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Abstract

Background: Particulate Matter (PM) is known to cause inflammatory responses in human. Although prior studies
verified the immunogenicity of PM in cell lines and animal models, the effectors of PM exposure in the respiratory
system and the regulators of the immunogenicity of PM is not fully elucidated.

Methods: To identify the potential effector of PM exposure in human respiratory system and to better understand
the biology of the immunogenicity of PM, We performed gene-expression profiling of peripheral blood
mononuclear cells from 171 heathy subjects in northern China to identify co-expressed gene modules associated
with PM exposure. We inferred transcription factors regulating the co-expression and validated the association to T-
cell differentiation in both primary T-cells and mice treated with PM.

Results: We report two transcription factors, IRF4 and STAT3, as regulators of the gene expression in response to
PM exposure in human. We confirmed that the activation of IRF4 and STAT3 by PM is strongly associated with
imbalanced differentiation of T-cells in the respiratory tracts in a time-sensitive manner in mouse. We also verified
the consequential inflammatory responses of the PM exposure. Moreover, we show that the protein levels of
phosphorylated IRF4 and STAT3 increase with PM exposure.

Conclusions: Our study suggests the regulatory activities of IRF4 and STAT3 are associated with the Th17-mediated
inflammatory responses to PM exposure in the respiratory tracts, which informs the biological background of the
immunogenicity of particulate matters.

Keywords: Particulate matters, Gene expression profiling, Allergic respiratory disease, Imbalanced T-cell
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Introduction
Particulate Matter (PM) is a major cause of air pollution
and a risk factor to public health. In 2015, 4.241 million
deaths worldwide are attributable to ambient particulate
matter [1], which is ranked the 6th of the 10 largest
hazard factors contributing to the global disability-
adjusted life-years (DALYs) [1]. Epidemiological studies
conducted in different regions of the world confirm that
PM is associated with elevated incidences of various
human diseases, including cardiovascular disease [2, 3],
lung cancer [4, 5], chronic obstructive pulmonary dis-
ease (COPD) [6], Atopic dermatitis (AD) [7, 8], hyper-
tension [9], type 2 diabetes [10], dry eye [11], allergic
rhinitis [12] and asthma [13].
PM is classified into three subtypes, PM2.5, PM10 and

ultra-fine particles (UFP), according to the aerodynamic
diameters. The physical-chemical properties of PM differ
according to the geological locations, the subtypes and
the sources. Most of the natural PM particles consist of
mineral dusts, metal and ammonium salts. Anthropo-
genic PM, however, consists mainly particles of black
carbon, various organic and inorganic residues of com-
bustion of fossil fuels or coals. PMs are generated from
oxidation of primary airborne pollutants such as sulfur
and nitrogen oxides, which is also known as secondary
particles [14]. Moreover, PM absorbs other airborne
molecules such as heavy metals, polycyclic aromatic
hydrocarbons (PAHs) in the surface.
Exposure to PM are proved to be toxic to humans.

Although the biological background of the toxicity of
PM is not fully elucidated, most evidences suggest
several biological processes are involved in the cells’
responses to PM. First, PM cause various immune re-
sponses in human tissues. In vitro and in vivo analyses
suggest that PM induces neutrophils, eosinophils as well
as macrophages by activating pro-inflammatory cyto-
kines, such as IL8, IL1β and GM-CSF, which trigger a
series of inflammatory responses. In addition, PM acti-
vates Th2-related cytokines (IL-33, ST2) while sup-
presses Th1-related cytokines (INF-γ), which leads to
the imbalance among T-helper cells. Two transcription
factors, GATA3 and T-bet are shown to be associated
with the responses to the exposure of PM in mice but
the observations are not statistically significant [15].
Moreover, exposure to PM also causes oxidative stress,
which is mediated by Nrf2 in the PIK3/AKT signaling
pathway [16]. Plus, PM also induces apoptosis and au-
tophagy via TNF-α and caspase signaling [17].
Respiratory tracts, which interact directly with inhal-

able PM, are the major site of PM deposition in human
body. Many prior evidences claim that the exposure is
associated with allergies in the respiratory tracts, such as
chronic obstructive pulmonary disease (COPD) [6], aller-
gic rhinitis [12] and asthma [13]. However, most of the

evidences are based on cell lines and mice; and less is
known about how cells react to PM exposure in human.
To fully assess the effects of PM on human respira-

tory tracts, we generated a peripheral blood gene-
expression profiles of a healthy population under PM
exposure; we developed an integrated method to infer
specific transcription factors that modulate T-cell re-
sponse to the PMs and verified the effects of PM on
T-cell differentiation in vitro and in vivo. Our study
reveals the biological background of the immunogen-
icity of PM and helps to understand the toxicity of
PM in allergic respiratory disease.

Materials and methods
Study cohort
The subjects are randomly chosen from healthy individuals
who were enrolled in physical examinations in three cities
in northern China, Beijing, Taiyuan and Shijiazhuang. All
subjects are from Chinese population without recorded
underlying diseases. The collection and usage of the pa-
tients’ peripheral blood sample has received written con-
sent. This study protocol and informed consent form were
overseen and approved by a steering committee, institu-
tional review boards of Xiamen University and the First
Affiliated Hospital of Xiamen University. All methods were
carried out in accordance with the relevant guidelines and
regulations.
The air quality record of the three cities during the

study period, including daily concentration of CO, SO2,
NOx, PM10 and PM2.5, is available from the Ministry of
Environmental Protection of the People’s Republic of
China (www.mee.gov.cn).

Gene expression profiling
Total RNA was isolated from human peripheral blood
mononuclear cells (PBMCs) and hybridized to the Illu-
mina single color Human BeadChip HT12 v4 whole gen-
ome expression array. The gene expression profiles were
analyzed using the “limma” package available in R-3.5.
Genes with significant detecting power (P < 0.05) were
selected for further statistical analyses.

Statistical analysis
Deriving co-expressed gene modules
We used weighted gene co-expression network analysis
(WGCNA) to generate a co-expression subnetwork of
genes from the expression profiles [18]. Then we calcu-
lated the Spearman’s rank correlation coefficients be-
tween the module eigengenes and the concentrations of
PM2.5, PM10 and other pollutants such as CO, SO2 and
NOx. We then used “TFactS” to predict transcription
factors of which the activity is significantly enriched in
each co-expression modules (FDR < 0.1) [19].
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Motif analysis
For each gene in a co-expressed module, we retrieved the
genomic DNA sequences corresponding to the DNaseI
hypersensitivity sites (DHS) located within 5 kilobases of
either side of the transcription starting sites (TSS). The
location of DNase I hypersensitivity sites are based on
Digital DNaseI Hypersensitivity Clusters from ENCODE
[20]. Then we used HOMER (version 4.9) to evaluate the
enrichment of known transcription-factor-binding motifs
[21]. As the activities of the transcription factors are tissue
specific, we only keep significantly enriched motifs (FDR <
0.1) in relevant T-cell types.

Particles
Ambient PM (aerodynamic diameter ≤ 10 μm) were col-
lected in an urban area of Xiamen, China using a high-
volume ultrafine particle sampler with a Zefluor filter.
After collection, PM was dehydrated and dispersed the
PM in 2mg/ml Sodium carboxymethylcellulose (CMC)
ultrasonically. A total of eight water soluble ions (Cl−,
NO3−, SO42−, Na+, NH4+, K+, Mg2+, and Ca2+) were ana-
lyzed by ion chromatography. A portion of filter sample
was digested for element measurement (K, Ca, Mg, Al, Fe,
Be, V, Cr, Mn, Ni, Cu, Zn, As, Se, Cd, Ba, and Pb) using
inductivity coupled plasma-mass spectrometry (ICP-MS)
(7700X, Agilent). An area of 0.49 cm2 punched from each
quartz filter was analyzed for organic carbon (OC) and
elemental carbon (EC) fractions using a DRI model 2001
carbon analyzer (Atmoslytic, Calabasas, CA).
To assess the proportion of PM2.5 and PM10 in our

sample, we studied the distribution of the diameters of
the particulates in the PM sample used for the in vivo
experiments by microscope observation.
In addition, the protease activity of PM was measured

by Protease Fluorescent Detection Kit (PF0100, Sigma)
following protocols described by the manufacturer. We
used the 50 ng and 30 ng Trypsin Control as the stand-
ard sample, and the loading concentration of PM sample
is 10 mg/ml. A reading equal to 120% of the value ob-
tained with the blank sample (0 ng trypsin) is considered
significant.

In vitro analysis
Single naïve CD4+ T-cells were isolated from the mouse
(BALB/c) spleen aged 8–10 weeks and purified by CD4
(L3T4) MicroBeads. Isolated CD4+ T-cells were stimulated
with 5 μg of plate-bound anti-CD3 and 1 μg/ml of soluble
anti-CD28.After co-cultivation with PM for 48 h, T-cell
differentiation was analyzed using BD LSRFortessa™ flow
cytometer following standard protocols (Additional file 1).

Animal model
Wild type BALB/c mice (female, 6–8 weeks) were ob-
tained from the Xiamen University Laboratory Animal

Center (XMULAC). All mice were maintained under
specific pathogen-free (SPF) condition. The animal ex-
periment was approved by the Institutional Animal Care
and Use Committee (Laboratory animal license: SYXK
(Min) 2018–0010) and was in accordance with good
animal practice as defined by the XMULAC (Xiamen
Univerisity Laboratory Animal Center).
Mice (BALB/c) were randomly divided into two

groups. The treatment group was given 40 μl PM sus-
pension (containing 100 μg PM) intranasally for 3 con-
secutive days, and the control group was given 40 μl
NaCl solution. All the mice were anesthetized through
nose with isoflurane before dripping.

Flow Cytometry analysis
We sacrificed the mice at 18 h, 24 h, 40 h, and 72 h after
the last nasal drip. Then we harvested the lung tissue
and collected the lymphocytes for flow cytometry ana-
lysis (Additional file 1).

ELISA, quantitative real-time PCR and Western blotting
We sacrificed the mice at 24 h after the last nasal drip. To
measure cytokines expression, we performed capture
ELISA for IL-17A, IL-21, IL-22, IL-4 and IL-13 in super-
natants of primary T-cells, blood and bronchoalveolar lav-
age fluid (BALF) from mice treated with PM suspension
by Meso-Scale Discovery (MSD) platform (K151VBK-1,
sensitivity < 0.6 pg/ml), univ-bio, Shanghai, China.
To measure the transcript levels of relevant genes (Irf4,

Batf, Stat3, IL-4), we performed quantitative real-time
PCR was performed using SYBR green-based reagents on
the ViiA 7 Real-Time PCR System (Life Technologies)
with primer pairs targeting the cDNAs of interests (see
Additional file 1: Table S1). All qPCR reactions were run
in duplicates and the resulted CT values were normalized
to β-actin (Additional file 1).
Phosphorylated and unphosphorylated STAT3 and IRF4

in mouse lung were separated by SDS-polyacrylamide gel
electrophoresis then western blotting was conducted using
IRF4 (D9P5H) Rabbit mAb, phospho-STAT3 (Tyr705)
(M9C6) Mouse mAb, STAT3 (124H6) Mouse mAb and
phospho-IRF4 (Phospho-Tyr122/125) antibody.

Results
Co-expressed gene modules correlated with PM exposure
We enrolled 171 healthy subjects from three cities in north-
ern China, namely, Beijing, Taiyuan and Shijiazhuang
(Fig. 1a). These cities are highly homogeneous in terms of
the geographic features and climatic conditions. To meas-
ure the exposure to the PM and other pollutants, we calcu-
lated the average concentrations of five pollutants
(PM2.5, PM10, CO, NO2, SO2) within 21 days preced-
ing the collection of the blood sample in each city
(Fig. 1b, see Additional file 1: Figure S1, and Table 1).
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According to the U.S. Environmental Protection
Agency (EPA) [22], 2012, the nation’s air quality stan-
dards for PM2.5 is 35 μg/m3. The concentration of
PM2.5 of the three cities during the study period
ranged from 13.20 μg/m3 to 4315.64 μg/m3, which was
classified as second-degree to sixth-degree pollution.
We retrieved gene expression profiles of the peripheral

blood mononuclear cells (PBMC) from the enrolled sub-
jects. In order to control for the clonal heterogeneity of
PBMC as well as other confounding factors in the tran-
scriptome, we decomposed the expression matrix using
a weighted clustering algorithm and yielded 18 co-

expressed gene modules (Fig. 1c) [18]. Each module rep-
resents a unique biological process corresponding to
specific cell types or exposure factors. Then we evalu-
ated the association between each co-expressed gene
module and the exposure levels of the five pollutants
(Fig. 1d). As a result, the pollutants are separated into
two different groups based on the response patterns of
the gene modules. PM2.5, PM10 and SO2 cause very simi-
lar effects in gene expression, which differ from those of
CO and NO2. In particular, we noticed two gene mod-
ules (“cyan” and “brown”) which are strongly associated
with high exposure level of PM (PM10 and PM2.5, PCC >
0.7, Fig. 1c); and another two modules (“blue” and
“turquoise”) strongly associated with low exposure level
(PCC < − 0.7, Fig. 1c). As PM2.5 and PM10 cause similar
effects in the transcriptome, we therefore refer both to
“PM exposure” in the following analyses.
To reveal the biological background of the co-expressed

modules strongly correlated with PM exposure, we anno-
tated the modules for enriched KEGG pathways (Table 2
and Additional datasets: Data S1 and Fig. 1e). As a result,

Fig. 1 Peripheral blood mononuclear cell (PBMC) expression profiling in a healthy population reveals co-expressed gene modules in association
with PM exposure. a, enrollment of healthy subjects from three cities in north China, Beijing, Taiyuan and Shijiazhuang; b, Three-week average
exposure level (μg/m3) of PM2.5 (left) and PM10 (right) of each enrolled subject from the three cities; c, PBMC gene expression profile generated
from the enrolled subjects; d, 18 co-expressed gene modules retrieved from the PBMC gene expression profiles with correlation coefficients to
the exposure levels of five major pollutants shown heat colors and e, integrating DNA motif, transcription factor activity and KEGG pathway to
infer transcription factors underlying the co-expressed gene modules (* P < 0.05, ** P < 0.01, *** P < 0.001)

Table 1 Summary of the subjects enrolled in the PBMC
expression profiling study

City Gender Age (year)

Female Male Median Min Max

BeiJing 15 (62.50%) 9 (37.50%) 29.5 23 48

TaiYuan 42 (80.77%) 10 (19.23%) 32 19 82

ShiJiaZhuang 35 (36.84%) 60 (63.16%) 43 21 80
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the module “cyan” significantly over represent the IL-17
signaling pathways (FDR = 0.000644); Cytokine-cytokine
receptor interaction (FDR = 0.00114). The module
“brown” instead, enriches for PD-L1 expression and PD-1
checkpoint pathway in cancer (FDR = 0.000397).

Transcription factors mediate the inflammatory responses
to PM exposure
Next, we seek to identify the transcription factors (TFs)
that regulate the co-expression of genes in response to
PM exposure. As the change in the expression levels of
the TF is difficult to detect, we first assessed the tran-
scription factor activities based on the enrichment of the
corresponding target genes present in each co-
expression modules (Table 2, and Additional datasets:
Data S3) [19]. From the modules positively correlated
with PM exposure, we retrieved we retrieved 29 (“cyan”)
and 7 (“brown”) TFs of which the target mRNAs are
significantly enriched (FDR < 0.1), including NFKB1

(“cyan”, FDR =0.00128), MYC (“brown”, FDR = 0.00147),
STAT3 (“cyan”, FDR = 0.0192) etc. From the modules
negatively correlated with PM exposure, we retrieved 35
(“blue”) and 100 (“turquoise”) significant TFs, including
MYC (“blue”, FDR =0.0008621), CREB1 (“turquoise”,
FDR = 0.0004673), SP1 (“turquoise”, FDR = 0.001402),
ETS1 (“blue”, FDR = 0.003448; “turquoise”, FDR =
0.01028), RUNX (“blue”, FDR = 0.081) and so on.
To further reveal the transcription factors underlying

the co-expressed modules, we resort to the DNA-
binding-motifs which are bounded by known TFs and
previously annotated in specific cell types [23]. For each
module, we divide the member genes into two subsets,
the “upregulated set” and the “down-regulated set”. We
evaluated the enrichment of 388 TF-binding motifs in
the DNase I hypersensitivity sites (DHS) in the poised
cis-regulatory regions (Additional datasets: Data S2) of
either set of genes (Additional datasets: Data S4). As a
result, we identified several enriched DNA motifs from

Table 2 Transcription factors (TF) underlying the co-expressed gene modules correlated with PM exposure (“cyan”, “brown”, “blue”
and “turquoise”). TFs of which the binding motifs are significantly overrepresented in the co-expressed gene modules (FDR < 0.1); or
the target genes are overrepresented in the eigen genes of each module (q-value < 0.05) are listed along with the KEGG pathways
enriched (FDR < 0.05) in each module

Co-
expressed
Modules

Binding motifs enriched in
upregulated genes

Transcription factor activities KEGG Pathway enrichment

cyan Nrf2(bZIP); NFkB-p65(RHD); n-Myc
(bHLH); PIF4(bHLH); RAR:RXR (NR); IRF
(bZIP,IRF)/Th17-BatF

NFKB1, RELA, JUN, NFIC, CEBPB, REL, CEBPD, SP1,
CTNNB1, CDX1, STAT1, DLX1, STAT6, RELB,
STAT3, DLX2, CEBPG, BCL6, PDX1, TFAP2A,
STAT2, GATA4, JUNB, GATA1, JUND, CREB1, YY1,
FOS, LEF1

Viral protein interaction with cytokine and
cytokine receptor; IL-17 signaling pathway;
Chemokine signaling pathway; Cytokine-
cytokine receptor interaction; Salmonella
infection; Rheumatoid arthritis; TNF signaling
pathway; Fluid shear stress and atherosclerosis;
Tuberculosis; NF-kappa B signaling pathway;
AGE-RAGE signaling pathway in diabetic
complications

brown HOXA2(Homeobox);
Hoxb4(Homeobox); STAT4(Stat);
Pax7(Paired,Homeobox); E2A(bHLH);
Stat3(Stat); STAT6(Stat)

MYC, SP1, TP53, STAT1, CEBPA, STAT3, HOXD3 PD-L1 expression and PD-1 checkpoint
pathway in cancer

blue FOXP1(Forkhead); Fli1(ETS); GABPA
(ETS); GATA3(Zf);RUNX-AML (Runt);
E2A(bHLH); ox2(HMG); ETS1(ETS);
Eomes(T-box)

MYC, TFAP2A, SP1, ETS1, SPI1, GLI2, USF1, SP2,
RELA, SP3, ELK1, POU2F2, REL, STAT3, POU1F1,
ETV4, RELB, FOXO3, NFKB1, USF2, RUNX1,
FOXO1, E2F1, CTNNB1, MYB, E2F6, MYBL2, RARA,
GLI1, PPARD, JUN, RARG, PAX6, NFYA, TP53

Viral protein interaction with cytokine and
cytokine receptor; ErbB signaling pathway;
Epithelial cell signaling in Helicobacter pylori
infection

turquoise Fli1(ETS), ETS1(ETS); ELF1(ETS);
Etv2(ETS); EABPA (ETS); Ets1-distal
(ETS); RUNX (ETS,Runt)

CREB1, RBPJ, SP1, MYC, ATF1, CREBBP, SPI1,
NFKB1, RELA, SREBF2, SREBF1, TP53, ETV4, E2F1,
EGR1, FOXO1, NOTCH1, TFAP2A, YY1, BRCA1,
BCL3, ETS1, TCF7L2, USF2, ATF6, JUN, STAT3,
ESR1, CREM, PPARA, SMAD1, E2F6, FOXO3,
PPARG, WT1, NFATC2, FLI1, RFX1, EGR4, OLIG1,
FOXP1, CEBPB, PPARD, CTNNB1, ELK1, STAT5B,
IRF9, STAT5A, ATF2, NFYA, GLI2, AR, USF1,
STAT1, RELB, ID1, MYBL1, POU2F2, SMAD3,
SMAD2, E2F4, ERG, FOXH1, CEBPA, REL, NFIC,
ARNT, FEV, POU1F1, SP3, HOXA5, CEBPE, RARB,
FOXO4, MYB, NFIA, NFATC1, SOX10, RARA,
NR2F2, MITF, GABPA, HBP1, RARG, STAT2,
SMAD4, HIF1A, NR1H2, NR1H3, TCF7, RUNX2,
ATF4, NFE2L2, TBP, HNF4A, JUNB, NR2F1, CEBPD,
GLI1, GATA1

Lysine degradation; RNA degradation; N-Glycan
biosynthesis; Ubiquitin mediated proteolysis;
Valine, leucine and isoleucine degradation;
Spliceosome; RNA transport; Hepatitis C;
Propanoate metabolism; Cytosolic
DNA-sensing pathway
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the co-expressed genes significantly correlated with PM
exposure, which are bounded by specific transcription
factors (q-value < 0.1, Tale 2). After removal of cell types
that are not related to PBMC, we noticed several tran-
scription factors that modulate the differentiation of T-
cells. For example, the upregulated set of the module
“cyan” overrepresents NRF2 motif (q-value = 0.0174) and
IRF4/BATF co-localization motif (q-value = 0.0534); the
upregulated set of the module “brown” overrepresents
STAT3 (q-value = 0.0901), STAT4 (q-value = 0.0408)
and STAT6 (q-value = 0.0903); the upregulated set of the
module “blue” overrepresents FLI1 (q-value = 0.0215)
and GATA3 (q-value = 0.0673). On the other hand, we
find no known binding motifs enriched in the “down-
regulated sets” of any co-expressed gene modules.
We compared the results of TF enrichment to the en-

richment of pathways in the modules. As a result, we
noticed six relevant transcription factors, which are
likely regulating the co-expression in response to PM ex-
posure. NFKB1 is enriched in module “cyan” for binding
motif, target transcripts as well as the corresponding
pathway. In the same module, we noticed another TF,
IRF4 (with its binding partner BATF), of which the bind-
ing motif and the corresponding pathway (IL-17 signal-
ing) are both significantly enriched. In module “brown”,
we found that the binding motif and the target transcript
of STAT3 are also significantly enriched. Finally, tran-
scription factors FLI1, ETS1 and RUNX are enriched in
module “blue” and module “turquoise” for both binding
motif and the target genes. Among the six transcription
factors, FLI1, ETS1 and RUNX are overrepresent in both
modules that are negatively associated with PM expos-
ure, hence the function is suppressed and are less likely
to be the effector. On the other hand, although NFKB1
enrichment is associated with high PM exposure, it is
known as a general regulator of inflammation and
widely reported for its role in diverse immune re-
sponses [24–26]. Therefore, we figure that IRF4 and
STAT3 are the likely effectors of PM exposure and
focus on the two genes in the following function vali-
dations. STAT3 is reported as effectors of PM expos-
ure by previous studies [12, 27–29], and both TFs are
known regulators of T-cells [30–38].

Exposure to PM influences T-cell polarization in vitro
The transcription factors enriched in the correlated co-
expressed gene modules strongly suggests that PM exposure
can influence the differentiation of T-cells. We then set out
to further verify the effects of PM on T-cell differentiation.
Before the functional analysis, we analyzed the physical

and chemical characteristics of the PM samples used for
functional analysis. As for the chemical compositions, the
major organic compositions of the particulate matters are
organic carbon (OC) and SO4

2−. The major metals are

Ca, Fe, Al, Mg, K (Table S2). The average proportion of
PM2.5 and PM10 in the PM sample is 0.75 (95%CI: 0.70–
0.80) and 0.22 (95%CI: 0.17–0.28), respectively (Fig. S2A,
B). Although prior study show that protease activity con-
tributes to the immunogenicity of PM by induction of
Th2 responses [39], there is no significant protease activity
(1.08-fold of the blank control) in the PM samples we
used at a concentration of 10mg/ml (Fig. S2C).
We treated mouse-derived naive CD4+ T-cells with

PM suspension and observed significantly increased
polarization of T-helper cell type 2 (Th2, 77.04%, P =
0.00690), type 1 (Th1, 13.52%, P = 0.0580), and type 17
(Th17, 6.02%, P = 0.0926). On the other hand, the
polarization of regulatory T-cells (T-reg) in the naive
CD4+ T-cells decreases with PM treatment (16.67%, P =
0.0130) (Fig. 2).
We further assessed the expression levels of the tran-

scription factors of which the binding motifs are over-
represented in the co-expressed gene modules positively
correlated with PM exposure. As a result, the expression
levels of Stat3, Irf4 and Batf significantly increase with
PM treatment (P < 0.05, Fig. 2c).
The change in the expression levels of Stat3 and Irf4/

Batf are consistent to the altered T-cell polarization in
naïve CD4+ T-cells. Together we hypothesize that Stat3
and Irf4/Batf are the potential effectors of PM exposure
and modulators of consequential T-cell polarization.

Exposure to PM influences T-cell polarization in vivo
To ascertain the impacts of PM exposure on T-cell
polarization in vivo, we treated healthy mice (BALB/c)
with PM suspension intranasally (Fig. 3a). In mouse lung
treated with PM, we observed infiltration of neutrophils
and lymphocytes into the terminal bronchiole and small
vessels (Fig. 3b), which correspond to significantly in-
creased inflammation score (P = 0.0006, Fig. 3c). Such
pathological changes are similar to the inflammatory re-
sponses in allergic respiratory diseases such as asthma. In
the bronchoalveolar lavage fluid, we observed consistent
increase in the number of neutrophils, lymphocytes and
macrophages (P < 0.05) but not eosinophils (Fig. 3d, e).
Then we assessed the polarization of Th1, Th2, Th17 and

Treg in mouse lung at different time points following the
treatment of PM suspension (Fig. 4a, see Additional file 1:
Figure S3). At 18 h, we observed significantly elevated Th17
activities (70.87%, P = 0.0367); followed by increased activ-
ities of Th1 and Th2 (143.57%, P = 0.0069 for Th1 and
81.55%, P = 0.0228 for Th2) at the 24 h. Finally, at 72 h we
noticed a significant Treg response and a restoration of
Th17. We also assessed the balance between Th1/Th2 and
Treg/Th17, respectively (Fig. 4b). As a result, Th1/Th2 bal-
ance remains relatively stable throughout 72 h. Treg/Th17
ratio drops to 0.532 at 18 h (P = 0.0221) then mount to
8.651 at the 24 h (P = 0.0442). The fluctuation in Treg/
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Th17 balance is mainly driven by the fast changing Th17
activities in the first 24 h following the treatment, which
also causes of the pathological changes in the airway.
Consistent to the changes in T-cell polarization, the

expression levels of Stat3 (P = 0.0286), Irf4 (P = 0.0038)
and Batf (P = 0.0002) are also significantly higher in the
mouse lung following the treatment of PM suspension
(Fig. 5a). We further assessed the expression levels of
the related interleukins in the bronchoalveolar lavage
fluid (BALF, Fig. 5b). As a result, the expression levels of
IL17A (P = 0.0079) is elevated in following the treatment
with PM suspension. The other two interleukins related
to Th17, IL21 and IL22 however show no significant
change. As for Th2 related interleukins in PM-treated
group, we observed a significant increase of IL4 (P =
0.0268) in lung tissue, but no significant change of IL4
and IL13 levels in the BALF (Fig. 5b). Finally, in the
mouse serum, we did not observe significant changes in
the cytokine levels that relate to the T-cell subtypes
aforementioned (see Additional file 1: Figure S4).

Stat3 and Irf4 signaling is involved in the Th2 and Th17
differentiation induced by PM
Base on both in vitro and in vivo evidence, we figure that
Stat3, Irf4 are potential effectors of PM exposure and
directly involved in the altered T-cell polarization.

Therefore, we moved on to verify that Stat3 and Irf4
functions in response to PM exposure at the protein
level. Stat3 and Irf4 are both known transcription factors
promoting Th2/Th17 polarization [40, 41]. We mea-
sured the protein levels of the activated form of Stat3
(phosphorylated-Stat3) and Irf4 (phosphorylated-Irf4) in
the lung tissue following the treatment of PM suspen-
sion. As a result, phosphorylated Stat3 significantly in-
creases in the lung tissues of mice 24 h following the
treatment (612.03%, P < 0.001). And phosphorylated Irf4
levels also show significant elevation following the treat-
ment of PM suspension (29.92%, P = 0.0294) (Fig. 6).
These results, together, suggest that Irf4 and Stat3 are
the main effectors of PM exposure thus modulate the
immunogenicity of particulate matters in the respiratory
tracts.

Discussion
The hazardous effects of particulate matters on human
health have been proved by prior studies from two
aspects. First, populational studies evaluate the health
effects from long-term survey confirm that exposure to
PM is associated with diverse diseases. Then empirical
studies use cell lines or animals to validate the acute
effects of PM. Many of these studies suggest that the
toxicity of PM is related to the immunogenicity [42], but

Fig. 2 PM exposure alters T-cell polarization in vitro. a, flow cytometry analysis based on selected markers showing altered differentiation of Th1
(INFg, upper left), Th2 (IL4, IL13, lower left), Th17 (IL17, upper right) and Treg (FOXP3, lower right) in response to treatment with PM suspension
(“PM”) as compared to control; b, the percentage of four T-cell subtypes with standard error are compared between PM-treated naïve T-cells and
control; c, the expression levels of three predicted T-cell related transcription factors are compared between PM-treated naïve T-cells and control
using qPCR (* P < 0.05, ** P < 0.01, *** P < 0.001)
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few verified the biological mechanism in human subjects
[43]. Here we conducted peripheral blood gene expression
profiling in a healthy population in northern China. Our
data shows that exposure to PM causes systematic effects
in the transcriptome and we identified sets of co-expressed
genes which strongly correlate with the level of exposure.
We then described a method integrating multi-level

information to infer the transcription regulators driving
the co-expressed gene modules strongly associated with
PM. We report three transcription factors as effectors of
PM exposure: NFkB and STAT3 are previously reported
by in vitro analysis [44, 45]; IRF4, however, is reported
for the first time to regulate in the immune responses to
PM. IRF4 is known as a regulator of T-cell differenti-
ation which is activated by NFkB, NFAT and TLR4 sig-
naling [46–51]. Plus, IRF4 is involved in various
inflammatory responses to microbial pathogens such as
muramyl dipeptide (MDP) or lipopolysaccharide (LPS).
Whether IRF4 is activated by PM through the same sig-
naling modules still remain to be elucidated.

Our analyses demonstrate that the activation of Stat3 and
Irf4 are associated with Treg/Th17 imbalance in response
to PM treatment. The imbalance of Th17 and Treg is im-
plicated in many allergic diseases in respiratory system [52,
53]. Especially, Th17 mediated inflammatory responses are
crucial for the onset, exacerbation and control of Asthma
and Chronic Obstructive Pulmonary Disease [54–59]. The
role of STAT3 in Treg/Th17 imbalance in widely reported
for allergic diseases. STAT3 activate Th17 upon IL-6 and
IL-23R signaling and degrade by ubiquitination [60–62].
STAT3 is a known effector of PM [63–65]; IRF4 is also
known for its function in Asthma by activating Th17
through regulation of chromatin accessibility but not for
the role in response to PM exposure [66, 67]. Together our
data suggest a potential risk of PM exposure to allergic
respiratory diseases and regulators of Th17/Treg imbalance
are likely effectors of PM.
There are other T-cell subtypes are also associated

with the inflammatory responses to PM but lack of con-
sistent evidences from in vitro validation in our data. For

Fig. 3 Intranausal PM exposure causes inflammatory responses in mouse lung in vivo. a, the schematic view of the animal experiment, each group of
six BALB/c mice were treated with PM suspension for 3 days before the lung tissue, BALF and serum were collected and analyzed; b, inflammatory
alterations are observed in mouse lung following intranosal treatment of PM suspension; c, comparison of the pathological inflammation score in
mouse lung tissue with and without PM treatment; d, Giemsa stain of cells in BALF from mice with and without PM treatment; E, the number of
inflammation cells in BALF, include eosinophils, neutrophils, lymphocytes and macrophages. (* P < 0.05, ** P < 0.01, *** P < 0.001)
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Fig. 4 PM exposure alter T-cell polarization and cause Treg/Th17 imbalance in vivo. a, baseline-adjusted Th1, Th2, Th17 and Treg levels in mouse
lung at 18 h, 24 h, 40 h and 72 h following PM treatment, respectively. Each treatment group contains six BALB/c mice; b, the Levels of each T-cell
subtype are compared at each time point between PM-treated group and the control group; c, baseline-adjusted Th1/ Th2, Treg/Th17 ratios in
mouse lung at 18 h, 24 h, 40 h and 72 h following PM treatment; d, the ratios of Th1/Th2, Treg/Th17 are compared between PM-treated group
and the control group at each time point (* P < 0.05, ** P < 0.01, *** P < 0.001)

Fig. 5 Predicted transcription factors of T-cell differentiation which are associated with PM exposure and the related cytokines change
consistently in response to PM treatment in vivo. a, the expression levels of T-cell related transcription factors (Irf4, Batf4, Stat3) and IL-4 in mouse
lung are measured using qPCR and compared between PM-treated group and the control group. Each treatment group contains six BALB/c
mice; b, T-cell differentiation related cytokines in bronchoalveolar lavage fluid are measured using ELISA at 24 h following the treatment and
compared between treatment group and control group (* P < 0.05, ** P < 0.01, *** P < 0.001)
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example, Treg activity decrease after 48 h in response to
PM treatment in primary T cell culture but show no sig-
nificant change in mice. Such inconsistent observations
are attributed to the difference of in vitro and in vivo
analysis, as the latter is influenced by more complexed
effects and is more likely to represent the real biological
activity. In addition, our data demonstrate the time-
course of T-cell responses following the exposure to
PM, which suggest the T cell responses reaches a steady
state through an interactive process.
Quantification of the exposure level of PM in a real-

world cohort is subject to various confounding effects
from environmental to behavioral factors. In this study,
we use three-week average concentration of the PM. As
prior epidemiological studies observed the strongest
effects of PM exposure between 5 to 21 days [68]. More-
over, many in vitro studies reveal the full effects of PM
exposure on T-cell differentiation in a course of 2–3
weeks [69]. finally, a three-week lag also minimizes pos-
sible carry-over effects from previous exposure [70].
The expression profiles from PBMC consist tran-

scripts from multiple cell types. Here we performed
conformity-based decomposition of the expression
profile to account for the latent heterogeneity and re-
trieved gene modules representing specific biological pro-
cesses. While our studies predicted and validated some of
the major effectors of PM exposure, there may be other
effectors yet to be discovered from larger cohort.
The current study does not address the variations of

the physical-chemical properties in the PMs from

different sources, which eventually influence the im-
munogenicity of PM. The PM samples used in this study
are mostly originated from combustion of fossil and biomass
fuels. Some molecules such as the heavy metals, polycyclic
aromatic hydrocarbons are absorbed by the particles and
cause immune responses [71]. Protease activity is known to
induce Th2 responses but doesn’t present in the samples we
used. This can be caused by the sample collection and prep-
aration. On the other hand, it also suggests that other factors
contribute to the immunogenicity of the PM.
Finally, the roles of the T-cell regulators in response to

PM need to be validated empirically in animal models
with deficient STAT3 and IRF4. The current study high-
lights STAT3 and IRF4 as possible effectors of PM
exposure and inform future functional analyses to reveal
the biological and pathological background of PM
caused respiratory allergy.

Conclusions
In summary, we demonstrate the transcriptional effects of
PM exposure in a healthy population and verified the corre-
sponding regulatory activities of IRF4 and STAT3 using cell
and animal models, which further inform the molecular
basis of the immunogenicity and pathogenicity of PM. In
addition, our results provide useful clues to clinical man-
agement for PM-associated allergic respiratory diseases.
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Fig. 6 The levels of phosphorylated Stat3 and Irf4 increases in mice lung
tissues in response to PM exposure in vivo. Two groups of six BALB/c
mice were treated with PM suspension for 3 days then after 24 h the lung
tissue were collected for Western Blot assay. a, Western Blot showing the
protein expression levels of phosphorylate-Stat3 (pStat3), un-phospho-
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