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Abstract

Background: Airway bacterial dysbiosis is a feature of chronic obstructive pulmonary disease (COPD). However,
there is limited comparative data of the lung microbiome between healthy smokers, non-smokers and COPD.

Methods: We compared the 16S rRNA gene-based sputum microbiome generated from pair-ended Illumina
sequencing of 124 healthy subjects (28 smokers and 96 non-smokers with normal lung function), with single stable
samples from 218 COPD subjects collected from three UK clinical centres as part of the COPDMAP consortium.

Results: In healthy subjects Firmicutes, Bacteroidetes and Actinobacteria were the major phyla constituting 88% of
the total reads, and Streptococcus, Veillonella, Prevotella, Actinomyces and Rothia were the dominant genera.
Haemophilus formed only 3% of the healthy microbiome. In contrast, Proteobacteria was the most dominant
phylum accounting for 50% of the microbiome in COPD subjects, with Haemophilus and Moraxella at genus level
contributing 25 and 3% respectively. There were no differences in the microbiome profile within healthy and COPD
subgroups when stratified based on smoking history. Principal coordinate analysis on operational taxonomic units
showed two distinct clusters, representative of healthy and COPD subjects (PERMANOVA, p = 0·001).

Conclusion: The healthy and COPD sputum microbiomes are distinct and independent of smoking history. Our
results underline the important role for Gammaproteobacteria in COPD.
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Background
Chronic obstructive pulmonary disease (COPD) is char-
acterised by inflammation and irreversible airflow ob-
struction. Before the advent of culture-independent
DNA profiling methods, the healthy lung was deemed a

sterile niche while COPD samples would frequently cul-
ture Haemophilus influenzae, Streptococcus pneumoniae,
Moraxella catarrhalis and Pseudomonas aeruginosa. It is
considered that pathogenic bacteria gain a foothold in
damaged airways contributing to further lung pathology
through release of noxious bacterial products and provo-
cation of host inflammation [1, 2].
In recent years, use of high-throughput 16S rRNA

gene based sequencing has demonstrated that rich, com-
plex bacterial communities exist in the airways of both
health and COPD, with overlapping bacterial
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composition observed [3, 4]. In COPD aerobic, faculta-
tive and anaerobic organisms colonise the airways [3, 5],
with Proteobacteria and Firmicutes being the two major
phyla reported in the microbiome and Haemophilus and
Streptococcus, the respective dominant genera [3, 4, 6,
7]. At exacerbation, shifts in bacterial composition, char-
acterised by a relative increase in Proteobacteria that
falls in response to antibiotics has been observed, sug-
gesting an association with the aetiology of COPD exac-
erbations [8, 9]. Furthermore, the ratio of
Gammaproteobacteria to Firmicutes identifies the sub-
group with dynamic changes in their microbiome during
exacerbation, suggesting a potential use of this ratio as a
biomarker for targeting antimicrobial treatment [10].
While Proteobacteria have been associated with COPD

exacerbation events, the role of the microbiome in the
stable state and important differences in composition
with health are unclear [3, 4, 6]. Furthermore, changes
in the microbiome that may associate with development
of COPD in smokers are unclear. Differences have been
shown in the nasal and oropharyngeal microbiome be-
tween smokers and non-smokers [11] but microbiome
data from healthy smokers and non-smokers is limited
making the findings inconclusive to contextualize the
pathological basis of the observations in COPD.
To address this, we have used sputum collected from a

substantial number of well characterised healthy volun-
teers to investigate the impact of smoking on healthy
lower airway microbiome; to explore if there are differ-
ences in microbiome between health and COPD and its
association with smoking in health.

Methods
Subjects and study samples
Healthy volunteers (n = 251) (excluded participants with
asthma, COPD or bronchiectasis) were selected from the
Extended Cohort for E-health, Environment and DNA
(EXCEED) cohort and assessed at a single centre, Glen-
field Hospital, Leicester. Participants with ≥10 pack year
(PY) smoking were grouped as healthy smokers and
remaining as occasional / never smokers (< 10 PY) [12].
Participant demographics and clinical characteristics in-
cluding lung function, blood and sputum cell differen-
tials were recorded. The comparator COPD group
comprised of a single stable (non-exacerbation) visit spu-
tum collected from 218 subjects (included ex- and
current smokers) at three centres, Leicester, London and
Manchester, as part of the COPDMAP consortium
(www.copdmap.org; NCT01620645) [13]. All the partici-
pants in both studies had a minimum of 6 weeks anti-
biotic free period before their sample collection. Sputum
induction was undertaken if an adequate spontaneous
sample was not produced. In most of the healthy partici-
pants induced sputum was collected. Both cohort studies

had ethical approval and all subjects gave written in-
formed consent before the performance of any study-
related assessments.
All patients provided written informed consent using

protocols approved by the local Ethics Committees at
each site (London- 11/L0/1630; Manchester- 10/H/
1003/108; Leicester- 07/H0406/157).

16S rRNA gene sequencing
As a part of standard routine, for both studies, sputum
plugs were separated from the salivary contents to min-
imise the oral bacterial contamination in samples. Sam-
ples with only salivary contents were not processed for
microbial work. Sputum plugs, were stored (− 80 °C) and
processed for high-throughput sequencing similar to the
COPD cohort samples [13]. Briefly, bacterial genomic
DNA was extracted from the homogenised (0.1% dithio-
threitol) plugs using the lysozyme-based lysis procedure
from Qiagen DNA Mini kit (Qiagen, CA, USA) as per
manufacturer’s protocol. Out of 251 samples only 137
had adequate DNA concentration for microbiome ana-
lysis. Amplicon library was generated utilizing 28 PCR
cycles and targeting the V4 hypervariable region of the
16S rRNA gene with 515F: 5′ GTGCCAGCMGCC
GCGGTAA3’, 806R: 5’GGACTACHVGGGTWTC-
TAAT3’ primers, including Illumina sequencing
adapters and a 12 bp Golay barcode sequence attached
to forward primer. Pair-ended sequencing was per-
formed using multiplex libraries on the Illumina MiSeq
platform. Sequencing run included a commercial mock
community DNA (ZymoBIOMICS microbial DNA
standard) as a positive control and DNA extraction
negative control (each batch of healthy sample DNA ex-
traction included a DNA extraction negative control and
a single pooled aliquot was prepared from all of these
controls for sequencing) and PCR negative control for
reagent contamination check. PCR negative controls
didn’t produce any reads and DNA extraction negative
control only produced 8 raw reads and therefore were
not processed further.
COPDMAP single stable samples, utilized here for

comparative analysis with healthy samples, had their se-
quence data generated as part of that study along with
appropriate sequencing controls [13] and the sequence
data are deposited at the National Centre for Biotechnol-
ogy Information Sequence Read Archive (SRP102480).

Microbiome analysis
Reads were processed using QIIME pipeline version
1.9.1 [14] after adaptor trimming and removing low
quality reads with Trimmomatic 0.36 [14, 15]. Pair-
ended sequences were joined using fastq-join with a
minimum 10 bp overlap [16]. The joined sequences were
filtered with a Phred score ≥ 20 and processed to remove
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contaminating sequences and chimeras using UCHIME
[17]. Sequence reads are deposited at the National
Centre for Biotechnology Information (SRA accession:
PRJNA491861) https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA491861/.
Based on rarefaction curves, healthy and COPDMAP

samples, were normalised to 11,000 reads sequencing
depth leaving 124 samples in healthy and 218 samples in
COPDMAP for microbiome analysis. Operational taxo-
nomic units were generated at 97% sequence identity
using close reference (OTU) method and Greengenes
database (version 13_8) and assigned taxonomic iden-
tities with the RDP classifier [18]. Alpha diversity index
was generated based on the number of OTUs (ob-
served_OTUs and Chao1-richness measure) and their
distribution (Shannon index- diversity measure) within a
sample. Beta diversity index was based on weighted Uni-
Frac distance measure [19] (phylogenetic distance-based)
between OTUs present in each sample and visualized
using PCoA plots.

Microbial function prediction through 16S rRNA gene
sequences
Predictive microbial functional profile was generated
using the PICRUSt software (v1.0.0) which infers the
pathway content of the microbiome by assigning bacter-
ial functional genes for the OTUs, normalised for 16S
rRNA gene copy number, using the Kyoto Encyclopaedia
of Genes and Genomes (KEGG) database [20]. Statistical
analysis and visualisation plots were generated using
Statistical Analysis of Metagenomic Profiles (STAMP)
software [21].

Statistical analysis
Univariate statistical analyses were performed using
GraphPad Prism (Version 7, San Diego, CA). Parametric
and nonparametric data are presented as mean (SEM)
and median (interquartile range) respectively. Most of
the dataset did not meet the normal distribution criteria
(Shapiro-wilk test). Therefore, non-parametric Mann-
Whitney test and Kruskal-Wallis (KW) test were per-
formed for between-group comparison of two or greater
than two groups respectively. For the KW test, Dunn’s
multiple comparison test was used to determine statis-
tical significance of pair-wise comparisons. For paramet-
ric data, equivalent parametric statistical tests were
performed. For categorical data, Chi-square test was
performed.
PERMANOVA [22] was performed to test if the over-

all healthy microbiome was different to COPD using
weighted UniFrac distance measure as input. The indi-
vidual OTUs contributing to differences in health and
COPD were identified by performing a non-parametric
group-significance test and a corrected p-value of ≤0.05

for multiple testing conditions was considered statisti-
cally significant. To rank the discriminating taxonomic
groups between health and COPD, linear discriminant
analysis (LDA) effect size (LEfSe) analysis was performed
[23], which detects taxonomies with differential abun-
dance (p ≤ 0.05) using the KW test and then assigns a
LDA based effect size score. A threshold of ≥3.6 LDA
score was used instead of default value of 2 to feature
the most discriminant bacterial groups [24] . To deter-
mine if any individual microbiome constituents were as-
sociated with any subject metadata, MaAsLin was
performed [25] and Benjamini-Hochberg (FDR) cor-
rected q < 0.05 (FDR-adjusted P value) for multiple com-
parisons was considered statistically significant.

Results
Table 1 summarizes the demographics and clinical fea-
tures of the healthy and COPD cohorts (refer to
‘Methods’ section for more details on both the cohort
selection criteria).

Healthy sputum microbiome
A total of 1424 OTUs at 97% sequence identity were ob-
served in 124 healthy samples after rarefaction. Most
OTUs belonged to Firmicutes (55% ± 13%) followed by
Bacteroidetes (21% ± 11%) and Actinobacteria (12% ± 6%)
phyla (Fig. 1a). Streptococcus (30% ± 13%) was the most
abundant genus followed by Veillonella (17% ± 9%), Pre-
votella (16% ± 10%), Actinomyces (6% ± 5%), Rothia
(5% ± 4%) and Granulicatella (3% ± 3%) (Fig. 1b). The
Proteobacteria phylum constituted 7% (± 7%) of the bac-
terial community with Haemophilus (3% ± 5%) as its
dominant genus.
Compared to participants with a smoking history of <

10 pack year (PY), the subgroup with ≥10PY showed a
higher proportion of Firmicutes and a lower proportion
of Bacteroidetes at phylum level (Fig. 1a); followed by
higher Streptococcus and lower Prevotella at the genus
level but these differences did not reach statistical sig-
nificance (Fig. 1b). Beta diversity based principal coord-
inate analysis (PCoA) plots did not reveal distinct
microbiome clusters for the two smoking subgroups
(Fig. 1c). Shannon index was higher (p < 0.01) in healthy
subjects with < 10 PY smoking history compared with
≥10 PY, suggesting a more diverse microbiome in the
former (Fig. 1d) but there was no significant difference
in observed_OTUs or Chao1 index.

COPDMAP stable sputum microbiome
A total of 2329 OTUs at 97% sequence identity were ob-
served in 124 stable COPD samples after rarefaction.
The Proteobacteria (51% ± 12%) phylum constituted half
of the COPD microbiome with Haemophilus (25% ± 8%)
as its most abundant genus followed by Erwinia (7% ±
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3%), Cronobacter (6% ± 2%) and Moraxella (3% ± 7%)
(Fig. 2a and b). The two other abundant phyla were Fir-
micutes (29% ± 9%) and Bacteroidetes (16% ± 5%) domi-
nated respectively by Veillonella (16% ± 9%),
Granulicatella (7% ± 3%) and Streptococcus (5% ± 2%)
and by Prevotella (14% ± 5%) at the genus level (Fig. 2a
and b).
COPD ex-smokers and current smokers showed simi-

lar bacterial composition at phylum and genus level (Fig.
2a and b) and no significant difference in their microbial
diversity measurements (Fig. 2c and d). There was no
significant difference in the microbiome profile of the
COPD samples from the three centres (efigure 1).

Healthy vs COPD microbiome
In the healthy microbiome Streptococcus (28%) from the
Firmicutes (55%) phylum was the predominant constitu-
ent, while Haemophilus (3%) from Proteobacteria (7%)
was present at low levels. In contrast, for the COPD co-
hort Haemophilus (25%) was the most dominant genus
with a low proportion of Streptococcus (5%) observed
(Fig. 3a and b). PCoA analysis showed distinct clusters
of healthy and COPD subjects with significant difference
in their microbiome by permutation multivariate analysis
of variance (PERMANOVA p = 0.01) (Fig. 2c). COPD
samples had more OTUs identified compared to healthy
individuals, with significantly higher alpha diversity indi-
ces (Fig. 3d). Linear discriminant effect size (LEfSe) ana-
lysis revealed a higher abundance of
Gammaproteobacteria species and lower proportion of
Firmicutes, Bacteroidetes and Actinobacteria taxa to be

the major contributors in differentiating COPD from
health (Fig. 4). OTUs differentiating the two groups are
presented in Table 2.
Multivariate analysis by linear models (MaAsLin) ana-

lysis detected no significant association either in COPD
or in health between the bacterial groups and clinical
characteristics related to smoking, lung function and
symptom score.
Phylogenetic Investigation of Communities by Recon-

struction of Unobserved States (PICRUSt) analysis was
performed to predict functional gene content from the
16S rRNA gene content. PCoA plots based on this ana-
lysis showed distinct clusters of COPD and health
(Fig. 5a). Functional genes associated with Bacterial mo-
tility proteins, lipopolysaccharide biosynthesis, ABC
transporters and secretion systems were in higher pro-
portion in COPD while metabolic pathways were more
abundant in healthy subjects (Fig. 5b).

Discussion
Our study is the largest to compare the sputum micro-
biome between health and COPD and clear differences
between these groups were identified. Firmicutes, Bacter-
oidetes and Actinobacteria comprised 88% of the sputum
microbiome in healthy participants, with Streptococcus,
Prevotella and Veillonella as the dominant genera. Hae-
mophilus, the dominant genus in COPD was present in
health at a significantly lower proportion. Healthy
smokers with ≥10 PY smoking history showed a trend
towards a higher ratio of Streptococcus to Prevotella.

Table 1 Healthy and COPD subject characteristics

Healthy control (n = 124) Healthy control
PY ≥10 (n = 28)

Healthy control
PY < 10 (n = 96)

COPD (n = 218) p-value*

Gender female (n) 73 15 58 60 < 0·0001

Age (years) 61 (54, 67) 65 (58, 69) 59 (53, 67) 69 (64,74) < 0·0001

BMI 27·7 (24·3, 31·2) 29·3 (25·8, 34·4) 27·3 (24·2, 29·9) 26·7 (23·32,30·06) 0·0325

Smoking history (Pack years) 0 (0, 8) 29 (17·3, 45·8) 0 (0,0) 46 (34,64) < 0·0001

MRC Dyspnoea scale 0 (0, 1) 0 (0, 1) 0 (0, 1) 2 (1,2) < 0·0001

VAS dyspnoea (mm scale) 0 (0, 2) 0 (0, 3.5) 0 (0, 2) 30 (15,49) < 0·0001

Post BD FEV1 (L) 2·87 (2·43, 3·37) 2·82 (2·33, 3·24) 2·88 (2·46, 3·40) 1·45 (1·03,1·86) < 0·0001

Post BD FEV1% Predicted 109 (100, 118) 105 (92, 118) 110 (100, 118) 57 (42, 69) < 0·0001

Post BD FEV1/FVC % 80 (77, 83) 78 (75,82) 80 (78, 83) 51 (41,59) < 0·0001

Blood White cell count (×10^9/L) 5·8 (4·9, 7·3) 6·4 (5·1, 7·5) 5·7 (4·8, 7·25) 7·2 (6·3,8·8) < 0·0001

Blood Neutrophil count (× 10^9/L) 3·3 (2·7, 4·2) 3·8 (2·8, 4·3) 3·2 (2·6, 4·1) 4·7 (3·9, 5·7) < 0·0001

Blood Eosinophil count (× 10^9/L) 0·14 (0·09, 0·23) 0·18 (0·11, 0·25) 0·14 (0·09, 0·22) 0·21 (0·14, 0·27) < 0·0001

Sputum TCC (×106/g) 2·4 (1·1, 4·2) 3·19 (1·6, 5·9) 2·2 (1, 3·6) 10·5 (4·7,13·0) < 0·0001

Sputum eosinophils % 0·25 (0, 0·75) 0·25 (0·18, 2·38) 0·25 (0, 0·75) 0·75 (0,2) 0·0029

Sputum neutrophil (%) 60 (43, 74) 65 (42, 75) 56 (43, 73) 75 (40, 89) 0·0011

Data is expressed as median (IQR). BMI body mass index, Sputum TCC sputum total cell count, FEV1 forced expiratory volume in 1 s, Post BD FEV1 spirometry
recording post bronchodilator; FVC forced vital capacity. * = represents Kruskal-Wallis test comparing between healthy (PY ≥10), healthy (PY < 10) and COPD
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Fig. 1 Microbiome profile of Healthy volunteers based on smoking pack year history. a Relative abundance of major phyla between all healthy
(n = 124) represented in the outer ring followed by healthy < 10 PY smoking history subgroup (n = 96) in the middle ring and innermost ring
representing healthy ≥10 PY history subgroup (n = 28). b Relative abundance of major genera between all healthy (n = 124) represented in the
outer ring followed by healthy < 10 PY (n = 96) in the middle ring and innermost ring representing healthy ≥10 PY history (n = 28). c Principal
coordinate analysis (PCoA) analysis of weighted unifrac distance measures relative to pack year history. d Alpha diversity indices comparison
between. < 10 PY and≥ 10 PY smoking sub-groups. Chao1 and observed_otus are represented as bar chart as mean and standard deviation;
Shannon index is represented by box whisker plot showing median, interquartile range and minimum and maximum. **. P < 0.01
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Existing comparative respiratory microbiome data are
divided, with some studies reporting an overlapping mi-
crobial composition between health and COPD [3, 4, 26]
while others have shown the COPD microbiome to be
distinct [5, 6, 27] . These discordant outcomes likely re-
flect the underlying heterogeneity in COPD groups and
small sample sizes of healthy individuals (< 20),

undermining the strength of these studies [3–6, 26, 27].
However, similar to our observation, higher levels of
Proteobacteria, especially Haemophilus, in COPD [3–5]
and relatively higher proportion of Prevotella, Veillonella
and Actinomyces species in health have been observed [5,
6] but differences did not reach significance. Contrary to
our observations, most studies have reported similar or a

Fig. 2 Microbiome profile of COPD subjects based on smoking pack year history. a Relative abundance of major phyla between all COPD (n =
218) represented in the outer ring followed by ex-smokers (n = 148) in the middle ring and innermost ring representing current smokers history
(n = 70). b Relative abundance of major genera between all COPD (n = 218) represented in the outer ring followed by ex- smokers (n = 148) in
the middle ring and innermost ring representing current smoker (n = 70). c PCoA analysis of weighted unifrac distance measures relative to pack
year history. d Alpha diversity indices comparison between the two smoking groups
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higher abundance of Firmicutes and especially Strepto-
coccus in COPD compared with health [4, 6]. One rea-
son for this might be that composition varies between
samples depending upon the type of treatment received,
disease severity and inflammation. Previous studies have
shown association between very severe COPD and eo-
sinophilic phenotypes with dominance of Firmicutes,
while Proteobacteria are predominant in moderate

COPD and the bacterial related phenotype [9, 28] . The
COPD cohort analysed here was mainly of moderate-to-
severe severity with high neutrophil counts.
Contrary to most studies, we found a higher alpha di-

versity in COPD compared to health [3, 6]. Although the
COPD sample reads were reanalysed with the healthy at
a normalised sequence depth, they were sequenced as
part of COPDMAP study which involved a much larger

Fig. 3 Comparison of Microbiome profile between Healthy and COPD. a Relative abundance of major phyla between COPD (n = 218) represented
in the outer and inner ring representing healthy (n = 124). b Relative abundance of major genera between COPD (n = 218) represented in the
outer ring and inner ring representing healthy volunteers (n = 28). c PCoA analysis of weighted unifrac distance measures between healthy and
COPD subjects. d Alpha diversity indices comparison between Healthy and COPD subjects. ****, P < 0.00001
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sample size [13], including different disease stages, and
this may have contributed higher COPD diversity. More-
over, our COPD cohort was older than the healthy
group and from moderate to severe GOLD stage. Higher
diversity has been associated with both increasing dis-
ease severity and age in COPD [4, 27, 29].
Although a strong association exists between smoking

and both airway inflammation and COPD, the determi-
nants for developing COPD in smokers are not clear.
We hypothesised that smoking associated microbiome
changes in health would help in understanding the role
of microbes in transition from health towards COPD.
Consistent with previous studies, we found no significant
difference between the microbiome of smokers with
≥10PY history and the < 10 PY group [3, 4, 6, 30].

However, similar to Morris and colleagues [30], a trend
towards lower proportions of both Bacteroidetes and
Proteobacteria in smokers with ≥10PY history was ob-
served, suggesting subtle effects of smoking on the air-
way microbiome. Other pathological factors may
therefore be important in shaping the microbiome in
COPD. Hypoxia and chronic systemic inflammation re-
lated factors, which are features of COPD, have been re-
ported to be associated with the airway microbiome [31]
and may be relevant to the differences observed in our
COPD cohort.
PICRUSt analysis showed relatively higher lipopolysac-

charide biosynthesis products in COPD. Lipopolysaccha-
rides are present in the outer membrane of
Proteobacteria and together with pathogen-associated

Fig. 4 Bacterial groups distinguishing health and COPD microbiome. Each of the circles in the cladogram represent a bacterial taxa and each ring
a taxonomy level starting with Kingdom (Archaea and Bacteria) in the innermost circle. Green coloured circles and zones represent bacterial taxa
dominant in health and red in COPD. Circle sizes are correlated to bacterial abundance. Taxa level phylum (p_) and class (c_) are mentioned in
the figure. Order (o_), Family (f_) and genus (g_) are abbreviated in the figure
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molecular patterns, induce strong and damaging pro-
inflammatory responses. In keeping with this, our previ-
ous study showed that sputum chemokine interleukin-8,
known to play a key role in COPD inflammation, is posi-
tively correlated with Haemophilus and Moraxella, sug-
gesting these bacteria trigger the excessive production of
this chemokine [9]. Moreover, Haemophilus has been
implicated in a dysbiotic role by co-inclusion of its re-
lated phylotypes and depletion of Firmicutes, Bacteroi-
detes and Actinobacteria that are involved in pathways
for production of anti-inflammatory compounds [8, 9].
Although antibiotic treatment has been associated

with suppression of Proteobacteria in COPD [8, 9], it is
not true for all cases [10]. With the increasing urgency
for effective antibiotic stewardship, research is needed to
better understand the impact of both acute and long
term antimicrobial therapy on the COPD microbiome.
In this respect, alternate therapeutic strategies such as
H. influenzae vaccination, or highly selective antimicro-
bial approaches such as phage therapy may effectively
reverse some dysbiotic with prognostic benefit.
A limitation of this study is that the lung microbiome has

been analysed from sputum samples which can be contami-
nated with the microbiome of the oropharynx. However,
we emphasise that this effect will have been limited by spu-
tum plug selection for the analysis. We did not perform
longitudinal sampling to demonstrate reproducibility of the

sputum microbiome over time in healthy participants. For
COPD we have previously demonstrated that the sputum
microbiome is comparable between time-points when sam-
pling at their stable state [32]. The effects on the micro-
biome of using sputum induction as the predominant
sampling technique in the healthy control group are also
not known, but it is noteworthy that the predominant bac-
terial constituents of our healthy microbiome are consistent
with the respiratory microbiome detected by investigating
BAL and bronchial samples reported in previous studies [3,
6]. This suggests that our observations are robust and rep-
resentative of the bacterial composition of the lung micro-
biome. A major incentive to work with sputum is its
compatibility with routine clinical practice as any findings
are therefore more readily translated into established care
pathways. In this study we have not characterized the viral
and fungal communities, and this will be important to
understand their role in health and disease.

Conclusions
In summary, clear and significant differences exist be-
tween the lung microbiome in health and COPD, with
dysbiosis in COPD characterised by increased abun-
dance of Proteobacteria especially Haemophilus. The
changes observed in COPD are distinct from the micro-
biome in smokers without COPD, suggesting an associ-
ation between airway damage and dysbiosis. The

Table 2 OTU groups that distinguish the Healthy and the COPD subjects

OTU Taxonomy Healthy_
mean

COPD_
mean

FDR_
P

Bonferroni_
P

579,608 Firmicutes|Bacilli|Lactobacillales|Streptococcaceae|Streptococcus 658 88 0.001 0·020

787,709 Actinobacteria|Actinobacteria|Actinomycetales|Actinomycetaceae|Actinomyces 363 64 0.001 0·020

1,078,
207

Firmicutes|Bacilli|Lactobacillales|Streptococcaceae|Streptococcus 7 184 0.001 0·020

865,469 Proteobacteria|Gammaproteobacteria|Pasteurellales|Pasteurellaceae|Haemophilus 297 2150 0.001 0·020

585,419 Firmicutes|Clostridia|Clostridiales|Veillonellaceae|Veillonella 1611 1214 0.001 0·020

1,083,
037

Proteobacteria|Gammaproteobacteria|Pseudomonadales|Moraxellaceae|Moraxella 12 345 0.001 0·020

968,954 Firmicutes|Bacilli|Lactobacillales|Streptococcaceae|Streptococcus 906 2 0.001 0·020

932,696 Proteobacteria|Gammaproteobacteria|Enterobacteriales|Enterobacteriaceae|Erwinia 0 782 0.001 0·020

579,924 Proteobacteria|Gammaproteobacteria|Pasteurellales|Pasteurellaceae| 2 210 0.001 0·020

1,083,
194

Firmicutes|Bacilli|Lactobacillales|Streptococcaceae|Streptococcus 1290 5 0.001 0·020

1,027,
587

Firmicutes|Bacilli|Lactobacillales|Carnobacteriaceae|Granulicatella 57 702 0.001 0·020

1,017,
181

Actinobacteria|Actinobacteria|Actinomycetales|Micrococcaceae|Rothia 488 63 0.001 0·020

667,570 Proteobacteria|Gammaproteobacteria|Enterobacteriales|Enterobacteriaceae|Cronobacter 0 702 0.001 0·020

935,742 Bacteroidetes|Bacteroidia|Bacteroidales|Prevotellaceae|Prevotella 298 101 0.001 0·020

342,427 Firmicutes|Clostridia|Clostridiales|Veillonellaceae|Veillonella 44 284 0.001 0·020

Non-parametric t-test was performed on rarefied OTU table at 11,000 reds with OTUs that were observed in minimum 25% of the total number of samples and
had a minimum contribution of 1% of the total reads
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pathogenesis and pathological significance of dysbiosis
in COPD remains unclear. Longitudinal studies are
needed to determine whether, and to what extent, the
onset and progression of COPD are attributable to an al-
tered lung microbiome.
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