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Abstract

Background: Lower respiratory tract (LRT) microbiome has been reported to associate with pulmonary diseases.
Unregulated inflammation is an underlying cause of variable lung diseases. The lung microbiome may play an
important role in the smoking-induced inflammatory lung diseases. What’s more, the function of microbiome may
be more important for understanding how microbes interact with host. Our study aims to explore the effects of
smoking on the lower respiratory tract microbiome, the association between variation of lower respiratory tract
microbiome and inflammation and whether smoking exposure changes the function of lower respiratory tract
microbime.

Methods: Forty male mice were randomly divided into smoking group and non-smoking group, and the smoking
group was exposed to cigarette smoke for 2 h per day for 90 days. After experiment, the blood samples were
collected to measure the concentration of interleukin-6 (IL-6) and C reactive protein (CRP) by ELISA. Lung tissue
samples were used to detect the community and diversity of lower respiratory tract microbiome through 16S rRNA
gene quantification and sequencing technology. ANOSIM and STAMP were performed to analyze the differences of
the microbial community structure between smoking group and non-smoking group. SPSS 24.0 software was used
to analyze the correlations between microbiome and inflammation mediators through scatter plots and Spearman
correlation coefficient. Microbial metabolic function was predicted by PICRUSt based on the 16 s rRNA gene
quantification and sequencing results. PATRIC database was searched for the potential pathogenic bacteria in lower
respiratory tract.
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Results: Our results suggested that smoking had markedly effects on the microbiota structure of lower respiratory
tract based on Bray-Curtis distance (R2 = 0.084, p = 0.005) and on unweighted uniFrac distance (R2 = 0.131, p = 0.002).
Smoking mainly affected the abundance of microbiome which belong to Proteobacteria phyla and Firmicutes phyla.
Moreover, our results also found that smoking increased the abundance of Acinetobacter, Bacillus and
Staphylococcus, which were defined as pathogenic bacteria. Inflammatory mediators were observed to associate
with certain microbiome at every level. Most of microbiome which were associated with inflammation belonged to
Proteobacteria phyla or Firmicutes phyla. Moreover, we found that the decreased microbiome in smoking group,
including Oceanospirillales, Desulfuromonadales, Nesterenkonia, and Lactobacillaceae, all were negatively correlated
with IL-6 or CRP. Based on the level of inflammation, the abundance of microbiome differs. At genus level,
Lactobacillus, Pelagibacterium, Geobacter and Zoogloea were significantly higher in smoking group with lower IL-6
concentration. The abundance of microbiome was not observed any statistical difference in subgroups with
different weight. Three dominant genus, defined as pathogen, were found higher in the smoking group. The
microbial functional prediction analysis revealed that ABC-type transport systems, transcription factors, amino acide
transport and metabolism, arginine and proline metabolism et al. were distinctively decreased in smoking group,
while the proportions of replication, recombination and repair, ribosome, DNA repair and recombination proteins
were increased in smoking group (q < 0.05).

Conclusions: Members of Proteobacteria phyla and Firmicutes phyla played an important role in the microbial
community composition and keeping a relatively balanced homeostasis. Microbiome dysbiosis might break the
balance of immune system to drive lung inflammation. There might exist potential probiotics in lower respiratory
tract, such as Lactobacillaceae. The altered function of Lower respiratory tract microbiome under smoking exposure
may affect the physiological homeostasis of host.
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Background
There exist complex microbial communities in human
body and the complementary functions of microbiome are
vital to maintain the host physiological homeostasis, such
as helping in absorbing nutrition, resisting pathogens, de-
generating toxicant and regulating immune system [1, 2].
Recently, the gut microbiome has attracted much atten-
tion and even been viewed as a virtual organ, because
many studies demonstrate that the gut microbiome could
affect the human health in direct or indirect ways [3, 4].
For example, Helicobacter pylori contributes to the peptic
ulcers and increases the risk of gastric cancer [5]. But due
to the conception that the lower respiratory tract (LRT) is
sterile, the lung microbiome has received less attention
compared with the gut. However, as the rapid develop-
ment of high-throughput next generation sequencing,
culture-independent methods, many studies identify that
LRT is colonized by a vast number of microbes which is
also distinctive to the microbes of upper respiratory tract
[6]. Furthermore, the global change in microbial commu-
nity structure and changes of abundance and diversity of
LRT microbiome are associated with pulmonary disease
such as chronic obstructive pulmonary disease (COPD),
asthma, cystic fibrosis (CF) and lung cancer [7–9].
Tobacco smoking is one of the prime risk factors for

many diseases and linked to 6 million deaths every year
[10], but the underlying mechanism remains unclear. We
all know that pathogenic bacteria can cause local or

systemic inflammatory responses. Equally, smoking can
also lead to chronic inflammation [11]. Inflammation
played an important role in destroying the invaded patho-
genic bacteria and protecting the organisms. But unregu-
lated inflammation is an underlying cause of variable
diseases [4, 12]. For example, inflammation of the gut in-
duces carcinogenic mutagenesis and promotes the happen
of colorectal cancer [13]. Our previous study shows that
higher microbial diversity is observed in the smoking group
and some genus are less in smoking group [14]. Accumu-
lating studies show that the lung microbiome are associ-
ated with pathology of the respiratory tract. So we
hypothesize that the microbiome may play an important
role in the smoking-induced inflammatory lung disease.
We speculate that microbiome dysbiosis or specific mem-
bers of LRT microbiome might participate in the process-
ing of host inflammation and promote the development of
lung diseases through underlying mechanisms. It is prob-
ably due to the poor nutrient status in LRT, the number of
microbial communities is relatively lower in healthy lungs
[15]. Among, a number of microbiome can not be cultured
or classified and the feature and function of these micro-
biome are also unknown. Moreover, a growing number of
studies show that compared with microbial composition,
the function of microbiome is more important for under-
standing how microbe interact with environmental condi-
tion and host [16, 17]. The Human Microbiome Project
also shows that the function of microbiome remains
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relatively stable, despite of dramatic variations in the com-
munity structure [18]. So it is necessary to explore how the
variation of function of LRT microbiome affects the patho-
logical process of lung disease.
In the present study, we established mice models that

exposed to cigarette smoke for 90 days to investigate
how the microbiome hosted in the LRT evolved under
smoking environment and interacted with host in the
development of chronic pulmonary disease by using 16S
rRNA gene sequencing, Spearman correlation analysis
and Phylogenetic Investigation of Communities by Re-
construction of Unobserved States (PICRUSt) functional
prediction. We aimed to answer three questions: 1) How
smoking shaped the community composition of LRT
microbiome? Which microbiome did smoking affect
most? 2) Is the variation of LRT microbiome associated
with inflammation response? 3) Dose smoking exposure
change the function of LRT microbiome?

Materials and methods
Study design
Animals used in this experiment are totally 40 male
kun-ming mice, 8 weeks old, body weight 20-22 g. All
mice were brought from Experimental Animal Center,
Chongqing Medical University. Animals were randomly
distributed into smoking group and non-smoking group,
20 mice in each group. Mice in smoking were exposed
to cigarette (Brand name: ‘Five Cattle’) smoke for con-
secutive 90 days, with 14 cigarettes/day, 2 h each time.
Each cigarette contains 1.0 mg nicotine. Smoke exposure
was conducted in the HOPE-MED 8050 Dynamic Poison
Control System (From Hepu Industry of Tianjin, China)
and the non-smoking group only feed with water and
fodder [19]. Weight was recorded on Tuesday and Satur-
day every week, activity and diet were observed everyday.
At the end of our experiment, 36 mice survived (with 18
mice in each group). Mice were decapitated in a sterile
laboratory to collect blood, then the chest cavity were
dissected to obtain the lung tissue. The right and left lung
lobe were kept separately. Taking right lung tissue stored
in −80 °C until microbiome sequencing conducted. Blood
was centrifuged (3500 rpm, 10min) immediately, serum
which obtained and stored in −80 °C were used for ELISA.
All animals were treated according to the approved proto-
cols for the BCM Institutional Animal Care and Usage
Committee.

Enzyme linked immunosorbent assay (ELISA) analysis
According to the manufacturer’s instructions, serological
analysis was performed to measure serum IL-6 and CRP
levels. IL-6 was determined by IL-6 ELISA kits (Cat.#:
CK-E20012M,48 T) and CRP was quantified by CRP
ELISA kits (Cat.#:CK-E30459M,48 T). All serum samples
were obtained from mice and stored at −80 °C. Firstly,

standards and samples were added to the microelisa
stipulate respectively (50ul standards were added to the
standard well, and 10ul testing sample and 40ul sample
diluent were added in sample well). Then, added 100ul
HPR-conjugate reagent to each well, covered with adhe-
sive strip and incubated for 60 min at 37 °C incubators.
Then each well was aspirated and washed by wash solu-
tion (400ul), and repeated this process four times for a
total of five washes. Chromogen solution A and Chromo-
gen solution B were added to each well and incubated for
15min at 37 °C in incubators protected from light. Finally,
stop solution was added to each well, and optical density
(O.D.) was measured at 415 nm by using the standard mi-
croplate reader (ELx808). The unit of IL-6 is pg/ml, ng/ml
for CRP.

Analysis of microbial community
Microbial DNA was extracted, amplified, sequenced as
previously described [20–22]. Genomic DNA of lung
samples was extracted using E.Z.N.A.® Soil DNA Kit
(Omega Bio-tek, Norcross, GA, U.S.). For the V4-V5 re-
gion of the bacterial 16S ribosomal RNA gene amplify-
ing, the reaction cycle parameters were as follows: 95 °C
for 2 min, followed by 25 cycles at 95 °C for 30 s, 55 °C for
30 s, and 72 °C for 30 s and a final extension at 72 °C for 5
min. The used primer sequences were: 515F 5′-barcode-
GTGCCAGCMGCCGCGG-3′ and 907R 5′-CCGTCAAT
TCMTTTRAGTTT-3′ where the barcode was an eight-
base sequence unique to each sample. The PCR reactions
mixture contained 4 μL of 5 × FastPfu Buffer, 2 μL of 2.5
mM dNTPs, 0.8 μL of each primer (5 μM), 0.4 μL of
FastPfu Polymerase, and 10 ng of template DNA. Agarose
gels were used for purification of the amplified product
with the AxyPrep DNA Gel Extraction Kit (Axygen Bio-
sciences, Union City, CA, U.S.). DNA concentration was
measured using QuantiFluor™ -ST (Promega, U.S.).

Library construction and sequencing
Purified PCR products were determined using Qubit®3.0
(Life Invitrogen). The every 24 resulting amplicons
whose barcodes were specific were mixed equally for
Illumina Pair-End library construction according to Illu-
mina’s genomic DNA library preparation procedure.
Then the paired-end sequenced (2 × 250) on an Illumina
HiSeq platform was used for amplicon library based on
the manufacturer’s instructions.

Processing of sequencing data
Raw data was processed using QIIME (version 1.17).
Filter Data was obtained after a preliminary analysis of
the raw data. And there were following criteria: (1) Filter
the base which was truncated at the tail with quality
score below 20, and discard the read with quality below
50 bp. (2) Permitting barcode matching is 0, maximum
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primer mismatch is 2 and ambiguous reading characters
all were deleted. (3) Only sequences that overlap longer
than 10 bp could be assembled with their overlap se-
quence, reads that could not be assembled were removed.

Statistical analysis
According to the Standard Operating Procedure, inflam-
matory mediators were analyzed using SAS 9.1.which
indicated a minimum sequence length of 250 bp was
used to MiSeq sequence [23, 24], sequenced data were
processed and analyzed using Mothur v.1.21.1 [25]. P < 0.05
was considered a statistical significance. Operational taxo-
nomic units (OTUs) were defined at a cutoff of 97% with
the use of UPARSE 7.1 and UCHIME was used to select
chimeric sequences. After filtering of the chimeric se-
quences, bacterial community analyses based on 16S rRNA
genes were performed using RDP Classifier (http://rdp.cme.
msu.edu/) against the silva (SSU129)16S rRNA database
with confidence threshold of 70% [26].
Effect of smoking on the microbial community

structure was reflected by ANOSIM which contained
unweighted UniFrac distance and Bray-Curtis dis-
tance. *P-value< 0.05 was noted to a significant differ-
ence. STAMP was used to analyze the significant
difference microbial community and the main reason. P-
value <0.05 was considered as statistical significance.
Spss24.0 (IBM Corp, Armonk, NY, USA) was used to
analyze the correlation between inflammatory mediators
and microbial community. Data was expressed as percent
or mean ± standard deviation (SD). The correlations be-
tween microbiome and IL-6 or CRP were analyzed by
making scatter plots and Spearman bivariate correlation.
P-value <0.05 was considered as an indication of signifi-
cant difference. The t-test was performed to analyze the
difference of microbiome in two independent groups. The
microbial metabolic function was predicted by PICRUSt
with three KEEG levels which based on 16S rRNA gene
sequence [27]. PATRIC database was searched for poten-
tial pathogenic bacteria in lower respiratory tract.

Result
Microbial community profiles in the lower respiratory
A total of 1879 Operational Taxonomic Units (OTUs)
were identified with the criterion of 97% sequence simi-
larity. The OTU distribution of the LRT microbiome re-
vealed 157 OUTs were observed in more than 50%
samples and 37 OUTs in all samples. These OUTs were
considered core microbiome (Additional file 1: Figure S1).
Microbiome can be divided into phyla, class, order, family,
genus, and species according to the level, and our analysis
are also based on the levels. We further investigated the top
30 genus which mainly belong to the Proteobacteria, Firmi-
cutes and Actinobacteria. Halomonas (20.99%), Sphingomo-
nas (6.21%), Lactobacillus (5.52%), Pelagibacterium (4.51%)

were the dominant genus in both smoking and non-
smoking group (Additional file 1: Figure S2).

Effect of smoking on the microbial community structure
in lower respiratory tract
To reveal the impact of smoking on the microbiota
structure, we computed the distance within groups or
among groups. The boxplot showed a higher dissimilar-
ity within smoking samples than within non-smoking
samples whether based on Bray-Curtis distance or based
on (unweighted / weight) uniFrac distance (Additional
file 1: Figure S3. A, B, C). For qualitative result, we fur-
ther used Anosim analysis to discuss the variation of mi-
crobial community structure (Additional file 2: Table S1).
The result revealed that the microbial community struc-
ture of the smoking group was significantly different from
that of non-smoking group based on Bray-Curtis distance
(R2 = 0.084, p = 0.005) and on unweighted uniFrac dis-
tance (R2 = 0.131, p = 0.002). However, the differences
were not significant based on weighted uniFrac distance
(R2 = 0.019, p = 0.202). These results suggested that smok-
ing had markedly effects on the microbiota structure of
lower respiratory tract and the smoking group tended to
show greater individual differences.

Effect of smoking on the microbial composition in lower
respiratory tract
Besides the overall microbial community structure, we also
explored the change of microbial composition in lower re-
spiratory tract under smoking exposure. At phylum level,
after filtering the relative abundance lower than 0.2% in
any groups, 7 phyla were identified. Proteobacteria, Firmi-
cutes, Actinobacteria and Bacteroidetes were the dominant
microbial phyla (the relative abundance >1%). There were
no significant differences between two groups (P > 0.05)
(Additional file 2: Table S2). At class level, after filtering
the relative abundance lower than 0.2% in any groups, 15
classes were identified. Gammaproteobacteria, Alphapro-
teobacteria, Bacilli, Betaproteobacteria, Clostridia and
Actinobacteria (the relative abundance >5%) were the pre-
dominant classes in two groups, but smoking did not
distinctly affect these dominant classes (P > 0.05). However,
the relative abundance of Deltaproteobacteria (1.13%
vs. 1.43%) and Chloroplast (0.55% vs. 1.53%) signifi-
cantly decreased in smoking group (P < 0.05) (Add-
itional file 2: Table S3). The effects of smoking
exposure on lower respiratory tract microbiome re-
quire more data from other levels.
In order to investigate what kinds of bacteria in lower

respiratory tract was affected by smoking. We further
analyzed the composition from order to species level.
The relative abundance lower than 0.5% in any groups
were filtered, a total of 22 orders and 35 families were
identified. Oceanospirillales, Lactobacillales, Rhizobiales,
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Clostridiales, Sphingomonadales, Pseudomonadales, Bur-
kholderiales, Bacillales were dominant orders, and Halo-
monadaceae, Sphingomonadaceae, Moraxellaceae and
Lactobacillaceae were four dominant families (the rela-
tive abundance >5%) (Additional file 2: Table S4, S5).
The result showed that smoking decreased Oceanospiril-
lales, Enterobacteriales, Desulfuromonadales and Chloro-
plast_norank ratio at order lever (P < 0.05). Furthermore,
seven families including Lactobacillaceae, Enterobacteri-
aceae, Phyllobacteriaceae, Geobacteraceae, Chloroplast_
norank, Oxalobacteraceae and Burkholderiaceae in
smoking group were markedly different from Non-
smoking group (P < 0.05). Among the seven families, the
abundance of Oxalobacteraceae in smoking group was
significantly increased, but the other six families in
smoking group were significantly decreased.
On the genus level, after filtering the relative abun-

dance lower than 0.5% in any groups, 34 genus were
detected. The most abundant genus were Halomonas,
Sphingomonas and Lactobacillus (>5% abundance).
We further found that many genus were significantly
decreased in smoking group including Lactobacillus,

Kluyvera, Nesterenkonia and Mesorhizobium et al., but
there were only two genera increased including Trichococ-
cus and Escherichia-Shigella (P < 0.05) (Additional file 2:
Table S6). Similar to the above comparison in the genus
level, a total of 37 species were detected. Eight species
decreased in smoking group such as Streptococcus
gallolyticus subsp.macedonicus, kluyvera ascorbata and
Mesorhizobium_Unclassified while only 3 species in-
creased in smoking group including Streptococcus_un-
cultured bacterium, Trichococcus_uncultured bacterium
and Escherichia-Shigella_Unclassified (P < 0.05) (Add-
itional file 2: Table S7).
We also concluded the classification of microbe with

significant changes (Table 1). The results showed that
smoking mainly affected microbe belonging to the
Enterobacteriales, Desulfuromonadales and Phyllobac-
teriaceae, which all were members of Proteobacteria
phyla. Smoking also influenced the abundance of mi-
crobe classified as the Lactobacillaceae and Streptococ-
cus, which were members of Firmicutes phyla.
Finally, we examined the potential pathogenic bacteria

in mice. PATRIC database records pathogen bacteria of

Table 1 Taxonomy of microbe with significant changes in two groups

Phylum Class Order Family Genus Species

Proteobacteria Gammaproteobacteria Oceanospirillales

Enterobacteriales Enterobacteriaceae Kluyvera Kluyvera ascorbata

Escherichia-Shigella Escherichia-Shigella_
Unclassified

Enterobacter Enterobacter_Unclassified

Raoultella Raoultella_Unclassified

Deltaproteobacteria Desulfuromonadales Geobacteraceae Geobacter

Betaproteobacteria Burkholderiales Oxalobacteraceae

Burkholderiaceae

Alphaproteobacteria Rhizobiales Phyllobacteriaceae Mesorhizobium Mesorhizobium_Unclassified

Phyllobacteriaceae_
uncultured

Phyllobacteriaceae_uncultured
bacterium

Caulobacterales Caulobacteraceae Caulobacteraceae_
Unclassified

Caulobacteraceae_Unclassified

Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus Streptococcus gallolyticus subsp.
macedonicus

Streptococcus_uncultured
bacterium

Carnobacteriaceae Trichococcus Trichococcus_uncultured
bacterium

Lactobacillaceae Lactobacillus

Bacillales Paenibacillaceae Brevibacillus

Clostridia Clostridiales Clostridiaceae 1 Clostridium sensu
stricto 6

Cyanobacteria Chloroplast Chloroplast_norank Chloroplast_norank Chloroplast_norank Chloroplast_Unclassified

Actinobacteria Actinobacteria Micrococcales Micrococcaceae Nesterenkonia

The bold microbiome are statistically different between smoking group and non-smoking group
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humans. Since microbiome communities in LRT are
similar between humans and mice, we also examined po-
tential pathogenic genus by PATRIC database. Three
genus were defined as pathogenic bacteria among the
dominant genus, including Acinetobacter, Bacillus and
Staphylococcus. Although without statistical difference,
these 3 genus stated a higher abundance in smoking
group than non-smoking group. It indicated smoking in-
creased some pathogen bacteria.

The association between variation of LRT microbiome and
inflammation
To explore the relationship among smoking, variation of
LRT microbiome and inflammation in mice, we chose two
main inflammatory mediators (IL-6 and CRP). Smoking in-
creased inflammation although without statistical difference.
We further discussed the association between inflamma-

tory mediators and variation of LRT microbiome from
phyla to species level. Correlation coefficients were shown
in Additional file 2: Table S8-S13. At phylum level, Acido-
bacteria and Planctomycetes in smoking group showed
strong correlation with CRP. No obvious correlation was
observed between IL-6 and other phylum in smoking
group. As for non-smoking group, there existed no correl-
ation between inflammatory mediators and any phylum.
At Class level, only Deltaproteobacteria in smoking group
was strongly correlated with IL-6 and the correlation was

not obvious for CRP. Still, there was no any correlation
between inflammatory mediators and Class members in
non-smoking group. Three Order members in smoking
group, including Oceanospirillales, Desulfuromonadales
and Rhodocyclales, were observed to correlate with IL-6.
Four Family members in smoking group, including Halo-
monadaceae, Lactobacillaceae, Geobacteraceae and Rho-
docyclaceae, showed strong correlations with IL-6 and the
Ruminococcaceae Family in smoking group was correlated
with CRP. No correlations were observed in non-smoking
group at Order or Family level.
At genus level, Nesterenkonia and Geobacter showed

strong correlation with IL-6 and Clostridium sensu stricto
1 was correlated with CRP in smoking group, while Lacto-
bacillus showed the strongest correlations with both IL-6
and CRP. None of the genus showed any correlation with
IL--6 or CRP in non-smoking group. At Species level, four
microbiome, including Halomonas_Unclassified, Lactoba-
cillus_uncultured bacterium, Nesterenkonia sp. NP1, and
Geobacter_Unclassified, were observed to correlate with
IL-6 in smoking group. Nesterenkonia sp. NP1 in non-
smoking group also showed correlation with IL-6, how-
ever the differences of Nesterenkonia sp. NP1 between the
two groups were not statistically significant.
We also concluded the taxonomy of these microbiome

that correlated with inflammatory mediators in the
Table 2. We found that these microbiome were relative

Table 2 Taxonomy of microbiome that correlated with inflammatory mediators

Species Genus Family Order Class Phylum

Halomonas_Unclassified Halomonas Halomonadaceae Oceanospirillales Gammaproteobacteria Proteobacteria

Lactobacillus_uncultured
bacterium

Lactobacillus Lactobacillaceae Lactobacillales Bacilli Firmicutes

Nesterenkonia sp. NP1 Nesterenkonia Actinobacteria

Geobacter_Unclassified Geobacter Geobacteraceae Desulfuromonadales Deltaproteobacteria Proteobacteria

Lactobacillus Lactobacillaceae Lactobacillales Bacilli Firmicutes

Clostridium sensu stricto 1 Clostridiaceae Clostridiales Clostridia Firmicutes

Nesterenkonia Actinobacteria

Geobacter Geobacteraceae Desulfuromonadales Deltaproteobacteria Proteobacteria

Halomonadaceae Oceanospirillales Gammaproteobacteria Proteobacteria

Lactobacillaceae Lactobacillales Bacilli Firmicutes

Ruminococcaceae Clostridiales Clostridia Firmicutes

Geobacteraceae Desulfuromonadales Deltaproteobacteria Proteobacteria

Rhodocyclaceae Rhodocyclales Betaproteobacteria Proteobacteria

Rhodocyclales Betaproteobacteria Proteobacteria

Desulfuromonadales Deltaproteobacteria Proteobacteria

Oceanospirillales Gammaproteobacteria Proteobacteria

Deltaproteobacteria Proteobacteria

Acidobacteria

Planctomycetes

The bold microbiome are associated with inflammatory mediators in the smoking group of this study
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with each other, for example, the Geobacter_Unclassified
Species was one of Geobacter Genus, the Geobacter was
a member of Geobacteraceae Family, the Geobacteraceae
was classified into Desulfuromonadales Order and the
Desulfuromonadales belonged to Deltaproteobacteria Class,
the five microbiome were all strongly correlated with in-
flammation factors and they finally were classified into Pro-
teobacteria Phyla. From phyla to species level, a total of 19
microbiome in the smoking group was associated with
inflammatory mediators. Among them, five microbiome
were members of Firmicutes Phyla and ten microbiome
were classified into Proteobacteria Phyla. These results
demonstrated that Firmicutes and Proteobacteria Phyla
played an important role in the micro-ecology of lower
respiratory tract of mice and in the development of lung
inflammatory diseases. Figure 1 depicted the significant
correlation coefficients between inflammatory mediators
and microbiome by heat map.
Furthermore, our analysis also found that all the

microbiome that associated with inflammatory media-
tors in smoking group, except Acidobacteria, Planctomy-
cetes, Ruminococcaceae, and Clostridium sensu stricto 1,
were negatively correlated with IL-6 or CRP. Interest-
ingly, their relative abundance was lower than the non-
smoking group with statistical difference or not, further
demonstrating that the dysbiosis of lower respiratory
tract microbiome contributed to inflammation. There
were seven microbiome correlated with inflammatory

mediators and their relative abundance also existed stat-
istical difference between two groups. Additional file 1:
Figure S4-S11 indicated that the concentration of IL-6
or CRP increased with the decreasing of these micro-
biome. These results suggested that changes of micro-
biome in relative abundance and diversity in lower
respiratory tract of mice might have strong relationship
with the level of inflammation. In addition, these pro-
cessing might played an important role in the develop-
ment of respiratory diseases.

Microbiome differs based on inflammation levels
Study showed that prebiotics shaped the level of inflam-
mation and the composition of lower respiratory tract
microbiome, indicating a potential connection between
inflammation levels and composition of the microbiome.
To figure out whether the relative abundance of micro-
biome differs according to the level of inflammation, we
compared the difference of dominant microbiome at
genus level in smoking group. The total 18 samples were
divided into two subgroups based on the median con-
centration of IL-6 (8.31 pg/ml). The results depicted that
Lactobacillus (P = 0.002), Pelagibacterium (P = 0.022),
Geobacter (P = 0.043) and Zoogloea (P = 0.033) were sig-
nificantly higher in the subgroup with lower IL-6 con-
centration while no statistical differences were observed
in other genus. Besides, except Lactobacillus belongs to
Firmicutes phylum, the other three genus are members
of Proteobacteria phylum. In the non-smoking group,
only Raoultella, one of Proteobacteria phylum, showed
higher relative abundance in the subgroup with higher
IL-6 concentration (P = 0.001).

Weight and microbiome composition
Physical conditions of mice may affect the diversity or
composition of lower respiratory tract microbiome, such
as weight. So we conducted an analysis to explore the
possible relation between weight and abundance of dom-
inant genus. The 18 samples in non-smoking group were
divided into two subgroups based on the average weight.
However, there were no statistical differences in any
genus, which might due to the small sample and unob-
vious variance in weight.

Microbiota function prediction in lower respiratory tract
Previous studies show that the function of microbiota is
more important for understanding how microbe inhabiting
in human body influence the health of human except mi-
crobial composition. Hence, we predicted the functional
profiles in LRT microbiota by using PICRUSt as a predict-
ive exploratory tool. At KEGG1 (Kyoto Encyclopedia of
Genes and Genomes) level, the metabolism was the most
abundant in both groups (smoking VS non-smoking: 48.3%
VS 47.9% respectively) (Fig. 2).

Fig. 1 Heat map of correlation coefficient value. Column A represents
the correlation between IL-6 and microbiome in smoking group.
Column B represents the correlation between CRP and microbiome in
smoking group. Column C represents the correlation between IL-6 and
microbiome in non-smoking group. Column D represents the correlation
between CRP and microbiome in non-smoking group. Twenty
microbiome which significantly associate with any inflammatory
mediator in either smoking group or non-smoking group are stated
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In addition, we found that there exited difference
between two groups in pathway about metabolism, gen-
etic information processing and environmental informa-
tion processing (q < 0.05, Fig. 3). Furthermore, a total
of 41 level-2 KEGG Orthology groups were showed in
the Fig. 4, and the major pathways were membrane
Transport, Amino Acid Metabolism and Carbohydrate
Metabolism. Among the 41 KEGG2 pathway,
we found that the proportions of 4 pathway (Mem-

brane Transport, Metabolism, Transcription and Ner-
vous System) were decreased in smoking group and 11
pathways were significantly enriched in smoking group
including replication and repair, translation, lipid metab-
olism, nucleotide metabolism, metabolism of terpenoids
and polyketides and et al. (q < 0.05, Fig. 5).
We further analyzed the differences of metabolic path-

ways at KEGG level-3 between two groups. There were
60 pathways exited differences between two groups. 24
KEGG3 pathways, including transporters, ABC trans-
porters, transcription factors, arginine and proline me-
tabolism and so on were decreased in smoking group,
while the abundance of 36 pathways were significantly
increased in smoking group such as ribosome, DNA re-
pair and recombination proteins, oxidative phosphoryl-
ation, purine metabolism, pyrimidine metabolism and
et al.(q < 0.05, Fig. 6).
Other for KEGG pathway, we also explored the ef-

fect of smoking on LRT microbita in COG (Clusters
of Orthologous Groups of proteins) function classifi-
cation in order to discover the metabolic pathways

and key protein that have changed in smoking envir-
onment. The result showed that at COG level-2, the
category of General function prediction only, Amino
acid transport and metabolism, Transcription, Carbo-
hydrate transport and metabolism were the dominant
function (Fig. 7). In addition, we found that the
function related to lipid transport and metabolism,
translation, ribosomal structure and biogenesis, Rep-
lication, recombination and repair, RNA processing
and modification, Cell wall/membrane/envelope bio-
genesis and defense mechanisms were distinctively
increased in smoking group, meanwhile, the propor-
tion of transcription, carbohydrate transport and me-
tabolism and amino acid transport and metabolism
were decreased (q < 0.05, Fig. 8), which was similar to
the results at KEGG levels. We further analyzed the
specific function of proteins by COG function classifi-
cation and 136 kinds of proteins were identified (the
relative abundance >0.1%, Fig. 9). Compared with
non-smoking group, 7 functional proteins, including
Enoyl-CoA hydratase/carnithine racemase, Pyruvate/
2-oxoglutarate dehydrogenase complex, dihydrolipoa-
mide dehydrogenase (E3/E2) component, and related
enzymes, Acyl-CoA dehydrogenases, Esterase/lipase and so
on were increased in smoking group, while 9 kinds of pro-
teins were decreased especially about Ribose/xylose/arabin-
ose/galactoside ABC-type transport systems (permease
components), ABC-type sugar transport system (ATPase
components), ABC-type amino acid transport/signal trans-
duction systems (periplasmic component/domain).

Fig. 2 Relative abundance of function at KEGG Level1. Samples B2 to B20 belong to the smoking group and samples c3 to c16 belong to the
non-smoking group

Fig. 3 Difference of metabolism, genetic information processing and environmental information processing in two groups (level 1). Group B
colored with blue represents the smoking group and group C colored with yellow represents the non-smoking group
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Discussion
As the viewpoint that the lower respiratory tract (LRT)
is sterile was challenged, several studies show that the
lung is a mucosal tissue harbored by a variety of bacter-
ial community although in normal physiological condi-
tions [28, 29]. In addition, with the rapid development of
high-throughput next generation sequencing, many
studies suggest that global change in microbial commu-
nity structure and changes of abundance and diversity of
microbiome may play essential roles in the development
of human disease through various biological pathways
[30, 31]. For example, there are studies showing that
transient incursions from Streptococcus are good predic-
tors of asthma [25], while some fermentative anaerobes
are important to cystic fibrosis (CF) exacerbations [32].

Tobacco smoking is linked to 6 million deaths annually,
30% of which are due to cancer [10]. Additionally, nega-
tive health effects of secondhand smoke are also docu-
mented, including lung cancer, cardiovascular disease,
asthma, and other respiratory diseases [33, 34]. Hence,
in order to find out the potential key bacteria and new
pathogenesis of pulmonary disease, we analyzed the im-
pact of smoke exposure on the microbial community
composition and function in lower respiratory tract of
mice and explored the relationship between LRT micro-
biome and inflammation.
Different from the general samples including sputum

samples, tracheal aspirates and bronchoalveolar lavage
samples, we directly removed the lungs under sterile
conditions to avoid the contamination of mouth and

Fig. 4 41 level 2 KEGG Orthology groups in smoking and non-smoking groups. Samples A2 to B20 belong to the smoking group and samples C1
to C18 belong to the non-smoking group
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upper respiratory tract. And by high-throughput sequen-
cing of 16S rRNA genes, we observed that Proteobac-
teria, Firmicutes and Actinobacteria were the dominant
phyla, which accorded with previous studies [35], but in
our study the predominant genus were Halomonas,
Sphingomonas, Lactobacillus and Pelagibacterium in
LRT of mice while Nisha Singh et al. [35] reports that
Lactobacillus, Veillonella, Achromobacter and Strepto-
coccus are the most abundant genus in the mouse of 8
weeks and Kenneth KB et al. [36] shows Staphylococcus,
Massilia, Corynebacterium and Pseudomonas are the
major genus. This suggested the prime microbiome were
the same in LRT of mice at phyla level but different at
genus level which may result from different mouse spe-
cies, age, gender, weight or different living environment.
To the best our knowledge, there were limited studies

having utilized the animal models that exposed to
cigarette smoke for 90 days to implicate the contribution
of LRT microbiome in lung pathologies. In the present
study, the result showed that the inter-individual LRT
microbiome community structure was more different in
smoking group and more similar in Non-smoking group.
A possible explanation is that under smoking condition,
the need of catabolism and anabolism increased, result-
ing the change of microbial composition or abundance.
The lung microbiome is shown to be associated with
both the physiology and pathology of the respiratory
tract. For example, there exist associations between the
composition and diversity of the LRT microbiome and
the process of alveolarization, specifically; Lactobacillus
might play an important role in lung growth and alveo-
larization [35]. In addition, Shu MT et al. shows that
early asymptomatic colonization with Streptococcus is a
strong asthma predictor [25]. Studies also demonstrate
that during COPD exacerbations, some genera including

Satreptococcus, Pseudomonas and Haemophilus changed
[37] . Clinical studies suggest that infections with tuber-
culosis or pneumonia increase the risk of lung cancer
[38]. Moreover, Liu HX studied the samples from lung
tissues and bronchoscopy and they found that Strepto-
coccus was more abundant in cancer cases whereas
Staphylococcus was more abundant in the controls [39].
In our study, although the dominant microbial phyla
exited no significant difference between two groups,
smoking still affected some microbe mainly belonging to
Proteobacteria and Firmicutes. To be specifically, under
smoking environment, the abundance of Enterobacter-
iales, Desulfuromonadales, Phyllobacteriaceae, Lactoba-
cillaceae and Chloroplast were significantly decreased
whereas Trichococcus, Oxalobacteraceae, Escherichia-
Shigella and Streptococcus_uncultured bacterium were
increased when compared with Non-smoking group.
These results further showed that there exited micro-
biome dysbiosis in the LRT of mouse when exposed to
smoking. But the underlying mechanisms of how the
dysbiosis happened and the possible mechanisms linking
microbiome with the development of lung disease were
not entirely understood.
Inflammation plays an important role in destroying

the invaded microbes and protecting the organisms [40],
but unregulated inflammation is an underlying cause of
many chronic diseases such as asthma and chronic ob-
structive pulmonary disease. Moreover, smoking also
can cause chronic inflammation. So we hypothesize that
there exist correlation between inflammation and micro-
biome in lower respiratory tract. Previous studies indi-
cate that alteration of lung microbiome contributes to
pulmonary inflammation and participates in the process
of airway inflammatory diseases. Barfod et al. [41] pro-
voked lung inflammation in mice by exposure to carbon

Fig. 5 Differences among the 41 KEGG2 pathway between two groups. Group B colored with blue represents the smoking group and group C
colored with yellow represents the non-smoking group
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Fig. 6 The differences of metabolic pathways at KEGG level 3 between two groups. Group B colored with blue represents the smoking group
and group C colored with yellow represents the non-smoking group
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nano-tube particles, their result showed that induced
lung inflammation changed the lung microbiome. Our
findings demonstrated that smoking affected the relative
abundance of certain dominant microbiome and inflam-
mation mediators were associated with parts of domin-
ant microbiome in lower respiratory tract of smoking
group, which suggesting that inflammation might impair
the structure of growth environment of microbiome and
the microbiome dysbiosis might in turn promoted the
inflammation. However, it was still unclear whether cer-
tain members of lung microbiome lead to the progress
of pulmonary diseases or protected the organisms [42].
Many studies report that some members of Gammapro-
teobacteria in lungs of human and mice are observed to
increase during chronic pulmonary diseases [43–45],
which may be due to benefit from mucosal inflammation

by utilizing inflammatory byproducts to survive in anaer-
obic and low oxygen conditions [46–48]. Furthermore,
Gammaproteobacteria also can produce molecular com-
ponents that promote inflammation. It is also reported
that P.aeruginosa infection is associated with airway in-
flammation and poorer prognosis [49]. However, our
study showed that the decreased microbiome in smoking
group, Oceanospirillales belonging to Gammaproteobac-
teria and Desulfuromonadales belonging to Deltaproteo-
bacteria and Nesterenkonia belong to Actinobacteria and
Lactobacillaceae, all were negatively correlated with IL-6
or CRP, which might indicate that decreasing of these
microbiome in LRT were positive with inflammation. In
other words, these microbiome might play a key role in
maintaining the normal function of lung such as struc-
tural barriers and the immune barriers. Noteworthy, the

Fig. 7 The category of General function prediction at COG level2. Samples A2 to B20 belong to the smoking group and samples C1 to C18
belong to the non-smoking group

Fig. 8 The difference of specific functions between two groups at COG level2. Group B colored with blue represents the smoking group and
group C colored with yellow represents the non-smoking group
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Lactobacillaceae is proved to protect against pathogens
with the capable of anti-inflammatory activities in hu-
man gut and also reported for treating autism, alcohol
liver disease and alzheimer [50, 51]. So our result indicated
that Lactobacillaceae might be a potential agent for treat-
ing microbiome dysbiosis or chronic inflammation in lung.
In order to understand the mechanism of how microbiome
of the lower respiratory tract interacted with host lung,
many animal models have been developed. Wang XK
established microbiome dysbiosis mouse model, they found
that microbiome dysbiosis may activate innate lymphoid
cells (ILC) and Th2 cell which leads to the imbalance of
Th1/Th2, and in turn promotes the development of aller-
gic airway diseases [52]. Furthermore, Gollwitzer et al. [53]
established House Dust Mite induced asthma mouse
model and demonstrated that microbial signals in the lung
of neonatal mice enhanced immune tolerance to House
Dust Mite (HDM) allergens via PD-1/PD-L1 signaling in
regulatory T cells and dendritic cells (DC). However, Jing
Wang evaluated the impacts of treatment with inhaled
interferon-γ (IFN-γ) in idiopathic pulmonary fibrosis (IPF)
on LRT microbiome and host immune phenotype [54].
Their results demonstrated that IFN-γ didn’t change the
LRT microbiome of IPF and the lung microbiome was in-
dependently correlated with host immunity. The link be-
tween chronic inflammation and cancer is already known
for some cancers such as Helicobacter pylori and gastric
cancer [5]. Accumulating studies indicate that activation of
Toll-like receptors (TLRs) promotes the development of
cancer by activating nuclear factor-κB (NF-κΒ) pathway
and the transducer signal transducer and activator of tran-
scription 3 (STAT3) in colon, gastric and liver cancers [55,
56]. A recent study about lung microbiome and lung can-
cer demonstrated that the local microbiome of lung pro-
voked inflammation associated with lung tumor and

promoted the progress of lung cancer [57]. This study
established mouse model of lung cancer and demonstrated
that commensal bacteria stimulated Myd88-dependent IL-
1β and IL-23 production from myeloid cells, inducing pro-
liferation and activation of Vγ6 +Vδ1+ γδT cells that pro-
duced IL-17 and other effector molecules which promote
inflammation and tumor cell proliferation. In other study,
IL-6 was important for the processing that IL-17 enhanced
the invasion of non-small cell lung cancer. In the present
study, IL-6 or CRP were correlated with specific LRT
microbime at variable levels, indicating that microbiome
dysbiosis might over stimulated immunity system of mice
and drove the inflammation.
The complementary functions of microbiome harbored

inside and on the surface of the host body are vital to
maintain the host physiological homeostasis [58]. Recently,
many studies report that in similar environment, the func-
tion of microbiome is also similar but the composition of
microbiome might have great difference [16, 17]. The
Human Microbiome Project initiated by the National
Institutes of Health (NIH) also shows that the function of
microbiome remains relatively stable, despite dramatic
variations in the community structure [18]. Li D studied
the function of gastrointestinal microbiome of the rat.
They found that small-molecule transport activity and
amino acid metabolism were enriched in the upper Gastro-
intestinal Tract (GIT) and the mucolysis-related metabol-
ism in the lower GIT. Moreover, the microbiome functions
are similar although in different hosts [59]. But the studies
about the functional prediction of microbiome in LRT
were limited. Based on the PICRUSt (Phylogenetic Investi-
gation of Communities by Reconstruction of Unobserved
States), our study revealed that some function of micro-
biome in LRT altered under smoking condition. Among
them, the ribosome, DNA repair and recombination

Fig. 9 Difference of the specific function of proteins in two groups. Group B colored with blue represents the smoking group and group C
colored with yellow represents the non-smoking group
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proteins in KEGG3 level and Replication, recombination
and repair in COG2 level were increased in smoking group
which indicting that under chronic inflammation, the in-
creased leukocytes produced reactive oxygen species, nitric
oxide, metalloproteinases and interleukins that might
promote the genomic instability and finally contribute to
carcinogenesis. So the function relevant to DNA repair in-
creased. We also found that transporters, ABC transporters
which were responsible for the transportation and absorp-
tion of nutrients were significantly decreased. We specu-
lated that smoking changed the pH, oxygen tension,
temperature of LRT and this environment was not suitable
for the living of some predominant microbiome. Note-
worthy, in our study, the amino acid transport and metab-
olism de-regulated which was different from previous
studies. Ionescu et al. reports that protein catabolism in-
creased in CF patients, probably due to the destruction of
cellular and connective tissue proteins, which is related to
the degree of impaired lung function and the systemic
inflammatory response [60]. Furthermore, the pathway
involved in xenobiotic degeneration including dioxin was
decreased when compared with normal mouse, which sug-
gesting that exposed to the smoking for a long time would
weaken the ability of degrading xenobiotic compounds.
This was further demonstrated that the change of
microbiome functions can influence the physiological
homeostasis of lung.
To conclude, this study mainly investigated the vari-

ation of LRT microbial community composition and
functions in smoking exposed mice and further ex-
plored the relationship between LRT microbiome and
inflammation. The study demonstrated that smoking
could change the microbial community composition
and disturb the homeostasis of microbiome which also
called microbiome dysbiosis. Furthermore, there
existed associations between variation of lung micro-
biome and inflammation mediators, which indicated a
potential correlation between LRT microbiome and
immune system. Microbiome dysbiosis might break
the balance of immune system to drive lung inflamma-
tion and the inflammation further promoted micro-
biome dysbiosis in LRT, causing a vicious cycle. And
chronic inflammations promoted the process of variable
pulmonary diseases. On the other hand, there might exist
potential probiotics in LRT which were important for the
maintain of physiological homeostasis of lung, such as
Lactobacillaceae. Importantly, the function of LRT micro-
biome altered under smoking exposure, affecting the
physiological homeostasis of host. Thus, it is essential to
understand the effect of LRT microbiome on the develop-
ment of lung disease and it provided a novel perspective
for treating the pulmonary diseases. Of course, more stud-
ies are needed to further investigate the mechanisms that
how LRT microbiome interact with host.

Conclusions
Our study demonstrated that smoking could change
the microbial community composition.There are as-
sociations between variation of lung microbiome and
inflammation mediators. Microbiome dysbiosis might
break the balance of immune system to drive lung
inflammation and the inflammation further promoted
microbiome dysbiosis in LRT, causing a vicious
cycle, which indicating a potential correlation be-
tween microbiome and immune system.There might
exist potential probiotics in Lower respiratory tract,
such as Lactobacillaceae. The altered function of
Lower respiratory tract microbiome under smoking
exposure may affect the physiological homeostasis of
host.This study provided a novel perspective for
treating the pulmonary diseases.
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