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Abstract

Background: Ventilator-associated pneumonia (VAP) is a significant cause of mortality in the intensive care unit. Early
diagnosis of VAP is important to provide appropriate treatment and reduce mortality. Developing a noninvasive and
highly accurate diagnostic method is important. The invention of electronic sensors has been applied to analyze the
volatile organic compounds in breath to detect VAP using a machine learning technique. However, the process of
building an algorithm is usually unclear and prevents physicians from applying the artificial intelligence technique in
clinical practice. Clear processes of model building and assessing accuracy are warranted. The objective of this study
was to develop a breath test for VAP with a standardized protocol for a machine learning technique.

Methods: We conducted a case-control study. This study enrolled subjects in an intensive care unit of a hospital in
southern Taiwan from February 2017 to June 2019. We recruited patients with VAP as the case group and ventilated
patients without pneumonia as the control group. We collected exhaled breath and analyzed the electric resistance
changes of 32 sensor arrays of an electronic nose. We split the data into a set for training algorithms and a set for
testing. We applied eight machine learning algorithms to build prediction models, improving model performance and
providing an estimated diagnostic accuracy.

Results: A total of 33 cases and 26 controls were used in the final analysis. Using eight machine learning algorithms, the mean
accuracy in the testing set was 0.81 ± 0.04, the sensitivity was 0.79 ± 0.08, the specificity was 0.83 ± 0.00, the positive predictive
value was 0.85 ± 0.02, the negative predictive value was 0.77 ± 0.06, and the area under the receiver operator characteristic
curves was 0.85 ± 0.04. The mean kappa value in the testing set was 0.62 ± 0.08, which suggested good agreement.

Conclusions: There was good accuracy in detecting VAP by sensor array and machine learning techniques. Artificial
intelligence has the potential to assist the physician in making a clinical diagnosis. Clear protocols for data processing and the
modeling procedure needed to increase generalizability.
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Background
Ventilator-associated pneumonia (VAP) is a signifi-
cant cause of mortality, and the most common noso-
comial infection in the intensive care unit (ICU) [1].
According to the US National Nosocomial Infection
Surveillance system, one-third of all nosocomial in-
fections in ICUs are pneumonia; of these, 83% are
associated with mechanical ventilation [2]. Common
pathogens of VAP include Pseudomonas aeruginosa,
Staphylococcus aureus, methicillin-resistant Staphylo-
coccus aureus, Klebsiella pneumoniae, and Acineto-
bacter baumannii [3]. Patients who acquire VAP
have poorer outcomes, higher mortality rates, and
longer lengths of hospital stay than uninfected pa-
tients [4]. Delays in the initiation of appropriate
antibiotic treatment for VAP significantly increase
mortality [5]. Patients with suspected VAP should
undergo a serial evaluation that includes chest X-ray,
sputum Gram stain, sputum cultures, and blood cul-
tures. The sputum Gram stain is not reliable for the
early application of antibiotic therapy. Sputum cul-
ture requires a long culture duration, and the results
might not correlate well with the real causative
pathogen [6]. Mechanically ventilated (MV) patients
usually empirically receive broad-spectrum antibiotics
to control a suspected infection at the earliest time,
which may result in the development of resistance
[7]. Early diagnosis for VAP is important to provide appro-
priate treatment and reduce mortality. However, current
culture-based microbiological diagnosis is inadequate for the
timely prescription of targeted antibiotics. The development
of a rapid test to diagnose VAP is therefore important to
solve these problems [8].
Many bacterial species can produce volatile metab-

olites via catabolic pathways, including glycolysis,
proteolysis, and lipolysis [9]. According to gas chro-
matography/mass spectrometry (GC-MS) analysis, as
many as 34 volatile metabolites were released from
Streptococcus pneumoniae and 28 from Haemophilus
influenzae in vitro, comprising alcohols, aldehydes,
esters, hydrocarbons, ketones, and sulfur-containing
compounds [10]. In an animal study, the volatile or-
ganic compounds (VOCs) released from the breath of
mice with lung infections of Pseudomonas aeruginosa
and Staphylococcus aureus were also detectable in
cultures in vitro [11]. These findings were also noted
in some human studies conducted in VAP with
Staphylococcus aureus, Escherichia coli, Candida albi-
cans, and Acinetobacter baumannii infection [12, 13].
The findings suggested that discrimination of the
VOCs derived from pathogens might provide a nonin-
vasive breath test for the diagnosis of VAP.
A novel sensor array technique has been developed to

discriminate the VOCs in breath [14]. The estimated

number of metabolites in humans ranges from a low of
2000–3000 to a high of approximately 20,000 [15]. It is
difficult to qualitatively and quantitatively measure all
the VOCs by GC-MS because most of the compounds
are still unknown. To discriminate the VOCs associated
with diseases, there is increasing interest in using an
electronic nose to address the problem [14]. An elec-
tronic nose uses sensor responses to measure VOCs.
During the measurements, the VOCs attach to the sen-
sor polymer surface to induce swelling of the polymer
film. The swelling increases the electrical resistance of the
composite, which generates an electrical signal. The sensor
array response data are subsequently used as predictors to
create a diagnostic classification algorithm [16]. Artificial
intelligence (AI) has been gradually used in medicine to as-
sist physicians in making clinical diagnoses [17]. Machine
learning technology is commonly used in the analysis of
sensor response data because an electronic nose is a com-
posite of a sensor array and functionally resembles bio-
logical olfactory receptors by pattern recognition. However,
the process of building algorithms is usually a “black box”,
and the results are over optimized in many studies, prevent-
ing physicians from applying them in clinical practice. Clear
processes of model building and assessing accuracy are
therefore warranted. The objective of this study was to use
sensor array signals to diagnose VAP using the machine
learning technique. Using this study as an example, we
demonstrated our procedures to build machine learning al-
gorithms and assess their accuracy for facilitating the appli-
cation of AI in medicine.

Methods
Study subjects
We recruited cases of VAP and ventilated controls
without VAP in the ICU of National Taiwan Univer-
sity Hospital Yunlin Branch. The diagnosis of VAP
was based on three components: clinical signs of in-
fection (fever, increased white blood cell counts, or
purulent tracheobronchial secretions); new or wors-
ening infiltrates on a chest X-ray; and bacteriologic
evidence of pulmonary parenchymal infection [18].

Microbiological report
The microbiological report of VAP was based on the cul-
ture of lower respiratory tract secretions obtained from
the endotracheal aspirate, tracheostomy tube suction, or
bronchoscopy. Lower respiratory tract secretions were ob-
tained before antibiotics were started or changed.

Medical history and examination
Physicians obtained a medical history from the medical
records. All subjects received a chest X-ray, a complete
blood count (CBC), a blood urine nitrogen (BUN), a cre-
atinine, a fasting sugar, an aspartate aminotransferase
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(AST), an alanine aminotransferase (ALT), and a urinary
analysis. We obtained a cigarette smoking history from
the medical records or his/her family.

Diagnosis of VAP
The diagnosis of VAP was ascertained by a pulmo-
nologist and an infectious disease physician using
clinical signs/symptoms, laboratory reports, and
chest X-rays. The pathogens of pneumonia were
confirmed by culture of lower respiratory tract se-
cretions. The study subjects and physicians were
blinded to the results of an electronic nose analysis.

Breath air sampling
VOCs generated by causative pathogens of VAP are
best collected in the lower respiratory tract. We
collected alveolar air from an endotracheal tube to
prevent contamination from environmental air, the
oral cavity, and dead space air and to increase the
concentration of VOCs derived from pathogens
[19]. To prevent contamination from food, the sam-
pling was performed before feeding. We collected a
1-l volume of alveolar air in a Tedlar Bag (SKC,
Inc., USA). A new bag was used to prevent poten-
tial contamination from incomplete cleaning of the
reused bags.

Electronic nose analysis
The electronic nose analysis followed our standard-
ized procedure [20]. In brief, the collected air was
sent back to the laboratory for analysis within 48 h.
The air was analyzed using the Cyranose 320 elec-
tronic nose (Sensigent, CA, USA), which has 32
thin-film nanocomposite sensors. For each of the 32
sensors, ten consecutive measurements from the
same breath were collected to obtain a mean value
for analysis after the deletion of the first measure-
ments according to the manufacturer’s suggestion
[21]. Because the expiratory flow rate would signifi-
cantly affect the measurement [22], a constant flow
rate of 120 cc/min was standardized for all mea-
surements. The Cyranose 320 uses conducting poly-
mer arrays, which might be influenced by the
temperature of the sample gas. Therefore, we main-
tained a constant temperature of 20–22 degrees
Celsius during all analyses. We analyzed all samples
in the same room with a fixed temperature and hu-
midity. The room air pumped into the electronic
nose was analyzed to provide the baseline sensor
response (R0). The raw data were normalized and
autoscaled to eliminate background noise and ex-
clude outliers [22, 23] and then used to derive the
prediction model.

Sensor response :
ΔR
Ro

¼ Rmax � R0ð Þ
R0

: ð1Þ

The raw data were normalized using the equation

XNV

k¼1

x2ik ¼ ci ð2Þ

where k designates the sensor, i designates the gas, and
NV is the total number of sensors. Then, the data were
autoscaled to the unit variance that refers to mean cen-
tering and then divided by the standard deviation:

x
0
ik ¼

xik−xk
sk

ð3Þ

where x
0
ik is the autoscaled response, xik is the relative

sensor response, xk is the mean value of the normalized
response for the specific sensor and sk is the standard
deviation.

sk ¼
�

1
NP−1

XNP

i¼1

ðxik−�xkÞ2
�1=2

ð4Þ

Autoscaling removes any inadvertent weighting that
arises due to arbitrary units. After autoscaling, the value
distribution of each sensor across the entire database
was set to a mean value of zero and unit standard devi-
ation [23].

Statistical analysis
We followed a standardized protocol of establishing ma-
chine learning algorithms with a five-step process,
namely, data collection, data preparation, model build-
ing, model evaluation, and model improvement (Fig. 1).
We planned the analytical protocols before the study
was performed. We randomly split data into a training
set (80%) for model derivation and a testing set (20%)
for validation. The training set was used to generate the
model. We used the modelLookup function of the caret
package for automated parameter tuning to improve
model performance [24]. Then, the optimized models
were further tested in an independent testing set to
evaluate the accuracy. To prevent unequal distribution
in the proportion of cases in each group, we applied the
oversampling method that replicates the observations a
from minority class to balance the data [25]. Using the
confusion matrix, we determined the accuracy, sensitiv-
ity, specificity, positive prediction rate, and negative pre-
diction value [26]. In this study, we used eight machine
learning algorithms to establish the prediction models,
including k-nearest neighbors, Naive Bayes, decision
tree, neural network, support vector machines (SVMs)
(including linear kernel, polynomial kernel, and radial
basis kernel), and random forest.
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K-nearest neighbors
The k-nearest neighbors algorithm uses information
about an example’s k-nearest neighbors to classify
unlabeled examples by calculating the distance be-
tween two points. We used the Euclidean distance
by the following formula:

dist p; qð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1−q1ð Þ2 þ p2−q2ð Þ2 þ :::þ pn−qnð Þ2

q
ð5Þ

where p and q are the examples to be compared, each
having n features. The strength of k-nearest neighbors
is that it makes no assumptions about the underlying
data distribution [27]. We used the R package “class”
to build the k-nearest neighbors model [28].

Naive Bayes
The Naive Bayes algorithm applied the Bayes’ the-
orem to classification, in which we can compute a
posterior probability of an outcome event based on a
prior probability:

P AjBð Þ ¼ P A∩Bð Þ
P Bð Þ ¼ P BjAð ÞP Að Þ

P Bð Þ ð6Þ

The Naive Bayes classification algorithm can be sum-
marized by the following algorithm:

P CLjF1; ::::; Fnð Þ ¼ 1
Z
p CLð Þ

Yn
i¼1

p FijCLð Þ ð7Þ

where the probability of level L for class C, given the evi-
dence provided by features F1 through Fn, is equal to the
product of the probabilities of each piece of evidence
conditioned on the class level, the prior probability of
the class level, and a scaling factor, 1/Z, which converts
the likelihood values into probabilities. The strength of
Naive Bayes is that it requires relatively few examples for
training and does well with noisy data. The weakness is
that it assumes that all of the features in the database
are equally important and independent, but the assump-
tion is rarely true [27]. We used the R package “klaR” to
build the Naive Bayes model [29].

Fig. 1 Flow diagram of this study. The diagram shows our standardized procedures of data collection, data preparation, model building, model
evaluation, and model improvement. When the pathogens are colonized in the lung, they will release volatile organic compounds in the breath.
We collected the breath from the endotracheal tube and then analyzed the sensor arrays of an electronic nose. The electric resistance changes of
sensors were first normalized and autoscaled. Then, we randomly split subjects into a training set and a testing set. We used eight machine
learning algorithms to estimate diagnostic accuracy. The parameters of the algorithms are selected with bootstrapping methods. The optimized
models were then applied to the testing set to assess the accuracy of the breath test
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Decision tree
Decision tree utilizes a tree structure to model the
relationships among the features and the potential
outcomes. It uses entropy to quantify the random-
ness with a set of class values and find splits that re-
duce entropy. Entropy is specified as follows:

Entropy Sð Þ ¼
Xc
i¼1

−pi log2 pið Þ ð8Þ

for a given segment of data (S), term c refers to the
number of class levels, and pi refers to the proportion of
values falling into class level i. Decision tree uses en-
tropy to determine the optimal feature to split upon,
and the algorithm calculates the change in homogen-
eity that would result from a split on each possible
feature, which is a measure known as information
gain. The information gain for a feature F is calcu-
lated as the difference between the entropy in the
segment before the split (S1) and the partitions result-
ing from the split (S2):

InfoGain Fð Þ ¼ Entropy S1ð Þ−Entropy S2ð Þ ð9Þ
Decision tree is best suited for tasks with many fea-

tures or complexes and nonlinear relationships among
features and outcomes [27]. We used the R package
“C50” to build the decision tree model [30].

Neural network
Artificial neural networks mimic the structure of
animal brains to model arbitrary functions. The
biological neuron that uses dendrites to receive a
signal, and a neuron determines the importance of
the signal and then decides whether to transmit the
signal to the next neuron by the axon. The input
signals are received by the dendrites (x variables),
each dendrite’s signal is weighted (w values) accord-
ing to its importance, and the output is the signal
(y variable). The input signals are summed by the
cell body, and the signal is passed on according to
an activation function. With n input dendrites, the
activation function can be represented by the fol-
lowing formula:

y xð Þ ¼ f
Xn
i¼1

wixi

 !
ð10Þ

where n refers to the number of input dendrites, and w
weights allow each of the n inputs (denoted by xi) to
contribute a greater or lesser amount to the sum of in-
put signals. The net total is used by the activation func-
tion f(x), and the resulting signal, y(x), is the output
axon. The strength of neural networks is the capability
to model complex patterns without making an

assumption regarding the data’s underlying relationships.
However, their weakness is that they are very prone to
overfitting [27]. We used the R package “neuralnet” to
build the neural network model [31].

Support vector machines
SVMs creates a flat boundary called a hyperplane, which di-
vides the space to create fairly homogeneous partitions on ei-
ther side that allow SVMs to model highly complex
relationships. SVMs uses a kernel trick to separate data into a
higher dimension space. The kernel function is expressed as:

K xi
!; x j

!� � ¼ φ xi
!� �� φ x j

!� � ð11Þ

where ϕ(x) is a function to transfer the feature vectors xi
and xj and combine them into a single number. Using
this form, kernel functions have been developed for
many different domains of data. The linear kernel does
not transform the data at all. The polynomial kernel of
degree d adds a simple nonlinear transformation of the
data. The radial basis kernel is similar to a neural net-
work and can perform well on many types of data [27].

Linear kernel : K xi
!; x j

!� � ¼ xi
!� x j

!
Polynomial kernel : K xi

!; x j
!� � ¼ xi

!� x j
!þ 1

� �d
Radial basis kernel : K xi

!
; xj
!� �

¼ e
− xi
!

−x j
!		 		2

2ο2

ð12Þ
We used the R package “kernlab” to build the SVMs

model [32].

Random forest
A random forest is an ensemble consisting of random
trees, which are decision trees generated in a specific
way to obtain diversity among the trees [33]. The
strength of a random forest is the ability to handle an
extremely large number of features or examples that are
easy to use [27]. We created an ensemble of 500 trees
and used the out-of-bag error rate to estimate the test
set error [34]. We used the R package “randomForest” to
build the random forest model [35].

Accuracy
Using the physicians’ clinical diagnosis as the golden
standard for VAP, we assessed the performance of all
these methods based on accuracy, the area under the re-
ceiver operator characteristic (ROC) curves (AUC), sen-
sitivity, specificity, accuracy and kappa value. AUC
values of 0.7–0.8, 0.8–0.9, and 0.9–1 are regarded as
good, very good, and excellent diagnostic accuracy, re-
spectively [36]. To adjust accuracy by accounting for the
possibility of a correct prediction by chance only, which
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is especially important for datasets with class imbalance,
we also calculated the kappa statistics [27] Kappa ex-
presses the extent to which the observed agreement ex-
ceeds that which would be expected by chance alone. A
kappa greater than 0.75 represents excellent agreement
beyond chance, a kappa below 0.40 represents poor
agreement, and a kappa of 0.40 to 0.75 represents inter-
mediate to good agreement. We used a bootstrap
method and calculated the accuracy of 100 iterations to
decide the parameters of machine learning methods that
had the highest prediction accuracy. The statistics can
be defined by the following equations:

Accuracy ¼ Number of true positivesþ number of true negatives
Number of true positivesþ true negativesþ false positivesþ false negatives

Sensitivity ¼ Number of true positives
Number of true positivesþNumber of false negatives

Specificity ¼ Number of true negatives
Number of true negativesþNumber of false positives

Positive predictive value ¼ Number of true positives
Number of true positivesþNumber of false positives

Negative predictive value ¼ Number of true negatives
Number of true negatives þNumber of false negatives

Kappa ¼ Percent agreement observedð Þ− Percent agreement expected by chance aloneð Þ
100%− Percent agreement expected by chance aloneð Þ

ð13Þ
We also constructed ROC curves and calculated an

AUC with 2000 bootstrap replicates and the partial AUC
(pAUC) to assess the variability of the measure. The
formula of pAUC was:

pROC ¼ 1
2

1þ pAUC− min
max− min


 �
; ð14Þ

where min is the pAUC over the same region of the di-
agonal ROC curve, and max is the pAUC over the same
region of the perfect ROC curve [37]. Because we were
interested in a diagnostic test with a high specificity and
sensitivity, we also examined the partial AUC between
80 and 100% for specificity and sensitivity.

Results
A total of 61 subjects were enrolled. After excluding two
subjects without a questionnaire, a total of 33 cases and 26
controls were used in the final analysis. In the case group,
the primary pathogen in sputum culture was most
commonly Klebsiella pneumoniae (42.42%), followed by
Stenotrophomonas maltophilia (15.15%), Staphylococcus
aureus (15.15%), Acinetobacter baumannii (12.12%),
Pseudomonas aeruginosa (12.12%), Escherichia coli (6.06%),
Candida albicans (6.06%), Haemophilus influenzae (3.03%),
and Enterobacter cloacae complex (3.03%). The mean num-
ber of the pathogens was 1.52. In addition to pneumonia,
the comorbidities in the case group included myocardial

infarction, diabetes, aspiration pneumonia, hepatitis,
endocarditis, heart failure, lung cancer, chronic obstructive
pulmonary disease, hepatocellular carcinoma, idiopathic
pulmonary fibrosis, colon cancer, necrotizing fasciitis,
kidney injuries, hyponatremia, and cardiac arrest. In the
control group, the comorbidities included intracranial
hemorrhage, gastric cancer, traffic accident, fracture, gastric
ulcer, coronary artery disease, acute kidney injury,
traumatic brain injury, aortic dissection, lung cancer,
Fournier’s gangrene, and liver abscess. There was no
statistically significant difference in age, gender, smoking
status, liver and renal function tests, or the number of
comorbidities in both groups (Table 1).
Using eight machine learning algorithms, the mean ac-

curacy in the testing set was 0.81 ± 0.04, the sensitivity
was 0.79 ± 0.08, the specificity was 0.83 ± 0.00, the posi-
tive predictive value (PPV) was 0.85 ± 0.02, the negative
predictive value (NPV) was 0.77 ± 0.06, and the AUC
was 0.85 ± 0.04. The mean kappa value in the testing set
was 0.62 ± 0.08, which suggested good agreement
(Table 2). The AUCs were 0.82 (95% CI 0.70—0.94),
0.83 (0.70—0.94), and 0.82 (95% CI 0.71—0.93) in the
training set, testing set, and the full data set, respectively
(Fig. 2). In the testing set, the corrected pAUC between
80 and 100% for sensitivity was 85.4%. The corrected
pAUC between 80 and 100% for specificity was 75.5%
(Fig. 3). Using bootstrap resampling for 2000 replicates,
the model established by the random forest algorithm
had the highest AUC (Fig. 4).

Discussion
This study used an electronic nose to develop a breath test
for VAP. We focused on standardizing the process of es-
tablishing machine learning algorithms. After all the pro-
cedures were standardized, the breath test developed
herein had a high diagnostic accuracy in predicting VAP.
AI has gradually been applied to the medical field, es-

pecially machine learning techniques that analyze med-
ical data to establish a prediction model. Applying
machine learning techniques in medicine is a positive
development. However, many defects restrict the future
development of AI in medicine. First, few studies report
the procedures of model selection and data processing,
which makes the statistical analysis look like a “black
box.” In this study, we report the procedures of model
selection and data processing to enhance the transpar-
ency of the study. Second, from an epidemiological point
of view, many AI researchers in medicine lack the con-
cept of epidemiological study design and do not report
the essential items for reporting diagnostic accuracy. In
this study, we followed the standards for reporting of
diagnostic accuracy studies (STARD) guidelines to en-
hance the quality of the research [38]. Third, many ma-
chine learning studies reported only the best accuracy

Chen et al. Respiratory Research           (2020) 21:45 Page 6 of 12



value without showing details for readers to evaluate the
reliability of test results. In this study, we carefully selected
machine learning algorithms that are suitable for the
learning task for classification. Because the relationships of
sensor response variables were initially unclear, this study
also used eight types of machine learning to provide a
reliable estimation of the accuracy with the mean value.
We found that the data of sensor arrays might be suscep-
tible to multicollinearity for the high correlation between
sensor responses, and the neural network had poor
performance in this situation. Classification trees might be
resistant to highly correlated sensor responses. Finally,
AUC is an important index for the evaluation of diagnostic
accuracy. However, one of the major practical drawbacks of
the AUC as an index of diagnostic performance is that it
summarizes the entire ROC curve, including regions that
frequently are not relevant to practical applications (e.g.,
regions with low levels of specificity). In this study, we also
applied a pAUC to prevent the statistical uncertainty of the
estimation [39]. The results of the obtained accuracy
reported in this study are therefore conservative but more

reliable than AUC results for clinical physicians to judge
the new AI technique. From the technical point of view, we
suggest that researchers not show only the best results with
the highest accuracy; instead, a study should clearly explain
all the procedures and conservatively estimate the accuracy
for physicians in making clinical decisions.
In vitro studies have reported that an electronic

nose was able to detect Staphylococcus aureus, Hae-
mophilus influenzae, Escherichia coli, Pseudomonas
aeruginosa, Moraxella catarrhalis, Streptococcus pneu-
moniae, and Mycobacterium tuberculosis in bacterial
cultures [40–42]. In human studies, van Geffena et al.
reported that the electronic nose could discriminate
bacterial and viral infections in patients with chronic
obstructive pulmonary disease with acute exacerba-
tions [43]. A study used an electronic nose to detect
pulmonary aspergillosis in patients with prolonged
chemotherapy-induced neutropenia and reported an
accuracy of 90.9% [44]. In ventilated patients, Hock-
stein et al. used an electronic nose to diagnose VAP
and showed a correlation between the electronic

Table 1 Demographic characteristics of the study subjects

Characteristics Case group (n = 33) Control group (n = 26) p value

Age (year), mean (SD) 71.44 (13.43) 68.90 (15.55) 0.53

Male, No. (%) 21 (63.64) 13 (50.00) 0.12

Smoking status 0.18

Current smoker, No. (%) 4 (12.12) 4 (15.38)

Former smoker, No. (%) 12 (36.36) 4 (15.38)

Nonsmoker, No. (%) 15 (45.45) 12 (46.15)

White blood cell (103/μL), mean (SD) 14.63 (7.87) 15.03 (8.77) 0.86

Blood urea nitrogen (mg/dL), mean (SD) 30.65 (18.74) 32.54 (18.43) 0.72

Creatinine (mg/dL), mean (SD) 1.24 (0.71) 1.58 (1.01) 0.15

Aspartate aminotransferase (U/L), mean (SD) 88.48 (139.48) 53.71 (139.48) 0.25

Alanine aminotransferase (U/L), mean (SD) 55.80 (82.11) 35.62 (25.82) 0.22

Number of comorbidities 3.16 (1.10) 2.90 (1.18) 0.43

Table 2 Prediction accuracy of the electronic nose in the test set of machine learning algorithms

Model and parameters Accuracy (95% CI) Sensitivity Specificity PPV NPV Kappa AUC (95% CI)

k-nearest neighbors (k = 5) 0.77 (0.46–0.95) 0.71 0.83 0.83 0.71 0.54 0.80 (0.54–1.00)

Naive Bayes (fL = 0, usekernel = TRUE, adjust = 1) 0.77 (0.46–0.95) 0.71 0.83 0.83 0.71 0.54 0.80 (0.54–1.00)

Decision tree (trials = 10, model = rules, window= TRUE) 0.85 (0.55–0.98) 0.86 0.83 0.86 0.83 0.69 0.85 (0.63–1.00)

Neural network (size = 3, decay = 1e-04) 0.85 (0.55–0.98) 0.86 0.83 0.86 0.83 0.69 0.85 (0.63–1.00)

Support vector machines (linear kernel) (C = 1) 0.85 (0.55–0.98) 0.86 0.83 0.86 0.83 0.69 0.85 (0.63–1.00)

Support vector machines (radial kernel)
(sigma = 1.432815, C = 1)

0.77 (0.46–0.95) 0.71 0.83 0.83 0.71 0.54 0.85 (0.63–1.00)

Support vector machines (polynomial kernel)
(degree = 1, scale = 0.1, C = 0.5)

0.85 (0.55–0.98) 0.86 0.83 0.86 0.83 0.69 0.85 (0.63–1.00)

Random forest (mtry = 32) 0.77 (0.46–0.95) 0.71 0.83 0.83 0.71 0.54 0.90 (0.74–1.00)

Mean value (SD) 0.81 (0.04) 0.79 (0.08) 0.83 (0.00) 0.85 (0.02) 0.77 (0.06) 0.62 (0.08) 0.85 (0.04)

PPV positive predictive value; NPV negative predictive value; AUC area under the receiver operating curve
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sensor response and the pneumonia score, with a
diagnostic accuracy of 70% [45]. Schnabel et al. used
an electronic nose to diagnose VAP and reported a
sensitivity of 88% and a specificity of 66% [46]. Liao
et al. selected 12 patients with Pseudomonas aeruginosa

infection and 12 patients as noninfectious controls to
diagnose VAP with Pseudomonas aeruginosa infection in
the ICU with the Cyranose 320 electronic nose. The study
reported accuracy of 0.95 and a positive predictive value
of 0.93 but did not provide the specificity, a negative

Fig. 2 The area under the receiver operating curve (AUC) for ventilator-associated pneumonia in the training set, testing set, and full data set.
High AUCs in the three sets show high diagnostic accuracy

Fig. 3 The partial area under the receiver operating curve (pAUC). The blue area corresponds to the pAUC region between 80 and 100% for specificity (SP),
and the green area corresponds to the pAUC region between 80 and 100% for sensitivity (SE). The corrected pAUCs are printed in the middle of the plot
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predictive value, or Kappa values [47]. In fact, in in-
hospital patients, especially in the ICU, most of the bacter-
ial cultures report many bacteria, and one single bacteria
is not common. Therefore, the selection of patients may
introduce selection bias that makes it difficult to
generalize the research results in clinical practice. For crit-
ical patients in the ICU, physicians’ primary concern is
whether frail patients have bacterial pneumonia, and then
they can empirically prescribe broad-spectrum antibiotics
on time. Our study did not attempt to detect one single
bacteria and therefore prevented misclassification bias
from selecting study subjects. From the medical point of
view, we suggest that future medical AI researchers must
know the need in clinical practice, and then the research
can truly promote the application of AI in clinical
application.
In the breath study of ICU patients, we must consider

the influence of multiple comorbidities that may de-
crease discrimination ability. Many diseases, such as dia-
betes, acute renal failure, and acute hepatitis, may
influence breath metabolites [48–50]. Moreover, many
subjects had coinfection at other sites, such as the urin-
ary tract and skin. Multiple infectious diseases with co-
existing varied pathogens might also decrease the dis-
crimination ability. To prevent confounding results, we
suggest that further studies should consider more re-
strictive exclusion criteria and controls individually

matched by age (+/− 5 years) and gender. Owing to a
limited number of subjects, we did not conduct an inde-
pendent external validation test. The results must be
interpreted carefully. We suggest enrolling more study
subjects in different hospitals to validate the results be-
fore clinical use.
Some AI researchers may use an independent dataset

from another group of subjects to assess the accuracy in
the external validation [26]. However, in fundamental
knowledge of epidemiology, we know that the prevalence
of the disease in the training set and testing sets will in-
fluence the accuracy of a diagnostic test. A higher preva-
lence of the disease in testing subjects will have a higher
positive predictive value [51]. Therefore, most studies
have used a ratio of 1:1 in the number of cases and con-
trols to obtain the most optimized results, in which the
prevalence of the disease is 50%. However, in clinical
practice, especially for screening purposes in a commu-
nity, the majority of subjects are healthy, and the preva-
lence of disease is low. For this reason, Leopold et al.
reviewed the performance of an electronic nose during
external validation. The results showed that better per-
formance of the external validation set was always ob-
served when subjects included in the external validation
set were derived from the same population or hospitals
as the training set; however, decreased performance of
the external validation set was observed when the study

Fig. 4 The area under the receiver operating curve (AUC) for ventilator-associated pneumonia in the testing set, with the 95% confidence
interval. We used the random forest algorithm to establish the prediction model and then tested the prediction accuracy on the training set.
Using bootstrap resampling for 2000 replicates, the 95% confidence intervals are shown as gray areas around the mean bootstrapped curve
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subjects included in the external validation set were en-
rolled from other hospitals [52]. Therefore, researchers
should know the limitation of external validation. A pre-
diction model established from hospital patients might
not be suitable for community screening. From an epi-
demiological point of view, we suggest that AI re-
searchers should carefully examine their study design
and select suitable study subjects in consideration of
their future application.
Though the random forest algorithm had the highest

AUC in this study, there are many machine learning al-
gorithms, and most electronic nose studies tried many
machine learning technique and showed the algorithm
with the best accuracy. We conducted a literature search
in PubMed at https://www.ncbi for “(machine learning)
AND (electronic nose) NOT review [Publication Type]”
published in 2019. After eliminating papers without full
text or did not provide details of sensor, this search pro-
duced 17 results published in 2019. The most common
used algorithm was support vector machine (10 studies),
followed by neural network (6 studies), random forest (4
studies), k-nearest neighbor (4 studies), and then linear dis-
crimination analysis (3 studies). Support vector machine
combines both the instance-based nearest neighbor and the
linear regression modeling to model highly complex rela-
tionships by creating hyperplanes [27]. SVM algorithms
have been implemented in several well-supported libraries
across many programming languages and exploded in

popularity [27]. We have summarized the strength and
weaknesses of common machine learning techniques
(Table 3). For researchers who are not familiar with ma-
chine learning, we suggest that SVM algorithms might be a
suitable solution to analyze the sensor array data.

Limitation
In this study, we operated the electronic nose at 20–22
degrees Celsius, which is different from the temperature
of the human exhaled air of around 37 degrees Celsius.
We suggest future studies use GC-MS to compare the
changes in the composition of collected breath at differ-
ent temperatures.

Conclusion
An electronic nose can discriminate the distinct patterns of
VOCs derived from pathogens and be applied to diagnose
VAP. Using sensor arrays to analyze VOCs has potential in
the development of a new screening test for VAP in the
ICU. The potential of the AI technique in clinical medicine
is expected but not yet fully recognized. Although it is rea-
sonable to expect high predictive accuracy in making predic-
tions owing to the development of increasingly elaborate
machine learning algorithms, we should also advocate for
further research to address the importance of epidemio-
logical study design and strengthen the reporting of proce-
dures to test accuracy.

Table 3 Comparison of strengths and weaknesses of machine learning algorithms in electronic nose studies

Strengths Weaknesses

k-nearest neighbors • Make no assumption about underlying data
distribution

• Does not produce a model, limiting the ability to understand
how the features are related to the class

• If there are more samples of one class than other class, the
dominant class will control the classification and cause
wrong classification

Naive Bayes • Requires relatively few examples for training • Relies on an often-faulty assumption of equally important
and independent features

• Not ideal for datasets with many numeric features

Decision tree • Can be used on small dataset • It is easy to overfit or underfit the model

• Model is easy to interpret • Small changes in the training data can result in large changes
to decision logic

Neural network • Conceptually similar to human neural function • Very prone to overfitting training data

• Capable of modeling more complex patterns • Susceptible to multicollinearity

Support vector machines • High accuracy but not overly influenced by noisy
data and not very prone to overfitting

• Finding the best model requires testing of various combinations
of kernels and model parameters

• Easier for users due to the existence of several
well-supported SVM algorithms

• Most commonly used

Random forest • Can handle noisy or missing data • The model is not easily interpretable

• Suitable for class imbalance problems

Summarized from [27, 53, 54]
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