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murine models of lung disease.

Background: One of the main diagnostic tools for lung diseases in humans is computed tomography (CT). A
miniaturized version, micro-CT (uCT) is utilized to examine small rodents including mice. However, fully automated
threshold-based segmentation and subsequent quantification of severely damaged lungs requires visual inspection

Methods: Here we demonstrate the use of densitometry on regions of interest (ROI) in automatically detected
portions of the lung, thus avoiding the need for lung segmentation. Utilizing deep learning approaches, the middle
part of the lung is found in a uCT-stack and a ROl is placed in the left and the right lobe.

Results: The intensity values within the ROIs of the uCT images were collected and subsequently used for the
calculation of different lung-related parameters, such as mean lung attenuation (MLA), mode, full width at half
maximum (FWHM), and skewness. For validation, the densitometric approach was correlated with histological

Conclusion: We here show an automated tool that allows rapid and in-depth analysis of uCT scans of different

Introduction

Computed tomography (CT) methodology is important
in identifying pathological changes in various organs [1].
A number of studies have shown the value of using CT
for diagnosis of lung diseases and outcome prediction of
patients [2, 3]. While CT is a powerful tool, radiologists
require time and experience to analyze CT data in detail
[4]. The growing field of analysis automation (e.g. by
deep learning (DL), neural networks) is helping to re-
duce efforts for CT analysis in general and in the field of
lung diseases [5].
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A number of animal models have been developed to
study the pathophysiological changes in chronic lung
diseases [6]. A miniaturized version of the CT, the
microCT (uCT), is able to visualize lungs of small ro-
dents [7]. Commercially available software is used to
analyze uCT data, although to date these programs pos-
sess at least one of two major disadvantages. They either
only provide semi-automated analysis (requiring add-
itional time-consuming manual input but potentially
captures the entire organ), or run fully automated but
only capture aerated lung tissue, thereby missing import-
ant areas of pathology [8, 9].

Another approach to analyzing changes in lung struc-
ture for both humans and animal models is histological
analysis. Clinical readouts regarding the status of lung
tissue of a patient are based on a biopsy, a small fraction
of the whole tissue considered representative [10, 11].
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Here, we describe a novel approach for the analysis of
puCT data from mice. We combine deep learning (DL)
methods and “computational biopsies” of pCT data, by
which we analyze not the entire lung but a representa-
tive volume of the lung. With the help of two neuronal
networks we get information needed for a correct pla-
cing of a biopsy procedure within the left and right lung
lobe. We show that this approach captures non-aerated
areas and importantly, the calculated parameters correl-
ate with outcome-related readouts, which include lung
function parameters, the Ashcroft score (bleomycin
model) and the mean linear intercept (MLI) of alveoli
(elastase model).

Methods

Animals

Female or male C57BL/6] mice aged 8-12 weeks were
purchased from Charles River or Taconic. Groups of
two to five mice were housed in individually ventilated
cages at 22-25°C, a humidity of 46—65% and 12-h day/
night cycle. Animals received water and food ad libitum.
Ethical approval for these studies was obtained from the
regional governmental animal care and use office
(Regierungsprasidium Tiibingen, Germany, TVV 14—
013-0, 16-030-G and 16-028-G).

LPS exposure model

Female mice were exposed to 1mg/ml aerosolized
Escherichia coli lipopolysaccharide O55:B5 (LPS, Sigma
Aldrich) in phosphate-buffered saline (PBS). Mice were
placed in a LPS-preflooded Perspex box and whole body
exposure was performed by administration of aerolized
LPS by a nebulizer (Parimaster®). Mice were exposed to
a continuous flow of LPS aerosol for 25 min, followed by
5min conditioning after the aerosol was discontinued.
Animals were analyzed 4 h after exposure.

Elastase-induced emphysema model

Female mice received 0.2 U Elastase/animal (Sigma Aldrich)
in PBS intratracheally (i.t.) under 3—4% isoflurane anesthesia
once on day 0. Elastase administration was performed in a
hanging position with a Vasofix-Brauniile 22G. Animals
were analyzed 14 days after elastase administration.

Bleomycin-induced fibrosis model

Male mice were instilled as described for the elastase
model, using 0.45 mg/kg of bleomycin sulphate (Merck) in
saline solution. Control mice received saline solution only.
Mice were analyzed 21 days after bleomycin administration.

Lung function acquisition

Mice were anesthetized using Narcoren (Boehringer
Ingelheim) and lung function parameters were obtained
using the Flexivent FX1 system (Scireq). Mice were
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ventilated with a tidal volume of 10 ml/kg at a frequency
of 150 breaths/min. Each measurement was performed
four times per animal.

Histology

The left lung lobe was filled using 4% formalin solution
(Sigma) and constant pressure (20 cm fluid column) for
20 min. Subsequently, lungs were embedded in paraffin
for histological analysis (Masson trichrome staining). A
pathologist performed the Ashcroft scoring [12] and MLI
measurements were calculated using a proprietary image
analysis solution based on Hsia and colleagues [13].

UCT imaging procedure

Mice were first anesthetized using 3—-4% isoflurane and,
subsequently, lung imaging was performed using a
Quantum FX pCT scanner (PerkinElmer Inc.). Cardiac
gating strategy was performed as previously described
[14]. The images were acquired at 90 kV, 80 pA and the
lungs were scanned 360° for 4 min to capture the entire
lung. An image stack of 512 slices with voxel size of
0.04 mm x 0.04 mm x 0.04 mm was generated.

Processing and analysis of uCT images

Threshold-based, semi-automated segmentation and
generation of lung densitometric data were done using
Analyze 12 (AnalyzeDirect, Inc.).

The automated lung analysis application was devel-
oped using a commercially available machine vision soft-
ware library (Halcon 19.5 Progress, MVTec Software
GmbH), that offers a variety of pretrained networks,
based on known (AlexNet and ResNet [15, 16]) and pro-
prietary architectures for different purposes. Our appli-
cation combines three deep learning methods:
classification, object detection and segmentation. pCT-
images are converted to byte format prior to labelling
for training and for inference.

The first network sorts pCT images into classes with
specific parts of the lung, which are: not lung tissue, only
bronchi, top/front part, middle part, or bottom/rear part
of lung. The training set has about 4000 images from up
to 50 different uCT-stacks. We used images from ani-
mals of different ages and health conditions.

The second network is used for detecting landmarks
in pCT images to allow positioning of the biopsy. All
1630 images in the training set show at least parts of a
lung. In these images a rectangular box surrounding
breast and spline bone was drawn and marked with a
label.

In both cases image size is reduced to 224 x 224 pixel
during preprocessing. Augmentation includes a random
rotation around the middle from -10 to 10 degree, a
shift of up to 4 pixels in all directions and a brightness
variation of max 5%. Training was started with a
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momentum of 0.9, a weight decay of 0.001, and a decay-
ing learning rate from 0.001 to 0.00001 over 150 epochs.

A segmentation step was added for a visual control of
the lungs. This is also done with a deep learning approach.
The training samples for lung segmentation currently con-
sist of more than 680 images and were labeled manually.
Image size is kept at 512 x 512 pixel. Augmentation in-
cludes a random rotation around the middle from - 5 to 5
degrees, a shift of up to 10 pixels in all directions and a
brightness variation of max 5%. Training was started with
a momentum of 0.99, a weight decay of 0.001, and a
decaying learning rate from 0.0005 to 0.00003 over 2500
epochs.

We used Tibco Spotfire 7.11 for data reduction and
GraphPad Prism 8 for statistical calculations.

Results

Analysis of uCT images using analyze 12 is a semi-
automated process

Initially, we imaged bleomycin-treated mice and used
Analyze 12 for segmentation and analysis of the puCT
data. Images were generated in transversal, sagittal and
vertical direction (Fig. la — control lung; Fig. 1b — fi-
brotic lung). Corresponding histological views for the
same animals are provided in Fig. 1c and d (control and
fibrotic lung, respectively). Bleomycin-treated mice
showed an expected significant decrease in multiple lung
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function parameters (data not shown). The analysis of
these uCT images started with the segmentation of a
pCT stack into voxels belonging to airway and lung. It is
possible to achieve a complete representation of airways
and interstitial areas of the lung of healthy mice using
thresholding and morphological operations (Fig. 1la).
However, if the lungs are highly fibrotic, the fibrotic lung
tissue will have the same intensity values for soft tissue or-
gans like heart or liver. Thresholds set by the program for
lung tissue usually have lower values than soft tissue and
therefore highly fibrotic areas are not detectable in the
semi-automated segmented lung volume (Fig. 1b). Be-
cause of this threshold, the intensity histograms have an
upper limit at 1850 (corresponding to — 206 HU; Fig. 1e).

Setup of a DL approach to automatically segment and
analyze pCT images

We used a convolutional neuronal net for classification
(based on GoogLeNet) of specific parts of the lung in
the uCT images. We defined five classes: not lung tissue,
only bronchi, top/front part, middle part, or bottom/rear
part of lung (Fig. 2a). A confusion plot (Fig. 2b) shows
the performance of the trained network.

The number of slices belonging to each lung part class
and their location within each image stack varies (Fig. 2c).
About 60 to 100 slices belong to the middle part of the
lung (yellow dots in Fig. 2¢).

(b) a fibrotic lung using the Analyze 12. Histological overview of (c) a control and (d) a fibrotic lung using Masson Trichrome staining
(Magnification: 20x). e Densitometric histograms of lungs using threshold-based segmentation of control (blue) and fibrotic (red) lungs
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Fig. 2 Model development for analysis of uCT data using a deep-learning approach. a Example images for the five classes used for finding slices in
the “middle of the lung” and (b) a confusion plot to illustrate the classification performance. ¢ Plot of lung type class versus position in the uCT
stack. d Example image for the detection of breast (yellow square) and spine bone (blue square) used to fit the “biopsy” ROIs inside the chest
cavity and e a confusion plot to illustrate the detection performance. f Representative uCT images from class “middle of the lung” with
segmented tissue using the deep learning approach and the fitted two “biopsy” ROIs. Segmented uCT stack with lung tissue (green), airways

bottom

Because of changes in animal position in the puCT
scanner, the actual position of lung lobes in image stacks
is not fixed. Landmarks like spline and breastbone (yel-
low and blue box, respectively; Fig. 2d) can be found
with a neural network for object detection. A confusion
plot (Fig. 2e) shows the performance of the trained net-
work. With the coordinates from these two bones, we
get information about size, translation, and rotation of
the chest cavity in the image stack. This allows the posi-
tioning of two regions (green circles, Fig. 2f) in places
where lung tissue is expected. This process is restricted

to images belonging to class “middle part” of lung. The
“biopsy” covers 14 + 3% of lung volume.

We aimed to create a fully automated analysis algo-
rithm for puCT stacks independent of segmentation suc-
cess. Still, for a visual control of the lung status, the pCT
stacks were segmented in a 2D slice-by-slice technique
with the help of a convolutional neuronal net for seg-
mentation (based on resnet-50 architecture). Segments
were categorized in five classes (tissue, airways, bone,
background, and ignore). The outline of the segmented
lung and airway regions are used to generate a 3D
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representation for visual inspection of lung status. The
generated 3D representation shows the biopsy voxels as
blue objects within the lung lobes (Fig. 2g+h).

Densitometry analysis of results from the DL approaches

We obtained a segmented, but incomplete, lung volume
using our application. All voxels in that volume were used
to generate an intensity histogram to calculate values for
mean or mean lung attenuation (MLA), median, mode, full
width at half maximum (FWHM), skewness, and kurtosis
(Fig. 3a). In addition, we obtained two biopsy volumes, one
located in the left and one in the right lung. Here it is
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possible to calculate all features separately for each lung or
summed up for both (Fig. 3b; histogram for both lungs). We
excluded voxels from analysis that are segmented to airways.

Results of DL tool correlate with clinically relevant parameters
Usually the left lung is used for histological examination.
With our biopsy-based approach, we obtain uCT data
for both lungs. Correlation of Ashcroft score versus
voxel intensity mean (MLA) revealed an increase in
Pearson correlation coefficient from r =0.5789 for a
threshold-based segmentation to r =0.7477 for the
biopsy-based analysis. The correlation increases to r =
0.8330 (p <0.0001) when comparing only corresponding
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left lungs (Fig. 3c). The FWHM is frequently used for
analysis and correlation with the Ashcroft score was sig-
nificant (r = 0.6399, p < 0.0001; Fig. 3d). Marked in a dar-
ker color are data points from severely fibrotic lungs,
which do not show a typical histogram shape and have
more than one peak (Fig. 3b).

An alternative is the calculation of an area under the
curve (AUC) ratio. We calculate AUC in the intensity range
between 1000 and 1500 (normal tissue) and the intensity
range between 2000 and 2500 (highly fibrotic tissue). This
ratio is more sensitive than the MLA and a robust readout
for fibrotic lungs (r = - 0.7164, p < 0.0001; Fig. 3e).
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Calculated parameters from pCT such as the MLA
also correlate with lung function parameters such as
forced vital capacity (r = -0.79, p < 0.0001; Fig. 3f).

DL tool is applicable to different murine models of lung
disease

In a model of lung emphysema (Fig. 4a - healthy lung;
Fig. 4b - emphysematic lung) the histograms of affected
lungs are shifted to the left (Fig. 4c), representing a de-
crease in lung tissue density. Calculated pCT readout
parameters from histological sections shows a correl-
ation between MLI and MLA (Fig. 4d). Furthermore, the
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Fig. 4 Use of the automated analysis tool in other murine models of lung disease. a-d Results of uCT data analysis of a lung emphysema model. 3D
renderings of (a) a control and (b) an elastase-treated lung. ¢ Histogram of control (green) and elastase-treated (blue) lungs. d Correlation of
mean linear intercept vs. mean intensity of the whole lung. e-g Results of uCT data analysis of a LPS model. 3D renderings of (e) a control and (f)
a LPS-treated lung. g Densitometric histograms of control (blue) and LPS-treated (red) lungs
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treatment of mice using LPS did not result in changes in
the histogram compared to control animals (Fig. 4e — g).

Discussion

The CT is one of the key tools in diagnosing patients
with chronic lung diseases [17, 18]. Similarly, the puCT is
used for the analysis of lung structure alterations in
murine models of lung disease [19]. The tool presented
here overcomes the major limitations of state-of-the-art
software [7, 9]. It is fully automated and detects non-
aerated tissue, delivers same-day results and is compat-
ible with different mouse models of lung disease.

A fully automated and complete segmentation of
whole lungs, especially in case of large injuries, is chal-
lenging. There is a wealth of human lung scan data but
very little is reported for murine models [20, 21]. We
utilized deep learning to help segment lung tissue, bron-
chus and bone of murine samples. This approach allows
for inclusion of more fibrotic areas in the lung. The in-
tensity histograms do not show an upper limit like the
semi-automated histogram. With the biopsy volumes
placed in both lungs, we are able to automatically in-
clude larger portions of non-aerated tissue and integrate
these data into our analyses. The automated process also
removes any inter-person variability in uCT analysis. Im-
portantly, our results correlate with clinically relevant
readouts. Results from the LPS model show that stimu-
lation of murine lungs, which does not affect the stiff-
ness of the lung at the time of analysis [22], are not
detected as false-positive signal using our program.

In most cases, the intensity histograms of voxel inten-
sities will have a non-Gaussian shape with one peak and
calculation of skewness, kurtosis, and FWHM will give
meaningful data. Lungs with strong fibrosis may have a
second peak, generated from voxels representing dense
tissue. This affects features that are based on peak pos-
ition or shape. MLA is a more general and the most ro-
bust readout. An alternative for highly fibrotic lungs is
the AUC ratio. It balances the appearance of a second
peak in the histogram (loss of aerated tissue) and signifi-
cantly correlates with the Ashcroft score. Our analyses
were carried out with the raw intensity values of the
voxels. The (linear) transformation from voxel intensity
to Hounsfield units, not necessary for our analysis work-
flow, was only applied to the histogram graphs.

Although semi-automated analysis achieves similar
correlation with the Ashcroft score (data not shown)
when compared to our fully automated tool, the latter
required less time. Manual curation of lung volume seg-
mentation is an option to detect non-aerated tissue
using semi-automated programs [23], but results in a
significant increase of hands-on analysis time up to sev-
eral hours per mouse. Our tool requires only raw data
and a few minutes for the analysis of one image stack.
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Thus, it also facilitates longitudinal experiments, which
use multiple low-dose uCT measurements in a single
animal [9, 24].

The core of this labor-free automation is the use of
“computational biopsies” from the lung tissue. Proper
positioning of biopsy ROI is an essential part of the
whole application. A simple location range in the pCT
image stack is not appropriate, because of tolerances in
positioning of the animal in the scanner and in morpho-
logical differences of lungs. For locating the lung in the
uCT stack, we classified and sorted image slices into the
appropriate lung part.

The slices classified as “middle part” of lung then con-
tain two lung lobes. The location, orientation, and size
of the lung lobes in the pCT images is also not fixed. To
determine a correct place for the biopsy areas the loca-
tion of spline bone and breastbone is found with a DL-
based object detection. Their coordinates in space help
in the determination of appropriate biopsy locations.
The locations found in our “biopsies” resemble areas
that are similar to where lung biopsies are taken from
human patients [18, 25]. We tried networks of different
architecture (AlexNet, GoogLeNet, ResNet-50) without
noticeable difference in detection performance. How-
ever, the computational burden for training differs (from
35 to 80 min on an Nvidia GTX 1080ti GPU). First, a
workflow for reading and analyzing images, and writing
results has to be established. The integrated deep learn-
ing part is straightforward. Importantly, the tools re-
quired are not critical and open-source tools are also
applicable. The image processing toolbox used for this
application has full 3D object model capabilities but
does not support voxel-based image processing and dis-
play. Therefore, the graphical representation of seg-
mented lungs does not meet the normally expected
quality criteria but serves its purpose in quality control
and allows for a first impression of lung status. Add-
itionally, radiation due to the pCT measurements of the
animals can result in radiation-induced lung fibrosis.
However, exposure time and radiation dosage were
lower or equal to dosages previously reported to not in-
duce lung fibrosis in mice [9, 26, 27]. Therefore, radi-
ation applied to the animals will not affect the measured
lung tissue densities.

Conclusions

We here present a program, which allows for fully auto-
mated, timesaving pCT data analysis and the possibility to
detect non-aerated lung tissue. Previously available and
published programs only allowed for either automated
analysis of uCT data without detecting highly stiff areas
within the lung or required time-intense manual curation
in order to include these areas. Areas of dense tissue are
especially important when studying mechanisms involved
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in lung fibrosis as well as effects of potential antifibrotic
strategies in murine models. Additionally, we could show
that the here presented program also allows the analysis
of pCT data of different murine models of lung disease.
The here presented tool overcomes the disadvantages of
available programs by automatically detecting non-aerated
tissue and including these areas into the analysis.
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