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Abstract

Mucus secretion and mucociliary transport are essential defense mechanisms of the airways. Deviations in
mucus composition and secretion can impede mucociliary transport and elicit airway obstruction. As such,
mucus abnormalities are hallmark features of many respiratory diseases, including asthma, cystic fibrosis

and chronic obstructive pulmonary disease (COPD). Studying mucus composition and its physical properties
has therefore been of significant interest both clinically and scientifically. Yet, measuring mucus production, output,
composition and transport presents several challenges. Here we summarize and discuss the advantages and limitations
of several techniques from five broadly characterized strategies used to measure mucus secretion, composition and
mucociliary transport, with an emphasis on the gel-forming mucins. Further, we summarize advances in the field, as
well as suggest potential areas of improvement moving forward.
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Background

Increased airway mucus and airway obstruction are hall-
mark features of many respiratory diseases [1-4]. The
composition of mucus and its properties have long been
considered informative for airway disease diagnosis and
progression. However, studying mucus presents several
challenges, including a complex and heterogeneous com-
position, limitations in collection methods, and laborious
procedures for downstream processing. Although, ad-
vances in imaging techniques have improved aspects of
mucus research, these techniques remain less accessible
due to the expertise required and equipment necessary
to execute. Here, we review and discuss the advantages
and limitations of several techniques from four broadly
characterized strategies used to measure mucus proper-
ties and mucociliary transport (MCT). The advantages
and limitations of such techniques have rarely been dis-
cussed. Doing so has the potential to both impact and
inform researchers and clinicians alike, which may ul-
timately influence patient treatment and care.
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Airway surface liquid (ASL) in health and disease
Airway surface liquid (ASL) is the thin liquid film that
covers the airways [5]. It protects the airways from
desiccation and facilitates the swift removal of inhaled
particulates, debris, pathogens and toxicants through
mucociliary transport (MCT). From a structural stand-
point, ASL consists of two main layers: 1) the apical
layer consisting of a water-based polymeric mucus; and
2) a periciliary layer (PCL), also referred to as a sol layer,
[6] that bathes the epithelium (Fig. 1). Historically, stud-
ies suggest that goblet cells, serous cells and submucosal
glands contribute to ASL production [7-10]. The recent
discovery of the airway ionocyte [11, 12] might also re-
sult in a revised understanding of ASL production.
Although the majority of ASL is water [13], large
glycoproteins known as mucins [14] make up a signifi-
cant portion of the proteins in the apical mucus layer.
Mucins are encoded by different muc genes, after which
the proteins are generally named and numbered in the
order of discovery [15, 16]. Currently there are 21 mu-
cins identified in humans (denoted with capital letters),
13 of which are found in the respiratory tract [7, 16].
They can be divided into three classes depending on
their ability to polymerize, and on whether they are
secreted or are cell surface-bound [7]. These three
groups include the secreted monomeric mucins (MUC?7,
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Fig. 1 Airway Surface Liquid (ASL) and Localization of the Major Mucins in Healthy Airways. a General schematic representation of mucus
secretion from goblet cells and submucosal glands. The proposed structure of MUC5AC (threads in dark green) and MUC5B (bundles/strands in
bright green) is shown. Mucociliary transport (MCT) of inhaled pathogens and particles (orange spheres of different sizes) is shown with a blue
arrow. b Schematic representation of the generally-accepted structure of ASL. The periciliary layer (PCL) is estimated to be ~ 7 um thick under
normal conditions. Mucus layer thickness varies among individuals and in the different parts of the airway of the same individual (up to 70 um)
under normal conditions. ¢ ASL gel-on-brush model with localization of large airway mucosal epithelium-expressed membrane-tethered mucins
(MUC1 = purple, MUC4 = dark blue and MUC13 = pink and MUC16 = brown) and their interactions with secreted gel-forming (MUC5AC = dark
green, MUC5B = bright green) and monomeric mucins (MUC7 = light blue; only depicted as incorporated in the gel-layer). Globular, non-mucin
proteins that are secreted by different cells and incorporated within the gel mesh are represented in yellow dots in b) and ¢). MUC8 and MUC19
are omitted due to the sparsity of data on their secretion and localization in normal respiratory tissues. The MUC2 gel-forming mucin has also
been omitted in this figure due to the very low levels of expression and secretion in normal airways (see text for references). MUC20, MUC21 and
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MUCS), the secreted polymeric (gel-forming) mucins
(MUC2, MUC5AC, MUC5B and MUCI19) and non-
secreted surface-bound mucins (MUC1, MUC4,
MUC13, MUC16, MUC20, MUC21 and MUC22).
Deviations in the composition of ASL, and particularly
the mucus layer, are associated with several airway dis-
eases, including asthma, cystic fibrosis and COPD [1-4,
17]. These alterations can be due to enhanced mucin
production and secretion, and/or a reduction in water
content. For example, in asthma the enhanced produc-
tion of MUC5AC due to goblet cell hyperplasia, paired
with airway remodeling and inflammation, drive airway
morbidity and mortality. Indeed, the Severe Asthma
Research Program (funded by the NHLBI) found that
58% of people with asthma exhibited airway mucus plugs
[1]. The extent of mucus plugging correlated with air-
flow limitation and worse control of asthma. Similarly, a
recent study involving the AREST CF program found
that airway mucus plugging was a significant predictive
indicator of future lung function [4], and it is well
known that people with cystic fibrosis undergoing lung
transplantation exhibit profound mucus plugging of the
small airways [2]. However, mucus abnormalities in
cystic fibrosis are thought to be due to a combination of
events, including ASL dehydration [8, 18], altered elec-
trostatic interactions of mucins [13, 19], impaired mucus
detachment [20], as well as changes in mucin content

[21]. Airway obstruction is also a common feature of
COPD [22]. Recent SPIROMICS data suggested that
sputum mucin concentrations, including MUC5AC and
MUCS5B [23], were markers of disease severity in COPD.
Although the mechanisms mediating mucin alterations
in COPD are still being elucidated, inflammation [24],
smoking [25] and acquired ion channel dysfunction [26]
are key contributors.

Gel-forming mucins

Mucins are heterogeneous glycoproteins [15, 27, 28].
The protein backbones have unique multiple amino-acid
tandem repeats containing serines and threonines, where
oligosaccharides are covalently linked. The backbones
represent ~20% of the molecular weight, whereas the
carbohydrates account for ~80% of the weight [7, 29].
The carboxy and amino terminals of the backbones are
rich in cysteine, allowing for end-to-end disulfide bonds
and subsequent dimerization or multimerization. This
multimerization results in a complex hydrated porous
molecular network that, together with the other compo-
nents secreted by airway epithelial cells and submucosal
glands, represent the gel basis of airway mucus [27, 29,
30]. Indeed, once released via exocytosis, mucins can ex-
pand more than 100 times their dehydrated size [27, 29,
31]. This property is partly why mucins represent such a
large portion of the proteins that make up the mucus
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layer. The structure, biosynthesis, glycosylation and se-
cretion mechanisms of mucins have been extensively
studied and reviewed elsewhere [3, 15, 29, 30, 32], and
therefore will not be further addressed here.

MUC5AC and MUCSB represent the major secreted
gel-forming mucins and are responsible for the visco-
elastic and functional properties of mucus in health and
disease [33]. Although MUC2 has been shown to be
among the major gastro-intestinal mucins, and gesta-
tionally associated with airway developing cells [16, 34],
it is expressed and secreted in very small quantities in
“normal” airway tracheo-bronchial epithelia [35]. To
date there is very little data on MUC19. Its expression in
the respiratory system has been localized to submucosal
glands [36, 37], but there is limited data to inform on its
secretion properties [37].

In addition to mucins, inflammatory cells [38] and
host defense proteins [39] are often found in mucus.
There is significant diagnostic value in examining in-
flammatory cells and inflammation profiles. For example
in asthma, tailoring treatments based upon presence of
eosinophils [40] has been an effective strategy to de-
crease asthma exacerbations [41]. Neutrophils are also
commonly found in airways of individuals with severe
asthma [42] and cystic fibrosis [43]. A greater number of
neutrophils in the lavage fluid of smokers, as well as the
sputum of people with COPD, has also been reported
[44, 45]. Neutrophils modify mucus properties and in-
crease mucus viscosity through releasing DNA nets [46,
47]. Thus, in instances where mucus is extremely vis-
cous, agents that “thin” mucus, such as mucolytics,
might be required for mucus processing [48]. Additional
cells found in healthy and diseased lungs include macro-
phages and lymphocytes, among others [44].

Challenges in measuring airway mucus and
mucins

Despite strong evidence that deviations in mucus abun-
dance and/or composition drive mortality and morbidity
in several airway diseases [1—4], measuring mucus and
mucins remains a challenge [49, 50]. For example,
obtaining mucus in vivo from the trachea, bronchi and
bronchioles can be difficult due to limitations in collec-
tion methods, as well as the potential for contamination
with saliva. Further, accessing the trachea, bronchi, and
lungs in humans and animal models to collect mucus is
invasive and can be confounded by MCT.

In vitro measurements, on the other hand, might not
be an accurate representation of the in vivo environ-
ment, as many of the neural, endocrine and immune sys-
tems, which regulate mucus secretion and mucin
production, are lacking [51]. For example, mucus
secretion and MCT are directly regulated by sympathetic
and parasympathetic reflexes [52]. Endogenous sex
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hormones also play role in diseases such as asthma [53].
Additionally, the formation of mucus plugs that can le-
thally obstruct the airways are difficult to study in a cell
culture system where the airway architecture, including
luminal spaces, are missing [1, 54].

Although animal models are often used to study re-
spiratory diseases, they show marked differences in their
airway anatomy and structure, including abundance of
submucosal glands [32, 51, 55, 56]. These anatomical
and physiological differences can make extrapolation of
research findings to humans difficult. Further, species-
dependent differences in the structure of gel forming
mucins [57], including differences in amino-acid se-
quences [58] and sugar side-chains [59], make standard
quantitative and semi-quantitative techniques that use
antibodies (e.g., western blot, ELISA, etc.) more arduous.

Another challenge in the mucus biology field is the
significant influence that environmental factors, such as
infections, inflammation, and smoking, have on mucus
properties. As mentioned previously, neutrophils in-
crease mucus viscosity by extruding DNA material [46,
47]. Cigarette smoke, on the other hand, can increase
the production of MUC5AC [60] and increase neutro-
phil number. Additionally, infection with Pseudomonas
aeruginosa increases sialyation of mucins, which facili-
tates Pseudomonas aeruginosa colonization [61]. Com-
bined, these factors can make sampling and downstream
processing of mucus unpredictable and tedious. More
extensive information related to environmental influ-
ences on mucus is provided by Fahy and Dickey [62].

Despite these challenges, several techniques have been
developed to assess mucin expression and mucus con-
tent. Below we highlight some of these methodologies
and comment on their advantages and limitations, with
an emphasis on the gel-forming mucins. Though we
focus on gel-forming mucins, many of the approaches
discussed here are also applicable to studies centered on
airway inflammation and inflammatory cells trapped in
mucus.

Techniques for measuring mucus and mucin

The assessment of mucus can occur on many different
levels, requiring many different strategies. Here we out-
line five broad categories and briefly highlight some
common methodologies representative of each category.
More detailed information regarding advantages and
limitations of techniques discussed is provided in the
corresponding tables.

Collection methods (Fig. 2, Table 1)

An ongoing challenge in the mucus biology field is the
collection of samples. There are several strategies that
can be implemented, each with distinct advantages and
limitations. For airway epithelia grown at the air-liquid
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Fig. 2 Summary of broadly categorized strategies to study mucus and mucins. General schematic highlighting a few of the methods used to
collect and study mucins. Not all methods discussed are shown. Abbreviations: BAL, bronchoalveolar lavage; ELISA, enzyme-linked

interface (ALI), a common practice is to perform an ap-
ical wash. This approach is fairly simple, and offers an
advantage in that samples can be assayed in response to
interventions [63, 64]. However standardized procedures
need to be practiced, as accumulated mucins might not
be removed properly without successive washing [65].
Further, pooling of samples might be required [66],
which necessitates a greater sample size. Any studies in
which ALI cultures are used to measure mucus secretion
and its properties must account for experimental con-
founds, such as mechanical stimulation and/or uninten-
tional goblet cell discharge [65].

Another collection approach similar to cell washing is
bronchoalveolar lavage (BAL). This technique can be
utilized both in vivo [67] or ex vivo [68] and entails the
irrigation and retrieval of a known volume of fluid from
a defined area of the airway tree. For humans, a BAL re-
quires a bronchoscopy [81]. An advantage of BAL is that
it can be utilized in human patients [69] and experimen-
tal model systems. However, important limitations are
the need for general anesthesia [70], variation in retrieval
volumes [71], and the impact that local inflammatory
cells can have on the retrieval process (e.g., lung perme-

ability [82]).

Sputum also provides information about mucus and
mucins. This heterogeneous material consisting of cells
and mucus is expelled from the lower airways via cough.
There are two major types of sputum: induced and
spontaneous. An advantage of spontaneous sputum is
that no clinical intervention is required for its produc-
tion. Conversely, induced sputum entails aerosolization
of hypertonic saline [74, 75] to the airways using
standardized protocols [73]. An advantage of induced
sputum is that standardized protocols facilitate reprodu-
cibility and rigor across studies. Limitations of both
spontaneous and induced sputum include the possibility
for saliva contamination, as well as variations in the
amount of sputum produced [76]. Further, the success
of sputum induction is influenced by the degree of in-
flammation [72] and caution should be practiced when
working with asthmatic patients (due to the broncho-
constriction effects of hypertonic saline [83]). Despite
these limitations, sputum is widely used to study airway
mucus and airway inflammation [84].

Bronchoscopy is also used to collect and study mucus.
As highlighted previously, bronchoscopy is required to
perform BAL. However, bronchoscopy can also be used
to facilitate removal of mucus plugs [77]. In some cases,
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Table 1 Advantages and limitations of mucus and mucin collection methods

Method Advantages

Limitations

Cell culture wash
and is not overly tedious.
- Can sample mucus in response to
interventions [63, 64].
- Potential for repeated collection and/
or longitudinal study.

Bronchoalveolar
lavage fluid

- Applicable in vivo [67] and ex vivo [68].

- Relatively large volumes can be
retrieved.
- Materials to perform are standard.

- Can be performed in human patients [69].
- Potential for repeated and/or longitudinal

sampling.

- Provides information about mucus and
mucins in the lower airways

- Spontaneous sputum requires no
intervention for its production

- Induced sputum provides a higher
proportion of viable cells [72].

Sputum (spontaneous
and induced)

- Guidelines in place for inducing sputum

in human [73].

Bronchoscopy
remove plugs [77].
- Provides significant diagnostic
information.

- Can be performed in human and animal

patients.

Endotracheal tube
sampling

- Direct sampling of mucus [78, 79].

- Requires minimal specialized equipment

- Allows for direct sampling of the airway

- Direct sampling of mucus when used to

- Accumulated mucins might not be removed properly
if washing is not done successively or is incomplete [65].
- Samples may require pooling [66].

- Must be clinically indicated in order to perform in
humans.

- Generally done under local anesthesia in vivo [70].

- Fluid retrieved is a combination of multiple cells and
multiple proteins [67].

- Volume recovered is variable [71].

- Non-adherent proteins may be overrepresented

- Potential for contaminated with saliva.
- Induced sputum usually requires inhalation of
hypertonic saline, which can be irritating and change
composition of mucus [74, 75].
- Success of sputum induction influenced by inflammation [72].
- Variations in the amount of sputum produced [76].
- Not really applicable to animal models.

- Performance in human patients or animal patients requires
highly specialized equipment and training

- Typically performed under conscious sedation, occasionally
occur under general anesthesia [70].

- Hydration of the mucus varies from the inside or the outside
of the tube [80]

- Endotracheal tube placement in human and animal patients
requires highly specialized training and a licensed medical
practitioner.

removal of a mucus plug may necessitate the application
of mucolytics [77]. A significant advantage of bronchos-
copy is the diagnostic information it provides, as well as
the ability to directly sample mucus. Potential limitations
(as highlighted above) include the need for general
anesthesia and requirement for a licensed medical prac-
titioner to perform.

Lastly, mucus may be collected from endotracheal
tubes [78, 79]. Endotracheal tubes are generally placed
under two circumstances: critical illness and general
anesthesia (for airway management) [85]. Mucus often
accumulates in the endotracheal tube [78], and in some
cases, creates a plug [86]. Upon extubation, the mucus
material can be directly collected and studied from
either inside or outside of the tube. An advantage of
endotracheal tube mucus sampling is that it is a direct
interrogation of airway mucus. However, a limitation of
endotracheal tube sampling is that the hydration of the
mucus varies from the inside or the outside of the tube
[80] which can decrease reproducibility across experi-
ments. Similar to bronchoscopy, endotracheal tube
placement in humans requires a licensed medical
practitioner.

Visual and imaging methods (Fig. 2, Table 2)
Several methods, including histological stains (e.g., Alcian
Blue (AB), Periodic Acid—Schiff (PAS)), lectins and anti-
bodies remain the most basic and ubiquitously used visual
techniques to examine mucus and mucins [90, 92, 93, 100,
101]. These methods offer the advantage in that they are
relatively simple to perform. They also offer spatial
context, as procedures are typically performed on airway
tissue sections. Antibodies offer greater specificity and
direct detection of mucins, whereas AB/PAS and lectins
are indirect. Important considerations for quantification
of histological, lectin and antibody-based methods include
maintaining the same fixation [102, 103] and imaging
parameters (e.g., lamp or laser intensity, magnification)
across samples, imaging a sufficient number of fields to
acquire accurate representation of the sample, and ensur-
ing that the samples are acquired from the same anatom-
ical location across subjects [104]. In many cases,
collaboration with a pathologist facilitates proper analysis.
Additional considerations and recommendations are
highlighted elsewhere [105, 106].

Mucus thickness, viscoelasticity, and transport proper-
ties can be examined in vitro and ex vivo using
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Table 2 Advantages and limitations of visual and imaging methods and techniques used for measuring mucus properties

Method Advantages

Limitations

Beads/microspheres visualization
and tracking in vitro [87-89],
ex vivo [20, 90] and in vivo [91]

- Easily visualized.
- Potential for in vivo tracking.

Histology & Immunostaining - Inexpensive, easily visualized.

(using specific antibodies, Lectins, - Specific antibodies can provide precise
mucin detection and localization or co-

PAS/AB) [90, 92, 93]
localization with other molecules.

- Fluorescent lectins can be used for semi-
quantitation by fluorescence intensity

measurement and are inexpensive

Electron microscopy [94]
of cells and gel-forming mucins.

X-ray imaging analysis

[1, 20, 95-98] detect mucus

- Very recent X-ray synchrotron [96] and quazi-
monochromatic X-ray phase-contrast imaging
technigues have been applied successfully to

- In depth view of micro anatomical structures

- Novel techniques provide in vivo ability to

- Most applicable in vitro and in small animal models
ex vivo/in situ.

- Data analysis can require careful application of
modelled calculations that present opportunities for
error.

- Some of the in vivo applications may require expensive
visualization set up.

- Applicable mostly in vitro and ex vivo.

- When scoring systems are utilized, careful analysis by
multiple individuals blinded to group treatments are
necessary.

- Fixation and washing steps might result in mucus
being washed away.

- Lectins bind to different carbohydrates in the
oligosaccharide chains of glycoproteins and glycolipids
and therefore are not mucin specific.

- Difficult to detect more than one type of gel mucin at
the same time.

- The type and duration of fixation is very important for
retention of mucin structures.

- Expensive set-up and materials.

- Potential for exposure to harmful rays.

- At the moment, are limited in utility for longitudinal in vivo
studies.

- Highly specialized equipment and skills

measure MCT in vivo, together with lung motion.
- Can detect mucus plugs in humans in vivo.

Volumetric — submucosal gland
bubble visualization [55, 99]
treatment conditions.

- The total volume technique gives a simple

- Detect ex vivo/in vitro increased output from
single cell or multiple glands under normal or

- Volume output may not necessarily comprise only
mucus but can also include changes in serous gland-
and non-glandular cell-secretions.

- Currently not applicable in vivo.

quantitation of total mucus secretion ex vivo/in
vitro for a constant time period at baseline and/

or after treatment.

microscopy with fluorescent probes and dyes that label
or diffuse through mucus [20, 87, 88, 91, 95, 107]. Im-
aging as a tool to measure viscoelastic properties is
covered in greater detail in a subsequent section. Experi-
ments in which fluorescent probes and particles are used
to assess mucus require careful consideration, as factors
such as pH sensitivity, photostability, brightness, and
size influence experimental design and outcome. How-
ever, an advantage of using fluorescent probes, particles,
and dyes is that they offer spatial and temporal reso-
lution when visualized by a microscope. This can be
beneficial for investigating experimental or therapeutic
interventions, as well as delineation of the layers of ASL
impacted by an intervention or disease. Further, these
techniques can be used in multiple species, making com-
parative studies possible. Finally, because these methods
are used quite extensively, they are generally well-
accepted. However, one limitation is the lack of specifi-
city for studying mucin (e.g., assessing mucus and ASL,
not mucin directly). Additionally, because many experi-
ments using fluorescent probes and particles occur
in vitro or ex vivo, careful control of environmental

conditions, which may necessitate environmental cham-
bers, is needed to minimize the introduction of uninten-
tional artifacts and confounds.

Several imaging techniques have been pioneered over
the years that allow for examination of mucus (and
ciliary) function in vivo through assessment of MCT.
Currently, in humans, measuring MCT in the conduct-
ing airways of the lung has been chiefly accomplished
through radioactive aerosols [108]. These studies can be
laborious and time-consuming and require highly spe-
cialized and standardized testing environments/equip-
ment. Further, initial deposition of radioactive aerosols,
which is impacted by particle size and breathing, greatly
influence the rate by which mucus is cleared [108]. This
can create “noise” and increase the sample number re-
quired to detect differences within and across human
populations.

In animal models, fluorescent or radiopaque particles
have been used to measure MCT in vivo and ex vivo.
Advanced imaging modalities are often required to con-
duct these experiments, and the post-hoc analysis can be
quite extensive and demanding, depending upon the
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method used. However, these techniques offer a greater
resolution and granularity compared to MCT studies
conducted in humans that use radioactive aerosols [20].
They also allow for the impact of interventions on MCT
to be assessed in vivo. Additional assays to visualize
mucus and mucins include volumetric determination of
submucosal gland secretions using an oil interface [55,
99] and electron microscopy [94]. Newer techniques that
visualize mucus flow and MCT by scintigraphy [109]
and X-ray imaging techniques [1, 20, 96-98] have also
been employed. In some cases, these newer techniques
allow for the detection of mucus plugs in humans [1].

Molecular and genetic approaches (Fig. 2, Table 3)
Traditional molecular tools, including quantitative RT-
PCR, Northern blot and in situ hybridization, allow for
examination of mucin expression at the RNA level
[110-112, 116]. These methods are relatively popular
due to their low cost, high specificity, and quantitative
nature. A limitation of these types of approaches is that
mRNA expression may not reflect protein levels.
Further, no direct information regarding mucus/mucin
secretion and/or mucus composition is provided. Lucif-
erase reporter assays and ChIP assays can also allow for
examination of pathways involved in mucin gene regula-
tion [111, 113]. More recently, newer technologies, in-
cluding single RNA-sequencing [12], have provided new
information regarding mucin expression and properties
of mucus-secreting cells. We expect that expanded use
of this technology will continue to enhance our know-
ledge of mucus and mucins in both health and disease.
Major breakthroughs in the field of mucus biology oc-
curred when genetically-modified rodent models that
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overexpressed or lacked specific mucins were generated
[89, 114, 115]. Muc5B knockout mice have shown the
importance of muc5B in MCT and inflammatory cell re-
sponses (e.g., phagocytosis and apoptotic cell clearance),
whereas muc5AC knockout models did not show any
significant MCT deficiencies [114]. However, muc5AC
knockout mice had a 74% reduction in airway obstruc-
tion when challenged with antigens to mimic allergic
asthma. These results were observed without a dampen-
ing of inflammatory responses [115], suggesting that
muc5AC was the major contributor to inflammation-
induced airway obstruction. Muc5AC overexpressing an-
imals, on the other hand, have been instrumental in
showing the importance of muc5AC in the protection of
the airways against viral invasions [89]. Specifically, an
approximately 18-fold increase in muc5AC expression
did not alter MCT, but instead protected the animals
from aerosolized influenza challenge [89]. Thus, these
animal models have provided unique insight into the
specific roles of muc5AC and muc5B in airway health
and disease. They also provide a unique advantage in
that mucin biology and function can be studied with all
the critical in vivo regulatory systems intact. Given spe-
cies differences in airway structure and physiology, ex-
trapolations from rodents to humans still requires
caution. As such, additional comparative studies using
other species might be beneficial.

Quantitative and semi-quantitative protein detection of
mucus and mucin (Fig. 2, Table 4)

Standard protein techniques, such as ELISA [117, 118]
and antibody detection-based western blotting [100,
119], are frequently used to study mucus and mucins.

Table 3 Advantages and limitations of molecular and genetic methods and techniques used in mucus research

Method Advantages Limitations
Quantitative RT-PCR - Very specific quantitative information on mucin - Inability to detect increase in secretion.
[110-112] expression at the mRNA level - Post-transcriptional modifications are also

- Inexpensive and easily applicable to most samples.

Northern-blot (RNA-blot)
assay [110, 111]

gene

Luciferase reporter and Chromatin
immunoprecipitation (ChiP) assay
(promoter-binding) [111, 113]

- Alternative method for detection of RNA.

- Allows for separation of RNA molecules by size.

- Provides information on number, length, and
relative abundance of mRNAs expressed by a single

- Luciferase reporter assay is commonly used to study
gene expression at the transcriptional level.
- ChIP allows for the specific study of molecular

not detected.

- More laborious, time-consuming and not
as sensitive as gRT-PCR.

- Requires large amount of tissue/sample, and
high purity and quality of non-degraded RNA,
which can be difficult for the large RNA
molecules of mucins.

- Most applicable in cell cultures.
- Does not give quantitative information on
mucin expression or secretion.

regulation and induction of mucin expression under

various conditions.

Using transgenic or knockout
animals [89, 114, 115]

model.

- Can be used for determination and verification of

mucin-regulation pathways.

- Unique and valuable information on the overall
function and/or effects of overexpression/depletion
of each mucin throughout the lifespan of an animal

- Most often applied in rodents.

- Often have to be used in tandem with other
techniques to verify the effect.

- Depending on the model species, can be
expensive, time-consuming.




Atanasova and Reznikov Respiratory Research (2019) 20:261

Page 8 of 14

Table 4 Advantages and limitations of quantitative and semi-quantitative protein detection methods for mucus/mucin

measurement

Method Advantages

Limitations

Percent solid
matter [13, 88]
in weight of mucus samples after oven drying.
- Simple and inexpensive.

ELISA [117,118] - Simple and relatively sensitive detection/quantitation
of proteins in liquid samples.
- Can be used for in vivo collected sputum and ASL.
SDS-PAGE/ - Inexpensive and relatively accurate measurement of
western blot specific proteins in liquid samples and tissue
assay [100, 119] homogenates.

- Can be used together with housekeeping molecules

for proper quantitation.

- Allows for the detection of normal and modified forms

- Used for quantitative determination of mucus viscosity
and water/solids ratio by measurement of the decrease

- Not an exact measurement of mucin, as the percent
dry matter may increase/decrease due to changes in
non-mucin molecules (e.g. inflammatory-cell derived
products).

- Antibody needs to be specific for mucin of interest
and epitope should avoid homologous regions/repeats
between mucins.

- A purified species-specific mucin standard should be
used, which is not always available.

- Antibody needs to be specific for mucin of interest and
epitope should avoid homologous regions/repeats
between mucins.

- Requires denaturation of mucins for running on SDS-PAGE
gels or agarose gels for proper separation of the larger
molecules.

of the same protein (after stripping of initial labeling)

Dot-blot (Slot-
blot) assays [120]
number of samples.

- Inexpensive and quick alternative to western blots
for antibody comparison and assessment in a large

- Does not separate proteins by size.

- Not as sensitive as western blot (quantification is based on
intensity image analysis of dots).

- Does not typically utilize housekeeping proteins to
normalize the signal intensity.

These techniques are appealing because of their direct
measurement of mucin and because of their quantitative
nature. Further, the equipment required to do these types
of experiments is fairly standard. Some limitations include
the laborious methods required to isolate mucin
(highlighted below), as well as the potential to not obtain
an adequate sample volume. There are also specific tech-
nical considerations for ELISA procedures that are contin-
gent upon the method used. For example, an absorption
ELISA requires that the antigen be immobilized to a
plastic surface and detected with an antibody, whereas a
sandwich ELISA captures the antigen using an antibody-
coated surface and then detects the antigen using another
antibody [121, 122]. Although the absorption ELISA is
simpler and less-time consuming, mucins absorption to a
plastic surface requires a modified surface, which then en-
ables the absorption of reduced mucin proteins [65, 123].
On the other hand, the sandwich ELISA offers greater
sensitivity and specificity but is more time-consuming and
laborious [122]. Additional approaches for examining
mucus and mucins at the protein level include measuring
percent solids [13, 88], dot-blot assays [120] and proteo-
mics [124-126]. Although percent solids and dot-blot as-
says are simpler, they are less informative and less
sensitive. Proteomics, on the other hand, is highly sensitive
and a powerful tool to interrogate mucus. It can provide
information regarding the relative abundance and types of
proteins present in a mucus sample [127]. Proteomics also
provides information regarding biochemical properties of
mucins, as highlighted below.

Measurement of biophysical/biochemical properties (Fig.
2, Table 5)

The biophysical and biochemical properties of mucus
are most affected by its composition, and greatly impact
the ability of mucus to be cleared out of the airway.
Thus, there is great interest in understanding the bio-
physical and biochemical properties of mucus and
mucin. Historically, studying mucin requires rigorous
and tedious isolation, solubilization and purification pro-
cedures [128, 129, 138-140]. Early in vitro studies relied
predominantly on cesium bromide density gradients and
sephadex chromatography, alone or coupled with pro-
teolytic digestion and/or denaturing agents [128-130],
which provides information about its biochemical
properties and structure. An advantage of chromatog-
raphy is that it provides valuable information on mucin
molecular charge and size [128, 129, 136]. Further,
through additional processing using traditional (e.g.,
Edman degradation [141]) or more advanced techniques
(e.g., mass-spectrometry [142, 143]), glycosylation pat-
terns of mucins can be resolved [13]. This is important
because glycosylation patterns greatly impact the bio-
physical nature of mucins, as the O-glycosylation of the
protein backbones has been shown to induce higher mo-
lecular rigidity and extended conformation [15, 27]. This
change in rigidity is due to the polyanionic and dielectric
properties of the sulfated and sialic sugars, especially
when introduced repeatedly in the heavily glycosylated
tandem repeat regions of mucins [27]. Additionally, the
heavy glycosylation of mucins has been linked to
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Table 5 Advantages and limitations of methods and techniques used for measuring biochemical and biophysical mucus properties

Method Advantages

Limitations

Isolation, fractionation and purification

of mucins [128-130] characterizations.

Glycosylation analysis [17] and mass
spectrometry [127].
cations of mucins.

and carbohydrates.

Viscoelasticity of mucus (laser/light - Laser scattering or quasi-elastic (dynamic) scattering is
used specifically for molecular size distribution and for
mucin conformation and chain dimensions analysis.
FRAP assay is easily applicable for in vitro/ex vivo

scattering analysis [131], direct
rheometry [132], and fluorescence
recovery after photobleaching (FRAP)

- Required steps for all initial molecular/biochemical

- Provides valuable information on species- and organ-
specific glycosylation and post-transcriptional modifi

Precise qualitative and quantitative information on
different molecules in the sample, most often proteins

- Labor intensive and may be expensive.

- Loss of sample during the process, and
therefore cannot be used solely for
quantification purposes.

- Care must be taken that the mucins do
not become degraded.

- Expensive system and materials.

- |dentification of proteins/molecules
require protein libraries for each animal
species of interest and knowledge about
glycosylation sites.

- Use mathematical modeling equations
to calculate the viscoelasticity, which
can introduce errors if not performed
or calculated correctly.

[13,133-135]) studies. - They do not give information on the
- Viscosity/elasticity under shear stress conditions can be quantity or specificity of single mucin
done directly in rheometer machines but requires higher component.
amounts of sample. - FRAP and other microrheology techniques
depend on the diameter and non-
adhesiveness of labelled particles used.
Chromatography separation and - specific technique for separation and molecular analysis - Chromatography is expensive and labor-

detection [128, 129, 136] of biological substances.

- Provides information on molecular charge and size.

Metabolic labeling/ Radiolabel
discharge measurement or
autoradiography [129, 137].

produced mucins.

Can be used to measure amount of secreted radioactive
isotope-labelled substance (e.g. *H-D-glucoseamine, or
iodo[-"“Clacetamide) incorporated easily in the newly

Historically used for characterization of mucin size in
chromatographically separated fractions and for
quantitation of total mucus secretion after treatments

intensive.

- If radioactive detection use, handling and
disposal, is expensive and environmentally
unfriendly.

- Requires radioactive substance handling
and exposure.
- Materials are strictly regulated and
expensive to dispose of.
- Not very sensitive to specific mucin secretion.
- Applicable only in vitro/ex vivo and on
sputum samples from patients.

(as ratio of radioactivity detected at baseline and after

treatment).

increased hydration of the molecules, giving them
their gel-like properties, and are critical in establish-
ing their rheological properties (from flexible to rigid
and brittle) [27, 144].

Radiolabeling (metabolic labeling) of mucins also pro-
vides information regarding the total release of glycopro-
teins, as well as the functional state of the secreting cells
[128, 129, 137, 140, 145, 146]. When radio-labeled
monosaccharides (such as fucose) are used, they can also
additional more specific information regarding glycosyla-
tion [129, 137]. Although, radio-isotope incorporating
techniques were essential in initial characterization stud-
ies of mucins, they are growing less popular.

Most early mucin characterization studies have focused
on the physical and rheological properties of purified mu-
cins (molecular weight, elasticity, light scattering and sedi-
mentation velocity), as well as on the biochemical
properties (pH, amino-acid and monosaccharide-moiety
composition) [17, 130, 132, 138, 147, 148]. The rheological
properties of mucins are among the most important deter-
minants for proper MCT [27, 148], and they are highly

dependent not only on the relative ratios of the different
mucins and their biochemical features, but also on the
properties of the solvent and other proteins or salts. To-
gether, these molecules interact with mucins to form the
mesh structure of the mucus gel layer [27, 148]. The nor-
mal properties of mucus are those of a viscous liquid
under high shear rates, and of an elastic solid at low shear
rates [148]. Classical direct rheometry techniques, make
use of special instruments like the cone-and-plate rheom-
eter, the capillary viscometer, or the filancemeter, which
rely on the subjection of collected mucus samples to
known forces like shear rate, torque, strain or traction
[132, 148]. As a result, they enable the measurement and
calculation of viscosity and elasticity under different con-
ditions [148]. Light or laser scattering techniques utilize
frequency shift and multiangle scattering of a light (laser)
beam from moving molecules in samples, and the col-
lected data gives information of the absolute molar mass
and the average size of mucins in solution [100, 130, 147].
It has also been shown to be useful in the assessment of
the motility of respiratory cilia [131].
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The aforementioned methods described the macro-
rheology of mucus. However, the microrheological prop-
erties of the mucus gel layer are also of interest, and can
provide significant information on the mesh-pore size and
thus penetrability of infectious, toxic or other agents into
the gel, as well as the mucus viscoelasticity [148]. Visually-
based techniques like the fluorescence recovery after
photobleaching (FRAP) assay are used to determine the
viscosity of mucus by measuring the two-dimensional lat-
eral diffusion of a thin film of a FITC labelled dextran
powder (or other fluorescent molecules) applied on the
mucus surface, and its fluorescence recovery time after
light exposure [13, 133—135]. This technique is especially
applicable in ciliated epithelial cultures or tracheal ex-
plants [13, 133-135] or on freshly collected mucus sam-
ples [13]. Similar to the other visual techniques described
earlier, factors like molecular/particle size and adhesive-
ness, pH-sensitivity, photostability and brightness [148]
need to be accounted for when using FRAP. Further, care-
ful consideration of the mathematical models used to cal-
culate the rheological properties is necessary for proper
and rigorous evaluation [149].

Conclusions

The heterogeneous nature of mucus glycoproteins, their
large molecular sizes and complex intermolecular inter-
actions, continues to make studies aimed at elucidating
mucin production, secretion, abundance, and biophysical
properties, challenging [49-51, 148]. Despite these chal-
lenges, there are numerous techniques available to study
mucus and mucin, each with distinct advantages and
limitations.

For example, purification methods are laborious while
radiolabeling methods are expensive and pose health
and environmental risks. Thus, these techniques are gen-
erally in decline and would benefit from a refined meth-
odology. ELISA methods based on antibody detection
remain a relatively inexpensive method to detect mucin
concentrations in patient sputum, BAL and other body
fluids [117, 118], but require mucin-specific antibodies
(e.g., MUC5AC vs. MUC5B). Western blot methods are
also useful for detection of non-gel-forming mucins in
biological fluids and tissues [100, 119], but can require
labor intensive solubilization and purification to allow
for adequate separation during gel-electrophoresis.
Proper detection in western blots also depends on the
availability of species-specific mucin-labeling antibodies.

Histological ~and immunocytochemical imaging
methods remain gold standards for detection of goblet
cell hyperplasia/metaplasia, mucus plugging, localization
of non-secreted mucins or co-localization of mucins
with other molecules in vitro, ex vivo or post mortem [90,
92, 93, 95, 100], but may be more difficult to utilize
in vivo [91] or in patients [20]. They are also limited in
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that they provide episodic information about a specific
point in time. Thus, there has been a push to develop im-
aging methods that can be implemented in vivo that allow
for capturing of dynamic information. Consistent with
that, several advances in imaging techniques, including X-
ray synchrotron [96] and quazi-monochromatic X-ray
phase-contrast imaging [1], have been applied successfully
to measure MCT and mucus plugs in vivo.

Molecular and genetic methods, and particularly RNA
extraction with RT-PCR, have also become increasingly
utilized for the detection of changes in expression levels
of mucins [110-112]. They are also useful for the detec-
tion of downstream and upstream mechanisms in the
regulation of mucin expression/secretion [111, 113]. As
mentioned, genetically engineered rodent models have
provided unprecedented insight into the role of
Muc5AC and Muc5B in airway health and disease [89,
114, 115]. Because of species differences in mucin and
airway physiology and anatomy [51], it is worthwhile
and recommended that additional animal models be
explored.

The biophysical and biochemical properties of mucus
can be assessed using many different approaches. Al-
though separation chromatography was used frequently
during many of the initial glycobiology studies [128-130,
136], pairing chromatography with more recent technol-
ogy, such as mass spectrometry, has become increasingly
popular [13, 127]. Additionally, the gold standard for
measuring viscoelastic properties of mucus is direct rheo-
metry, but these methods typically require a significant
volume of mucus and are limited to in vitro studies [17,
148]. Thus, FRAP as a tool to measure viscoelastic proper-
ties has become an effective and valuable approach that
has fewer volume limitations [13, 133—135, 148]. The de-
velopment of a nanoprobe to measure the biophysical
properties of mucus in vivo in a somewhat non-invasive
manner could significantly enhance the field. For example,
the fabrication of flagellated nanobots inspired by bacteria
has been reported [150, 151]. Thus, it is possible that flag-
ellated nanobots or some iteration of flagellated nanobots
might offer new approach to measure the viscoelastic
properties of mucus and mucins.

Multiple strategies are required to study mucus and
mucins. The strength of using a multi-strategy approach
is the reduction in errors that are likely to occur by
using a single technique. Unfortunately, many aspects of
mucin regulation are still unclear, especially on the scale
of longitudinal changes in mucus properties within the
same subject or patient. Thus, though great leaps in
technology over the past few decades have been made,
there is still a need for the development of fast and easy
method(s) for detection and quantitation of mucins and
mucus, especially as it relates to clinical samples and in
patients.
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