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Abstract 

Background:  To date, most studies involving high-throughput analyses of sputum in asthma and COPD have 
focused on identifying transcriptomic signatures of disease. No whole-genome methylation analysis of sputum cells 
has been performed yet. In this context, the highly variable cellular composition of sputum has potential to confound 
the molecular analyses.

Methods:  Whole-genome transcription (Agilent Human 4 × 44 k array) and methylation (Illumina 450 k BeadChip) 
analyses were performed on sputum samples of 9 asthmatics, 10 healthy and 10 COPD subjects. RNA integrity was 
checked by capillary electrophoresis and used to correct in silico for bias conferred by RNA degradation during 
biobank sample storage. Estimates of cell type-specific molecular profiles were derived via regression by quadratic 
programming based on sputum differential cell counts. All analyses were conducted using the open-source R/Bio-
conductor software framework.

Results:  A linear regression step was found to perform well in removing RNA degradation-related bias among the 
main principal components of the gene expression data, increasing the number of genes detectable as differentially 
expressed in asthma and COPD sputa (compared to controls). We observed a strong influence of the cellular compo-
sition on the results of mixed-cell sputum analyses. Exemplarily, upregulated genes derived from mixed-cell data in 
asthma were dominated by genes predominantly expressed in eosinophils after deconvolution. The deconvolution, 
however, allowed to perform differential expression and methylation analyses on the level of individual cell types and, 
though we only analyzed a limited number of biological replicates, was found to provide good estimates compared 
to previously published data about gene expression in lung eosinophils in asthma. Analysis of the sputum methylome 
indicated presence of differential methylation in genomic regions of interest, e.g. mapping to a number of human 
leukocyte antigen (HLA) genes related to both major histocompatibility complex (MHC) class I and II molecules in 
asthma and COPD macrophages. Furthermore, we found the SMAD3 (SMAD family member 3) gene, among others, 
to lie within differentially methylated regions which has been previously reported in the context of asthma.
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Background
Respiratory research has greatly benefited from the appli-
cation of molecular high-throughput (“omics”) technolo-
gies [1, 2]. Significant contributions could be made to the 
understanding of chronic-inflammatory respiratory dis-
ease, ranging from phenotyping and classifying disease 
to modeling therapy responses [3–7]. Amongst other 
materials, induced sputum has proven to be very valu-
able for the molecular profiling of both bronchial asthma 
and chronic obstructive pulmonary disease (COPD) [3, 6, 
8–11]. With growing availability of computational infra-
structure and analysis platforms, multi-omics approaches 
gained attractivity and have been applied successfully [2, 
12–14]. In this context, epigenetic analyses, such as DNA 
methylation profiling, have contributed to the molecular 
characterization of inflammation in asthma and COPD 
[15–21]. So far, however, methylation analyses of spu-
tum samples have been limited to subsets of loci, e.g. by 
the means of methylation-sensitive polymerase chain 
reaction (PCR), in cancer research [22–24]. The use of 
whole-genome methylation analyses of sputum for the 
molecular profiling of asthma or COPD has not been 
evaluated yet.

Sputum samples contain a mixture of immune cells 
(mainly alveolar macrophages, neutrophils, eosinophils 
and lymphocytes), but also contaminating cells (such 
as ciliated epithelium from the airways and squamous 
epithelium from the pharyngeal and oral region). The 
relative abundancy of cell types varies substantially and 
can be used to distinguish disease subgroups such as 
“T2 high” from “T2 low” types in asthma by eosinophil 
counts [25, 26]. This variability, in turn, has potential 
to confound whole-sputum omics analyses [27]. Previ-
ously, methods such as fluorescence activated cell sorting 
(FACS) [28], gradient centrifugation [29, 30] or selection 
by cellular adherence [31] have been used to purify cer-
tain cell types from blood and bronchoalveolar lavage 
(BAL) samples in asthma and COPD. Due to the corre-
sponding procedural and financial effort, however, the 
implementation of such methods becomes complicated 
in large-scale settings. Apart from physical cell separa-
tion, attempts to correct for cellular composition in silico 

have been made in omics analyses of BAL [32] and blood 
samples [33]. Recently, a reference-based transcriptomic 
method thought to be less sensitive to sputum composi-
tion bias has been suggested for use in asthma research 
[10].

However, the aforementioned approaches do not allow 
to infer cell-type specific molecular profiles from mixed-
cell data and, so far, the high-throughput molecular 
analysis of mixed-cell sputum samples has generally been 
limited to be used as a molecular “fingerprint” to describe 
inflammatory processes.

Over the last years, tailored in silico methods, so-called 
deconvolution algorithms, have been designed to solve 
the problem of inferring cell type-specific omics profiles 
from mixed-cell data [34–41]. These methods have been 
primarily developed and evaluated on blood, brain and 
cancer data sets but exhibit a strong potential to be of 
avail for omics analyses of sputum and other respiratory 
mixed-cell materials.

In this exploratory and methodology-oriented study, 
we examine the applicability of sputum whole-genome 
methylation analysis in molecular profiling of asthma and 
COPD. Furthermore, we provide insight into how in sil-
ico RNA quality correction can benefit the transcriptome 
analysis of sputum samples from long-term storage and, 
for the first time, apply a deconvolution method based 
on linear regression by quadratic programming to infer 
cell type-specific omics profiles from mixed-cell sputum 
data.

Materials and methods
Sputum samples
Sputum samples were obtained from biomaterial deposi-
tories of the German prospective cohort studies ALLI-
ANCE [42] (asthma and controls) and COSYCONET 
[43] (COPD) at the LungenClinic Grosshansdorf, Ger-
many. To evaluate the applicability of methylation profil-
ing to sputum samples from (long-term) biobank storage, 
we focused on samples collected during early recruiting 
periods (11/2013–05/2015).

Asthma samples were selected from 9 subjects rep-
resenting a phenotype with eosinophilic (type 2) 

Conclusions:  In this methodology-oriented study, we show that methylation profiling can be easily integrated into 
sputum analysis workflows and exhibits a strong potential to contribute to the profiling and understanding of pulmo-
nary inflammation. Wherever RNA degradation is of concern, in silico correction can be effective in improving both 
sensitivity and specificity of downstream analyses. We suggest that deconvolution methods should be integrated in 
sputum omics analysis workflows whenever possible in order to facilitate the unbiased discovery and interpretation of 
molecular patterns of inflammation.
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inflammation and overall good disease control at the 
time of sample collection based on sputum and blood 
eosinophil count (≥ 2% eosinophils in sputum differ-
ential cell count and/or ≥ 400  eosinophils/µL in blood 
differential) as well as total asthma control test (ACT) 
score (≥ 20 points). In addition, subjects had to be non-
smokers (smoking cessation > 12 months before sample 
collection) with a neglectable smoking history (2/9 sub-
jects, maximum of 5 packyears). No subject was treated 
with biologics, antihistamines or oral corticoids at the 
time of sputum collection. Out of the 9 subjects, 7 had 
a proven allergy (pollinosis, food allergy and/or atopic 
dermatitis). A total of 5 subjects presented with severe 
asthma (defined as requiring high doses of inhaled cor-
ticosteroids with > 500  µg fluticasone equivalent per 
day) and 4 presented with a mild-to-moderate type 
(≤ 500 µg per day).

A total of 10 COPD samples was selected from sub-
jects that had not experienced any moderate or severe 
exacerbation (defined as requiring use of oral corticoids 
or inpatient hospital treatment) for ≥ 12  months as 
well as had successfully accomplished smoking cessa-
tion for ≥ 12 months. Of the 10 selected subjects, 7 had 
moderate (GOLD 2) and 3 had severe COPD (GOLD 
3).

Healthy controls (10 samples) were defined as subjects 
without any history of pulmonary or systemic-inflamma-
tory disease, allergies or respiratory tract infection within 
the last 12 months. None of the selected control subjects 
had any smoking history. Descriptive statistics can be 
found in Table 1.

For a graphical representation of the overall workflow, 
see Fig. 1.

Details about sputum induction and processing are 
provided in  Additional file  1. Differential sputum cell 
counts (alveolar macrophages, neutrophils, eosinophils, 
lymphocytes, monocytes, ciliated epithelium and squa-
mous cells) were performed on Diff-Quick-stained slides 
by two independent evaluators, each of whom evaluated 
a total of 400 cells per slide.

Samples were either stored in RLT Plus extraction 
buffer (proprietary buffer by Qiagen, Hilden, Germany) 
at −  80  °C [9], or preserved via the HOPE technique 
(Hepes-glutamic acid buffer-mediated organic solvent 
protection effect) by incubation with HOPE medium 
(DCS innovative diagnostic systems, Hamburg, Ger-
many), followed by embedding in low-melting paraffin 
and subsequent storage at 4 °C [44]. The HOPE technique 
is a preservation technique originally developed for tis-
sue samples in pathology diagnostics and research to 
allow for a variety of processing and analysis protocols 
without the constraints imposed by conventional forma-
lin fixation [45]. Previous studies have demonstrated that 
HOPE-preserved material can successfully be processed 
to retrieve nucleic acids suitable for omics analysis [45, 
46] and that the technique can be transferred to sputum 
samples [44] as well as bronchoalveolar lavage fluid [47].

Extraction of nucleic acids
From HOPE-preserved, paraffin embedded samples, spu-
tum cells were extracted by cutting slices on a microtome 
(using alcohol- and heat-sterilized, RNase-free blades) 
which were deparaffinized subsequently by incubation 
with xylene (2 × 10  min) and ethanol (2 × 10  min), fol-
lowed by a drying step using a vacuum centrifuge before 
addition of RLT Plus lysis buffer [44, 47]. Sputum sam-
ples stored in RLT buffer were thawed on ice. DNA and 
RNA were simultaneously extracted using the AllPrep 
Micro Kit (Qiagen) following the manufacturer’s instruc-
tions. Total DNA and RNA yield were measured on a 
NanoDrop spectrophotometer (Thermo Fisher Scien-
tific, Waltham, MA, USA). RNA integrity was deter-
mined on a BioAnalyzer system (Agilent Technologies, 
Waldbronn, Germany). For optimal electrophoresis 
resolution, the RNA 6000 Pico Kit (Agilent) was used 
after adjusting aliquots of RNA extracts to the maximum 
input RNA concentration. Samples with RIN < 3 (RNA 
Integrity Number) were excluded from further process-
ing for microarray analysis which applied to a total of 4 
HOPE-preserved samples, limiting the total number of 

Table 1  Descriptive statistics of study subjects

PY pack years, ICS inhaled corticosteroid, FE fluticasone equivalent

Age (years) Gender (male/female) Smoking history (PY) Daily ICS (µg FE)
Mean ± SD (min/max) Mean ± SD (min/max) Mean ± SD (min/max)

Asthma
n = 9

59 ± 14 (35/76) 6/3 1 ± 2 (0/5) 511 ± 388 (0/1000)

COPD
n = 10

68 ± 10 (44/77) 9/1 38 ± 21 (15/80) 235 ± 206 (0/500)

Controls
n = 10

44 ± 20 (19/76) 7/3 0 0
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successfully hybridized expression arrays to 25 out of 29 
(9 asthma, 7 COPD, 9 controls).

Transcription microarray analysis
Extracted total RNA was processed with Agilent’s Low 
Input Quick Amp Labeling Kit. Labeled complementary 
RNA (cRNA) was purified using the RNeasy Mini Kit 
(Qiagen) and 1650  ng of labeled cRNA per sample was 
hybridized to Agilent Human GE 4 × 44 K v2 arrays. All 
steps were performed according to the manufacturers’ 
standard instructions. Hybridized arrays were scanned 
with an Agilent SureScan microarray scanner (5  µm 
resolution, default settings) and scan images were ana-
lyzed with Agilent’s Feature Extraction Software (version 
11.5.1, default parameters, protocol GE1_1105_Oct12). 
All hybridized arrays passed the manufacturer’s standard 
quality controls.

Methylation microarray analysis
Genomic DNA was bisulfite converted utilizing the 
EZ DNA Methylation kit (ZymoResearch, Irvine, CA, 
USA) following the manufacturer’s instructions. Con-
verted DNA was further processed and hybridized to 
Infinium HumanMethylation 450  k BeadChips (Illu-
mina Inc., San Diego, CA, USA) following the standard 
Illumina workflow. Hybridized chips were scanned with 
an Illumina iScan system on default settings. All chips 
passed the manufacturer’s standard quality controls 
as well as further quality controls applied within the 
downstream in silico analysis. Due to a technical error, 
three samples were lost during processing, limiting the 
total number of samples from which methylation data 
was available to 26 (9 asthma, 10 COPD, 7 controls).

Fig. 1  Graphical abstract. Induced sputum, containing a variety of inflammatory cells, exhibits potential to directly reflect inflammatory processes 
in the lower airways. Progress in understanding the underlying mechanisms has been made by supplying sputum samples to high-throughput 
molecular analyses, primarily transcriptomics. To date, these have provided valuable insights to disease mechanisms and have led to differentiation 
of molecular endotypes (1) that are associated with distinct clinical presentations. However, most high-throughput analyses of sputum samples are 
prone to substantial bias by variation in cellular composition. Here, we introduce an unbiased deconvolution approach to sputum omics analysis 
in order to improve the identification of molecular patterns and dysregulation (2). Furthermore, were provide an example that sputum analysis can 
be extended by whole-genome methylation profiling to broaden the view on molecular mechanisms of pulmonary inflammation. Created with 
BioRender.com
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Data analysis
Downstream data analysis was entirely performed using 
the open-source R/Bioconductor software framework 
[48] (https​://www.r-proje​ct.org, https​://www.bioco​nduct​
or.org). Supplementary methodological information as 
well as a comprehensive list of utilized software packages 
is provided in Additional file 1: Table S3). All annotation 
data used throughout this study was entirely based on 
the human genome version hg19 in accordance with the 
utilized array platforms. Transcriptome and methylome 
data have been made publicly available via NCBI’s Gene 
Expression Omnibus [49] (see “Availability of data and 
materials”).

Methylation array data was imported, annotated and 
processed by stratified quantile normalization utilizing 
the minfi package [50]. Individual CpG loci were filtered 
before further analysis by detection p values (threshold 
p = 0.01), mapping to sex chromosomes (X and Y chro-
mosomes were excluded), affection by single nucleotide 
polymorphisms (SNPs) as well as potential for cross 
hybridization based on data published by Chen et al. [51]. 
Hereafter, a total of 429,236 CpGs (of initial 485,512) was 
further analyzed.

For gene expression data, median foreground signals 
were background corrected by subtracting the mean 
background signals (“minimum” method) via the limma 
package [52]. Quantile normalization was applied and 
control probes were filtered out. We used flagging infor-
mation generated by the Feature Extraction Software 
(Agilent) to further exclude probes that were classified as 
non-uniform, saturated or feature population outlier in 
any of the arrays. Furthermore, at least 50% of features 
per array probe in any of the sample groups had to be 
classified as being found as well as being positive and sig-
nificant to be kept in the data set. Replicate probes were 
averaged and further analysis steps were carried out on 
probe level (27,380 array probes of 44,495 initial feature 
reads retained).

Differential expression/methylation analysis
Differentially expressed genes (DEGs) as well as differ-
entially methylated CpGs (differentially methylated posi-
tions, DMPs) were determined via limma comparing 
disease entities to healthy controls (asthma vs. controls 
and COPD vs. controls).

For DEGs, statistics were calculated on 
log2-transformed expression values with Benjamini–
Hochberg (BH)-adjusted p value < 0.05 and absolute 
log2-fold change (log2FC) ≥ 1.5 as statistical significance 
cutoffs. To remove redundancy from the data set and to 
simplify the biological interpretation of results, DEGs 
were filtered for well-annotated transcripts (based on 
available ENSEMBL and RefSeq annotation) and the 

most significantly differentially expressed transcript per 
gene was reported.

DMPs were determined on the beta value scale and 
considered statistically significant at a BH-adjusted p 
value < 0.05 and delta beta ≥ 0.1.

Deconvolution of cell type‑specific expression 
and methylation
Generally speaking, the deconvolution we applied is 
based on the idea that estimates for cell type-specific 
expression/methylation can be derived by finding (opti-
mizing) estimates that, given the relative cell counts 
for each sample, best match the observed (measured) 
mixed-cell expression/methylation. This poses a clas-
sical regression problem which gets complicated by the 
circumstance that both expression and methylation have 
biological limits (e.g., expression cannot be negative) that 
must not be violated by the mathematical optimization 
process in order to get biologically possible and meaning-
ful results. In technical detail, we performed regression-
based deconvolution (by quadratic programming) using 
the differential sputum cell counts as predictor variables 
and the measured mixed-cell omics profiles (expression/
methylation) as response variables in the underlying lin-
ear models. To allow for linear combinability of the input 
data, expression values had to be analyzed on the linear 
(instead of log2-transformed) and methylation values on 
the beta value scale for the purpose of deconvolution. 
The general performance of a multiple linear regression 
approach was evaluated by fitting models with built-
in functions of R (stats R core package). The estimation 
was carried out by quadratic programming (QP), allow-
ing us to specify biological constraints under which the 
regression parameters were estimated. This approach 
had previously been successfully applied to methylation 
and gene expression data [36, 38]. A detailed mathemati-
cal description is provided in Additional file 1. In short, 
we utilized the quadprog R package (https​://cran.r-proje​
ct.org/web/packa​ges/quadp​rog/index​.html) which imple-
ments the dual method of Goldfarb and Idnani to solve 
quadratic programs [53]. Estimation was performed for 
each sample group separately, methylation estimates 
were constrained to the interval between 0 and 1, expres-
sion estimates to the dynamic range of the array. We 
estimated the standard errors of the estimates following 
a standard approach in regression analysis as previously 
applied [38]. Comparisons of methylation and expression 
estimates across disease groups was followingly carried 
out with a Welch modified two-sample (unequal vari-
ance) t-test. Taking into account that, due to the distribu-
tion of the analyzed methylation and expression values, 
one of the core assumptions of parametric testing (nor-
mality) was likely violated, we applied more stringent p 

https://www.r-project.org
https://www.bioconductor.org
https://www.bioconductor.org
https://cran.r-project.org/web/packages/quadprog/index.html
https://cran.r-project.org/web/packages/quadprog/index.html
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cutoffs to assign statistical significance: DMPs were con-
sidered statistically significant at a BH-adjusted p < 0.001 
and delta beta ≥ 0.1. For DEGs, the BH-adjusted p cutoff 
was set to 0.005 at a log2FC ≥ 1.5.

Identification of DMRs
Differentially methylated regions (DMRs) were identified 
via DMRcate [54]. For the mixed-cell methylation data, 
the overall false discovery rate (FDR) was set to 0.05. For 
the analysis of the deconvolved estimates of cell type-
specific methylation, the overall FDR was set to 0.001 
(as for the identification of individual DMPs). DMRs 
had to contain at least one CpG with delta beta > 0.1 to 
be considered for further analysis. Mapping of DMRs to 
genomic regions of interest was performed to promoter 
(defined as up to 1500 base pairs upstream of the tran-
scription start site) and gene body regions with a mini-
mum required overlap of 200 base pairs.

GO and KEGG enrichment
Analyses for enrichment in Gene Ontology (GO) terms 
[55] and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways [56] were carried out via the cluster-
Profiler package [57]. Hypergeometric overrepresenta-
tion tests (cutoff p < 0.1, cutoff q < 0.2) were performed 
with custom backgrounds based on the array designs 
after probe filtering.

Results
Sample and data evaluation
Asthma samples were largely composed of eosinophils, 
alveolar macrophages and neutrophils. Whilst eosino-
phils were nearly absent in COPD and control samples, 
COPD sputum was greatly composed of neutrophils and 
that of healthy controls mainly of alveolar macrophages 
(see Table  2 and Fig.  2). Apart from the differences 
observed across conditions, substantial interindividual 
variation could be observed within the respective groups 
(for further information see Additional file 1: Tables S1, 
S2 and Figure S1.

Those samples that had been specifically preserved for 
nucleic acid preparation by storage in RLT extraction 
buffer were found to provide RNA of overall good qual-
ity (RIN ranging from 7.6 to 9.1, see Table 3). Concomi-
tantly, HOPE-preserved samples were subject to a higher 
amount of RNA degradation during biobank storage 
(maximum RIN 5.1).

The amount of RNA degradation could be shown to 
have a substantial effect on the overall variation in the 
expression data set (see principal component analysis 
in Fig.  3a). Gene expression values were both positively 
and negatively correlated with RNA integrity which fol-
lows from the rank-based process of quantile normali-
zation applied to the data (see Additional file  1: Figure 
S2). Excluding array probes from further analysis by 
the extent of correlation (correlation filtering—reduc-
ing the data set to 15,550 transcripts out of 27,380; 
further details are provided in Additional file  1) effi-
ciently removed major degradation effects (Fig.  3b) but 
was observed to be biased towards medium-to-highly 
expressed transcripts (Additional file  1: Figures  S4 and 

Table 2  Differential cell count of sputum samples

Cell proportions are reported as mean percentage ± SD (min/max)

AM alveolar macrophages, NG neutrophil granulocytes, EO eosinophils, LY lymphocytes. MO monocytes, CC ciliated cells (respiratory epithelium), SC squamous cells

AM NG EO LY MO CC SC

Asthma
n = 9

27.9 ± 21.9 (6.3/60.4) 54.7 ± 24.4 (14.1/84.8) 12.9 ± 24.5 (1.5/77.0) 0.7 ± 0.5 (0.1/1.6) 0.1 ± 0.1
(0.0/0.3)

1.6 ± 1.0 (0.5/3.3) 2.1 ± 3.4 (0.3/10.8)

COPD
n = 10

9.0 ± 5.9 (1.1/21.1) 88.9 ± 6.6 (76.6/98.1) 1.0 ± 1.2 (0.0/4.0) 0.2 ± 0.3 (0.0/0.8) 0.0 0.4 ± 0.4 (0.0/1.4) 0.6 ± 0.5 (0.0/1.8)

Controls
n = 10

52.3 ± 24.9 (16.3/81.3) 40.3 ± 25.1 (6.5/76.1) 0.2 ± 0.4 (0.0/1.1) 2.0 ± 2.1 (0.0/7.6) 0.2 ± 0.3
(0.0/0.9)

1.6 ± 0.8 (0.4/2.6) 3.4 ± 3.3 (0.4/10.4)

Fig. 2  Mean cellular composition of sputum samples. AM alveolar 
macrophages, NG neutrophil granulocytes, EO eosinophils, 
LY lymphocytes, MO monocytes, CC ciliated cells (respiratory 
epithelium), SC squamous cells
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S5). This approach was outperformed by a correction via 
a linear model (for details see Additional file  1) which 
ensured removal of degradation bias (Fig.  3c) without 
reducing the number of transcripts eligible for analysis 
(see also Additional file 1: Figure S6).

In case RNA degradation is equally distributed among 
compared sample groups, it can be assumed to primar-
ily affect analysis sensitivity (more false negatives) whilst 
not necessarily leading to a higher proportion of false 
positives. Should the extent of degradation be distributed 
unequally among samples (the COPD samples exhibited 
a higher extent of degradation than the asthma or control 
samples), however, RNA degradation-biased expression 
data can in fact be expected to lead to falsely identified 
DEGs (false positives). Concordantly, only a minor num-
ber of DEGs in asthma identified in the uncorrected data 
was discarded by correlation filtering whilst RNA integ-
rity correction by linear regression led to identification 
of additional DEGs (Fig. 4a). In COPD, reduction of the 

data set by correlation filtering primarily resulted in a 
concomitant reduction of the number of DEGs, whereas 
the linear model performed better in discarding and 
identifying new DEGs (Fig.  4b). Accordingly, all further 
analyses were performed on expression data corrected 
for RNA degradation by a linear model.

The methylation data, in contrast, exhibited no major 
influence by the respective sample preservation method 
(Fig.  5). Whereas asthma and control samples did not 
form separate clusters among the major principal com-
ponents in an unsupervised analysis of the expression 
data (Fig. 4c), the methylation data interestingly allowed 
for a better separation of control and asthma samples 
(Fig. 5).

Deconvolution of cell type‑specific gene expression 
and methylation
Since monocytes were only present in an overall very low 
quantity (and were not determinant in the COPD sam-
ples, see Table  2 and Additional file  1: Table  S2), they 
were excluded from the deconvolution model ab  ini-
tio. For both the expression and methylation data, esti-
mates for macrophages, neutrophils and eosinophils 
(the latter in the asthma samples only) were found to 
be the most reliable, as inferred from the distribution 
of the p values associated with the respective fits of lin-
ear models (see Additional file  1: Figure S8). Consist-
ently, the initial expression and beta value distributions 
were best retained in estimates for these cell types (see 
Additional file 1: Figures S6, S7, S9 and S10). This essen-
tially follows from the mathematical nature of a lin-
ear model—estimation performs best for cell types that 
are prevalent whilst exhibiting variance across samples 
within a group. Strictly speaking, the estimation of mac-
rophage profiles did not perform as well in the COPD 
samples as in asthma or controls. However, as the p value 

Table 3  RNA integrity of sputum samples supplied to gene 
expression analysis

RIN RNA integrity number, RLT preservation by storage in RLT buffer, HOPE 
preservation via HOPE-fixation technique

RIN Preservation
Mean ± SD (min/max) (RLT/HOPE)

Asthma
n = 9

6.4 ± 2.5 (3.2/8.7) 5/4

COPD
n = 7

5.6 ± 1.7 (4.2/8.5) 2/7

Controls
n = 9

7.4 ± 2.1 (4.2/9.1) 6/3

RLT
n = 13

8.6 ± 0.4 (7.6/9.1) 13/0

HOPE
n = 12

4.3 ± 0.6 (3.2/5.1) 0/12

Fig. 3  Principal component analysis of the gene expression data. Before correction for RNA degradation (a), after correlation filtering (b) and after 
correction by linear regression (c)
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and expression/methylation value distributions still sug-
gested a better performance than for the remaining cell 
types that could not be reliably estimated whatsoever, we 
decided to keep alveolar macrophages as predictor in the 
model fitted on the COPD data. We subsequently sum-
marized the quantities of all other cell types and kept 
their sums as weighed intercepts in the models, thereby 
increasing the degrees of freedom of our analysis (see 
Additional file 1: Figures S11 to S13 and Tables S4 to S7).

Differential expression analysis of the cell type-spe-
cific estimates after deconvolution resulted in DEGs 
that only shared a minor proportion with those deter-
mined by analysis of the mixed-cell whole-sputum data 
(see Additional file 1: Figure S14). Similar observations 
could be made for DMPs.

DEGs identified as being upregulated in asthma in the 
mixed-cell analysis only (and discarded after deconvolu-
tion) clearly showed a pattern of estimated predominant 
expression in eosinophils (and partly neutrophils) whilst 
being lowly expressed in macrophages. In the back-
ground of higher sputum eosinophil counts in asthma 
this exemplifies how mixed-cell sputum analyses can 
be biased by disease-specific variation of cellular com-
position. For downregulated DEGs, the picture was the 
opposite around (see Additional file  1: Figure S15). In 
COPD, upregulated DEGs were estimated to be highly 
expressed in neutrophils and showed lower expression 
in macrophages in both the COPD and control samples. 
Though the overall expression in neutrophils seemed to 
be actually higher in COPD than in controls, the higher 
proportion of neutrophils in the COPD sputa is likely 
to still have had a major skewing influence. Downregu-
lated DEGs showed a clear trend towards high esti-
mated expression in macrophages. Similar patterns were 
observed for DMPs derived from the mixed-cell methyla-
tion analysis (see Additional file 1: Figure S16).

Differential expression analysis
A comprehensive compilation of results is provided  as 
Additional files 2, 3, 4, 5, 6, 7, 8 and 9. In total, 86 genes 
were found to be differentially expressed in the asthma 
samples via the mixed-cell analysis (84 upregulated and 
2 downregulated). After deconvolution by quadratic 
programming, 155 DEGs were identified for alveolar 
macrophages (13 up, 142 down) and 552 DEGs for neu-
trophils (145 up, 407 down).

Fig. 4  Venn diagram visualizations of differentially expressed genes (DEGs). Asthma vs. controls (a) and COPD vs. controls (b). Analyses were 
performed on the uncorrected, mixed-cell transcriptome dataset (white/black circle), after correction for RNA degradation by correlation filtering 
(yellow) and after correction by linear regression (blue)

Fig. 5  Principal component analysis of the whole-genome 
methylation data
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DEGs identified by mixed-cell analysis were enriched 
in Gene Ontology (GO) terms highly related to immune 
response and regulation (see Additional file  5), e.g. by 
including CXCR1 and CXCR2 (chemokine CXC-motif 
receptors 1 and 2) as well as IL5RA (interleukin 5 recep-
tor alpha). After deconvolution, DEGs in macrophages 
continued to be highly related to immune regulation but 
presented a greatly different picture of involved genes 
(such as TLR6, Toll-like receptor 6, and CD8A, clus-
ter of differentiation 8a) and processes. In neutrophils, 
though immune-related genes could be identified, such 
as IL4R (interleukin 4 receptor) and CXCL2 (chemokine 
CXC-motif ligand 2), they did not significantly enrich in 
GO terms at the specified significance cutoffs. Results 
of KEGG pathway enrichment were related to immune 
regulation in the mixed-cell results and in macrophages 
(Additional file  6). As with GO enrichment, no KEGG 
pathways were significantly enriched in the neutrophil 
gene set.

The analysis of COPD samples resulted in 758 DEGs 
(612 up, 146 down) in the mixed-cell data and in 39 
(10 up, 29 down) and 2161 (168 up, 1993 down) DEGs 
in macrophages and neutrophils after deconvolution, 
respectively. Whereas enriched GO terms were highly 
related to inflammatory processes (foremost neutrophil 
immunity) before deconvolution (with e.g. IL6R, inter-
leukin-6 receptor, amongst them), no enriched GO terms 
could be identified in macrophages after deconvolution. 
CXCL9, chemokine (CXC motif ) ligand 9, however, was 
found to be among the DEGs along with MMP13 (matrix 
metallopeptidase 13). GO enrichment in the neutrophils’ 
DEGs resulted in a predominant picture of metabolic 
processes and regulation. Whilst enriched KEGG path-
ways were immunity-related in the mixed-cell analysis 
(e.g. containing the tumor necrosis factor, TNF signaling 
pathway), enrichment in macrophages, similar to the GO 
analysis, did not produce statistically significant results. 
Pathway terms significantly enriched in neutrophils were 
again related to metabolism, including the peroxisome 
and lysosome.

Differential methylation analysis
Genes that could be associated with differentially meth-
ylated regions in asthma (mixed-cell analysis) included 
a small quantity of immunity-related members such as 
IL27RA (interleukin 27 receptor alpha), IL20 (interleukin 
20) and TNF but were overall dominated by small nucle-
olar RNA (snoRNA) as well as small Cajal body RNA 
(scaRNA) genes and thereby enriched in the GO term 
“Cajal body” (Additional file  7). After deconvolution, 
DMRs found in macrophages were still largely associated 
with small nucleolar RNAs, but also IL23A (interleukin 
23 alpha), and CCL24 (chemokine C–C motif ligand 24, 

previously known as eotaxin-2). GO enrichment resulted 
in terms largely related to regulation of development and 
differentiation as well as cellular interaction by adhesion. 
In neutrophils, amongst a number of snoRNA genes, 
IL5RA (interleukin receptor 5 alpha) was found to be 
DMR-associated. Here, GO enrichment again resulted in 
terms primarily associated with developmental regula-
tion and cell adhesion. Enriched KEGG pathways could 
be strongly related to inflammatory processes and regula-
tion in the mixed-cell analysis (with TNF and the HLA, 
human leukocyte antigen, loci HLA-DRA and HLA-DOB 
largely contributing to this finding), including the KEGG 
pathway “Asthma” (Additional file  8). After deconvolu-
tion, KEGG enrichment was limited to “Antigen process-
ing and presentation” in macrophages but with a higher 
number of gene hits, comprising genes associated with 
both MHC (major histocompatibility complex) class I 
(HLA-E, HLA-F) and class II (HLA-DMA, HLA-DMB, 
HLA-DOA, HLA-DPA1, HLA-DPB1) as well as heat 
shock protein genes, amongst others. In neutrophils, no 
KEGG pathways were significantly enriched.

In COPD, DMR-associated genes were related to 
immunity by being involved in neutrophil activation 
as well as antigen presentation. After deconvolution, 
enriched GO terms mostly related to developmental 
regulation in both macrophages and neutrophils. How-
ever, in macrophages, the immunity-related genes IL1RN 
(interleukin 1 receptor antagonist) and IL20RA (interleu-
kin receptor 20 alpha) were found to be DMR-associated. 
Enriched KEGG pathways were related to inflammation 
and immunological regulation in the mixed-cell analysis 
and continued to be in macrophages after deconvolution. 
Again, HLA loci associated both with MHC class I and 
II (HLA-B, HLA-E, HLA-F as well as HLA-DMA, HLA-
DMB, HLA-DQA2, HLA-DRA) contributed to this find-
ing. No pathways were significantly enriched in COPD 
neutrophils (see also Additional file 1: Figure S17).

Integrative analysis
The performed deconvolution limits the applicability of 
some approaches for the integrative analysis of meth-
ylation and gene expression after deconvolution. E.g., a 
conventional correlation analysis of promoter-CpG beta 
values with gene expression values is not applicable to 
the estimates of cell-specific expression/methylation and 
their respective variances derived from the deconvolu-
tion. As a straightforward workaround, we decided to 
find overlaps between DMR-associated genes and DEGs: 
in the mixed-cell analysis, 1 gene was found to be both 
differentially expressed and methylated in asthma (see 
Additional file  1: Figure S18). After deconvolution, the 
respective quantities of DMR-associated DEGs were 23 
for macrophages and 15 for neutrophils. In COPD, 74 
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DMRs mapped to DEGs that were identified without 
deconvolution. In the deconvolved data, 3 DEGs were 
differentially methylated in macrophages and 39 in neu-
trophils (see Additional file 9 for more details).

Data comparison
We did not encounter publicly available data sets that we 
could subject to the deconvolution approach described 
here for a validation of our results, largely because 
detailed information about the cellular composition of 
samples was not reported (further details are provided in 
Additional file 1).

Instead, we compared our data to a transcriptome 
study by Esnault et  al. [29] who defined a core gene set 
predominantly expressed by lung eosinophils in asthma 
by expression profiling of BAL and sputum in the context 
of allergen challenges that was subsequently validated in 
purified lung eosinophils. In good agreement, this gene 
set was estimated to be predominantly expressed in 
eosinophils in our deconvolved data (see Additional file 1: 
Figure S19 and accompanying information). In accord-
ance, we found the eosinophil marker genes RNASE2 
(ribonuclease A family member 2), RNASE3, SIGLEC8 
(sialic acid binding Ig-like lectin 8) and IL5RA [29] as 
well as PRSS33 (serine protease 33) [58] being exclusively 
expressed in eosinophils in the deconvolved asthma data 
(see Additional file 10). We extended this comparison to 
cell type-specific genes previously defined on transcrip-
tomic reference sets derived from blood and bone mar-
row samples [10]. We observed the genes discriminating 
eosinophils, macrophages and neutrophils in our decon-
volved asthma profiles predominantly overlapping with 
the respective genes defined on blood and bone-marrow 
data (see Additional file 1: Figure S20). However, the pro-
portionate overlaps were smaller than with the gene set 
defined on lung eosinophils and in fact, a small number 
of discordances could be observed. Exemplarily, this will 
be further discussed in the following section.

Discussion
Here, we present first whole-genome methylation data 
from sputum indicating that the methylation profile of 
sputum cells can be used to further the molecular char-
acterization of chronic pulmonary inflammation in 
asthma and COPD. By performing omics deconvolution 
based on quadratic programming, taking sputum dif-
ferential cell counts as input, we show that the analysis 
of mixed-cell sputum samples is strongly biased by the 
interindividual variation of cellular composition. In this 
context, we present data indicating a high potential of 
omics deconvolution to deliver results that are ultimately 
more closely relatable to pathophysiological regulation by 

making differential expression and methylation attribut-
able to individual cell types.

Genomic methylation and gene expression represent 
distinct entities of cellular regulation [59]. Whilst pro-
moter methylation has traditionally been connected to 
gene repression, recent advances have brought up a much 
more complex picture of epigenetic regulation and its 
influence on gene expression [60, 61]. Because epigenetic 
changes are thought to also reflect long-term alterations, 
they exhibit a strong potential for the profiling of chronic 
diseases linked to the environment, such as asthma and 
COPD [21, 62].

We set the scope of this study to be primarily method-
ology-oriented and used a limited number of biological 
replicates in our explorative analysis which imposes a 
limitation. As statistical analyses and particularly regres-
sion models rely on an adequate number of degrees of 
freedom, the presented results should be interpreted 
carefully and not be considered conclusive. However, 
though our study is underpowered to draw a detailed pic-
ture of the interaction of gene methylation and expres-
sion, we found methylation changes in genetic regions of 
interest.

In asthma macrophages, we observed differential 
methylation of the IL23A gene which could be seen in the 
context of macrophage polarization [63]. Furthermore, 
we found differential methylation related to the CCL24 
(previously known as eotaxin-2) gene, which can poten-
tially be attributed to macrophage differentiation, micro-
biota interaction [64] and eosinophil stimulation [65]. In 
asthma neutrophils, the IL5RA (interleukin 5 receptor 
alpha) gene was identified to be differentially methylated. 
Interestingly, though gene expression was estimated to 
be present only in eosinophils in our study (and IL5RA 
expression has traditionally been seen as eosinophil-spe-
cific), this had recently been described to be expressed by 
airway neutrophils in the context of treatment-refractory 
asthma in children [66].

In both asthma and COPD macrophages, our data 
indicated differential methylation of HLA genes related 
predominantly to MHC class II, but also class I mol-
ecules. We did not observe concordant expression 
changes;  however, changes in methylation of HLA loci 
have been described in a variety of autoimmune diseases 
and states of immune dysregulation [67–70] and were 
linked to atopic asthma [71] in whole-blood profiling of 
children with atopy after rhinovirus-induced wheezing. 
In the latter study, differential methylation of SMAD3 
(SMAD family member 3) was found to be particularly 
associated with asthma [71]. Congruently, in our analysis, 
we also observed the SMAD3 gene to lie within DMRs 
both in asthma and, interestingly, COPD macrophages 
(see Additional file 4).
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A particular interesting case is the differential methyla-
tion and expression of CD8A in asthma that was coun-
terintuitively attributed to macrophages. Since we were 
not able to reliably estimate lymphocyte profiles in our 
small data set and we did not use lymphocyte counts as 
independent predictors in the deconvolution, the possi-
bility of this being a “contamination” by lymphocyte-spe-
cific expression and methylation arises. However, upon 
inspection of the differential cell counts for each sample, 
we did not observe collinearity between the macrophage 
and lymphocyte cell counts. In fact, several studies have 
described CD8A expression in (alveolar) macrophages 
before [72–75]. A more detailed discussion of potential 
sources of error in the deconvolution process is provided 
as supplementary information (Additional file 1).

Deconvolution of transcriptomic signatures further 
allowed to identify interesting candidates regarding cel-
lular regulation: Our data indicated an upregulation 
of IL4R (interleukin 4 receptor) in asthma neutrophils 
which had been shown to play an important role in the 
regulation of neutrophil apoptosis [76]. Furthermore, 
CXCL2 was observed to be upregulated for which auto-
crine regulation of neutrophils had been demonstrated 
previously [77], offering potential to contribute to inflam-
mation in asthma. In COPD, macrophages were found 
to upregulate CXCL9 expression which is known to be 
a macrophage-derived inflammatory cytokine and indi-
cator of M1 differentiation [63], whereas upregulated 
expression of MMP13 could be attributed to imbalanced 
protease homeostasis [78, 79].

For now, the experimental gold standard to retrieve 
cell type-specific molecular data remains to be cellular 
separation by techniques such as gradient centrifugation 
[29, 30]. However, these methods do not always allow to 
purify more than one cell type simultaneously and their 
applicability on a large scale (e.g. in biobanking studies) 
may not be given due to infrastructural or financial limi-
tations. In contrast, in silico deconvolution is suitable for 
application to data from conventionally processed whole-
sputum samples. The required differential cell counts 
are frequently performed in cohort and clinical studies. 
Unfortunately, findings derived from deconvolved data, 
unless cellular separation had been performed in par-
allel, will often not be able to be validated in the same, 
mixed-cell sputum samples from which the omics data 
was generated (like in this study). However, quadratic 
programming has previously been found to deliver accu-
rate deconvolution estimates [36]. Accordingly, we found 
an overall good agreement with the data published by 
Esnault et al. [29] for eosinophils. With higher biological 
replication in larger studies, the partial lack of estima-
tion performance for some cell types (foremost lympho-
cytes) observed here is likely to resolve, allowing for an 

even more comprehensive gain of information by apply-
ing a deconvolution. In this context, the applicability of 
omics deconvolution to sputum data is not limited to 
methods based on manually performed sputum differ-
ential cell counts. Some approaches use cell type-specific 
transcriptomic reference profiles to infer the respective 
cellular quantities in mixed-cell samples and use these 
quantities for the deconvolution process subsequently 
[41]. An important pitfall that investigators should be 
aware of before employing such reference-based meth-
ods in sputum analyses becomes apparent from the com-
parison of our deconvolved data to cell type-specific gene 
sets defined on blood and bone marrow-derived data by 
Peters et al. [10]. Exemplarily, the gene GPR97 (G-protein 
coupled receptor 97, also known as adhesion G-protein 
coupled receptor G3, ADGRG3) was found to be selec-
tively expressed in neutrophils in their analysis, whilst 
both the data by Esnault et  al. and our deconvolved 
expression profiles indicated a predominant expres-
sion in eosinophils in the asthmatic lung environment. 
In fact, expression of GPR97 has been described for all 
granulocytes [80]. This does not contest the analysis of 
Peters et  al. since they followed a completely different 
approach in analyzing the sputum transcriptome but is 
rather intended to illustrate the potential bias that can be 
introduced to estimating the cellular composition of spu-
tum based on reference sets derived from other sources. 
If reference sets are used for the purpose of deconvolu-
tion, we recommend they should be created based on 
cells derived from the lung environment (sputum or 
BAL) in the respective disease state [81] which becomes 
particularly important since alveolar macrophages are 
considered to be developmentally distinct from mono-
cyte (blood)-derived macrophages [82]. Otherwise, per-
forming detailed differential cell counts as shown here is 
a viable alternative.

From a phenotypical perspective, a large variability of 
cellular composition within a given set of samples, whilst 
benefiting the fit of a regression model, potentially indi-
cates that several disease entities are comprised (such as 
T2-low, T2-high, T2-ultra high etc. in asthma). The valid-
ity of estimates derived from deconvolution steps thereby 
directly depends on the accuracy of the preceding defi-
nition of sample groups. Therefore, the application of a 
regression-based deconvolution approach has to be criti-
cally evaluated in any experiment and might find com-
plimentary use to deepen the molecular understanding 
after distinct pheno-/endotypes were separated (e.g. via 
the method established by Peters and colleagues [10]).

We further demonstrated that, should RNA degra-
dation be of concern, e.g. due to suboptimal or long-
term biobank storage, in silico correction can remove 
RNA integrity-associated bias from transcriptome data, 
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thereby not only reducing the potential for the occur-
rence of false positives, but also increasing the overall 
sensitivity. In our data, a separate regression step per-
formed well to remove degradation-related bias which 
is congruent with previous findings [83]. The cutoff we 
applied to select RNA samples supplied to microarray 
analysis was rather liberal (RIN > 3). Traditionally, cutoffs 
had been set to e.g. RIN > 5 [9, 84], at which it was dem-
onstrated on cancer samples that the overall variance of 
gene expression is largely defined by interindividual dif-
ferences and only to a much lesser extent by RNA integ-
rity [84]. However, as overall expression differences in 
chronic inflammatory pulmonary disease may be more 
subtle than in cancer this cannot be easily assumed for 
sputum samples in asthma or COPD. Though several of 
the more strongly degraded samples in our study reached 
RIN values close to 5, they still clearly clustered sepa-
rately from samples of higher RNA integrity. In fact, the 
principal component analysis of our transcriptome data 
showed that impaired RNA integrity has the potential of 
influencing the overall variance in transcription nearly 
as strongly as interindividual differences in asthma and 
COPD. Therefore, we suggest that the necessity of cor-
rection for RNA degradation should be evaluated even in 
data sets in which the sample quality had initially been 
judged suitable.

Thanks to optimized and streamlined purification 
workflows, parallel preparation of DNA and RNA from 
sputum samples is cost effective and efficient. With con-
tinuing innovation in the field of omics technologies 
and constantly growing affordability thereof, large-scale 
multi-omics analysis of sputum samples is close at hand. 
The application of the methods described here is by far 
not limited to sputum but can be expected to be suc-
cessfully transferred to bronchoalveolar lavage and other 
respiratory samples to enhance biomarker discovery and 
pathophysiological understanding. Beyond microarray 
analysis, omics deconvolution and RNA integrity correc-
tion can further be expected to be of avail for sequenc-
ing-based methods as these can be similarly affected by 
RNA degradation and cell composition bias.

Conclusions
Analysis of the sputum methylome can broaden the pro-
filing and understanding of chronic pulmonary inflam-
mation and adds important additional information to 
commonly performed transcription analyses. The neces-
sity of in silico correction for RNA degradation should 
be evaluated in every sputum transcriptome dataset. 
Finally, with suitable deconvolution approaches such as 
the algorithm described here, pathophysiological and 
regulative changes in chronic inflammatory lung diseases 
can be substantially better explored wherever single-cell 

analysis or cell separation may not be feasible. We there-
fore strongly recommend the application of unbiased 
deconvolution methods as such to all future whole-spu-
tum omics analyses in order to complement methods 
that have already been established.
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