 and 0.791 for the training and vali-
dation cohorts, respectively. Our models had better pre-
dictive performance than that of a previous study [32].
The independent predictors and independent risk factors 
were presented as nomograms, in which the calibration 
curves for the probability of response prediction or sur-
vival analysis demonstrated good agreement between 
the prediction and the observation. Moreover, the deci-
sion curve analysis showed that the radiomics nomogram 
models had a higher overall net benefit than the radiom-
ics models across the majority of the reasonable thresh-
old probabilities. This demonstrates that our models 
had the highest net benefit in guiding clinical decision-
making. To our best knowledge, this is the first study to 
have used a noninvasive radiomics approach based on 
CT images and the clinicopathological characteristics to 
predict the efficacy of ICIs in Chinese patients with lung 
cancer.

Our study has some limitations; namely, the rela-
tively small cohort size due to the relatively late date of 
approval of the ICIs (in 2018) by the China Food and 
Drug Administration; the use of only a single-center 
cohort; the retrospective nature of the data; and the lack 
of external validation, which may have introduced selec-
tion bias. However, we plan to rapidly expand the cohort 
size and to recruit multicenter cohorts to validate the 
models in the near future. Additionally, we did not con-
duct research on the overall survival but will include this 
in future studies.

Conclusions
In conclusion, by combining CT image-based radiom-
ics and clinicopathological factors, radiomics nomogram 
models were constructed for identifying patients with 
NSCLC who would most likely benefit from immuno-
therapy, resulting in a longer PFS. The good performance 
of the models suggests that they could be used to provide 
more precise guidance for the administration of immu-
notherapy to NSCLC patients.
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