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Chronic Obstructive Pulmonary Disease (COPD) is a complex disease resulting in respiratory failure and represents
the third leading cause of global death. The two classical phenotypes of COPD are chronic bronchitis and
emphysema. Owing to similarities between chronic bronchitis and the autosomal-recessive disease Cystic Fibrosis
(CF), a significant body of research addresses the hypothesis that dysfunctional CF Transmembrane Conductance
Regulator (CFTR) is implicated in the pathogenesis of COPD. Much less attention has been given to emphysema in
this context, despite similarities between the two diseases. These include early-onset cellular senescence, similar
comorbidities, and the finding that CF patients develop emphysema as they age. To determine a potential role for
CFTR dysfunction in the development of emphysema, Cftr™’* (Wild-type; WT), Cftr™”~ (heterozygous), and Cftr”~
(knock-out; KO) mice were aged or exposed to cigarette smoke and analyzed for airspace enlargement. Aged
knockout mice demonstrated increased alveolar size compared to age-matched wild-type and heterozygous mice.
Furthermore, both heterozygous and knockout mice developed enlarged alveoli compared to their wild-type
counterparts following chronic smoke exposure. Taken into consideration with previous findings that cigarette
smoke leads to reduced CFTR function, our findings suggest that decreased CFTR expression sensitizes the lung to
the effects of cigarette smoke. These findings may caution normally asymptomatic CF carriers against exposure to
cigarette smoke; as well as highlight emphysema as a future challenge for CF patients as they continue to live
longer. More broadly, our data, along with clinical findings, may implicate CFTR dysfunction in a pathology

Introduction

Chronic Obstructive Pulmonary Disease (COPD) is the
third leading cause of death globally [1]. COPD is
primarily caused by tobacco smoking, however other
factors such as air pollution, individual genetics, and
aging are also thought to play a role. COPD has trad-
itionally been associated with two main phenotypes-
chronic bronchitis and emphysema. Chronic bronchitis
is accompanied by chronic airway inflammation and
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encompasses mucus hypersecretion, smooth muscle
constriction, and small-airway fibrosis. Emphysema, also
associated with inflammation, is characterized by
airspace enlargement and tissue destruction in the lung
parenchyma which results in alveolar distension and
contributes to respiratory decline.

Many mechanistic similarities between aging and the
development of COPD have been drawn and reviewed
extensively, in which COPD can be considered an “accel-
erated aging” disorder [2]. While smoking is the primary
cause of COPD, the finding that most smokers do not
develop the disease has led to considerable interest in
genetic factors that may predispose an individual to the
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effects of tobacco smoke. In accordance with the accel-
erated aging hypothesis, mutations in the genes encod-
ing Sirtuin 2 [3] and Telomerase Reverse Transcriptase
[4] have been found to be associated with COPD.
Another potentially interesting gene in the context of
aging and COPD is CFTR, encoding the Cystic Fibrosis
Transmembrane conductance Regulator (CFTR).

CFTR is an anion channel involved in airway hydration
and mucociliary clearance most commonly studied in
the context of Cystic Fibrosis (CF). CF is a life-limiting
autosomal-recessive disease in which severely reduced
CFTR function increases patients’ susceptibility to lung
infection and excessive inflammation, resulting in lung
damage and ultimately respiratory failure [5]. CF pa-
tients also experience several symptoms often associated
with aging, including diabetes and bone disease [6];
common comorbidities encountered in COPD [7]. An
interesting clinical observation from CF patients under-
going lung transplantation is that they commonly
develop emphysema, which becomes more severe with
age [8]. Mechanistically, it is not clear whether this is
due to the excessive airway inflammation associated with
CF, or an alternative phenomenon. Interestingly, several
markers of cellular senescence have been found to be in-
creased in CF airways [9]. Additionally, skin fibroblasts
from CF patients have been shown to senesce more
readily than those from healthy controls [10].

A growing body of research supports the idea that COPD
is a disease of acquired CFTR dysfunction, particularly in
the context of the chronic bronchitis phenotype [11]. We
have previously shown that CFTR expression is reduced in
the bronchial epithelium of patients with severe COPD
[12], and identified a mechanism by which cigarette smoke
exposure leads to CFTR degradation [13]. Considering the
similarities between CF and COPD, we hypothesized that
disrupting CFTR expression may promote development of
emphysema as a consequence of aging or exposure to to-
bacco smoke independent of CF airway disease. Mice do
not develop the spontaneous infection and inflammation
associated with CF airway disease [14, 15], providing a
convenient model to address this question. To determine a
potential role for CFTR expression levels in developing
emphysema, the effects of aging and cigarette smoke ex-
posure on Cftr'’* (WT), Cfir*’~ (Het), and Cftr’~ (KO)

mice were examined.

Methods

To determine a possible role for CFTR expression in
emphysema-like changes, mice lacking CFTR (KO) or
heterozygous (Het) for Cftr"™'“" [stop codon in the
murine cftr gene (S489X)] and homozygous for
Tg(FABP-CFTR) [fatty acid-binding protein (FABP)-
CFTR]; or wild-type (WT) littermates (Cftr"”"'“"* FABD-
hCFTR-CFTR bitransgenic mice from Jackson Laboratory,
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Bar Harbor, ME) were aged 14—20 months under standard
pathogen-free housing conditions. Mice were considered
“aged” at 14 months, because this age corresponds to
the upper limit of a “middle-aged” mouse (https://www.
jax.org/research-and-faculty/research-labs/the-harrison-
lab/gerontology/life-span-as-a-biomarker). KO mice ex-
press human WT CFTR in the intestine (https://www.
jax.org/strain/002364) and thus were able to be fed only
standard mouse chow [16]. Seven-nine mice of each geno-
type were aged. Following euthanasia via CO, and cervical
dislocation, lungs were inflated with 10% neutral-buffered
formalin at a pressure of 20 cmH,0 and fixed for 24 h,
sectioned, and stained with hematoxylin and eosin for
morphometric analysis [17]. Alveolar airspace enlarge-
ment was quantified by calculating the mean linear inter-
cept (Lpg). The same lungs and lobes were used across all
the genotypes. For the aging study, both lungs were ana-
lyzed while for the cigarette smoke study, only the right
lungs were analyzed. To calculate the Ly;, 5 randomly se-
lected images of alveolar tissue per mouse were used. A
10 x 10 grid was superimposed over each image with Ima-
ge] software (NIH, Bethesda, MD), and the number of al-
veolar intersections for each line was manually counted.
Ly was calculated by dividing the length of lines by the
number of intersections and averaged from 5 images for
each mouse. Lines intersecting vasculature, bronchioles,
or poorly inflated areas of the lung were not used. To de-
termine whether cftr genotype contributes to the severity
of cigarette smoke-induced emphysema, WT, Het, and
KO mice were exposed to smoke from 3R4F research
grade cigarettes (University of Kentucky, Lexington, KY)
via whole-body exposure as previously described [18]. To
model chronic tobacco smoking, the regimen consisted
of 4 cigarettes per day, 5 days per week, for 10 months.
Control mice of each genotype were exposed to filtered
air instead of cigarette smoke. Four-nine mice were
used for each group. Following the 10-month exposure,
mice were euthanized. To investigate the possibility
that CFTR genotype plays a role in the inflammatory
response to cigarette smoke, another set of 8 mice from
each genotype were subject to the same treatment regi-
men as above for 4 weeks. Bronchoalveolar lavage
(BAL) was conducted by washing lungs twice with 2 ml
of sterile phosphate-buffered saline (Life Technologies,
Grand Island, NY). Cytospin was performed on BAL
cells. Following Wright-Giemsa staining (Fischer Scien-
tific, Kalamazoo, MI), numbers of macrophages/mono-
cytes, neutrophils, and lymphocytes were counted.
Studies were approved by the Ohio State University In-
stitutional Animal Care and Use Committee (IACUC,
protocol #2015A00000067), in accordance with NIH
and OSU IACUC guidelines. Studies conducted at the
University of Cincinnati were approved by IACUC
protocol 06—-04—07-01.
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Results

Upon aging, Cftr-knockout mice displayed an increased
mean linear intercept (Ly), indicative of alveolar
enlargement, compared to Heterozygous or WT mice
(Figs. la &b). Among mice aged 14—20 months, there
was no correlation between age and Ly (r* =0.1112).
WT mice exposed to cigarette smoke (CS) for 10 months
displayed a Ly, that was increased but not significantly
different from that of wild-type mice exposed to filtered
air (FA). However, airspace enlargement in heterozygous
and knockout mice exposed to smoke was significantly
greater than their wild-type counterparts. Heterozygous
and KO mice exposed to CS displayed increased Ly
compared to their FA counterparts (Figs. 2a&b). Periodic
Acid-Schiff staining was conducted on lung sections to
determine mucus expression and obstruction, however
very little mucus was detected in the lungs of all mice.
No signs of infection were noted in the lungs of KO
mice as evaluated by presence of the key inflammatory
mediator IL-1p in BAL, presence of inflammatory cells,
altered lung structure, or mouse weight loss. During the
smoke exposure study, one WT mouse exposed to fil-
tered air died from unknown causes (pathology was per-
formed but the cause of death could not be identified).
During the aging study, one heterozygous mouse had to
be sacrificed due to edema and ocular swelling. In mice
exposed to CS for 4 weeks, cytology revealed a modest
but statistically significant increase in the percentage of
macrophages/monocytes in BAL fluid between WT and
both Het and KO mice (Fig. 2c). This increase in the
percentage of BAL macrophages/monocytes was accom-
panied by a decrease in neutrophils (2.95+ 1.30% for
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WT, 1.98+0.67% for Het, and 1.97 £0.86% for KO
mice), without a significant change in the total number
of cells (7.74 +0.43 x 10* for WT, 7.91 +0.42 x 10*, for
Het, and 8.04 + 0.42 x 10* cells/mL for KO mice; p =
0.39 via ANOVA).

Discussion

In the present study, we show using two different experi-
mental models, aging and cigarette smoking, that lack of
CFTR leads to increased airspace enlargement similar to
emphysema. The finding of airspace enlargement in aged
knockout mice is in accordance with findings in human
CF patients [8]. However, we did not detect any mucus
over-production or obstruction via periodic acid-Schiff
staining. In fact, very little mucus was detected in the
lungs of all mice (data not shown). We also did not
detect any differences in inflammatory cell counts in the
BAL fluid of mice at the time of sacrifice (data not
shown), suggesting that complete absence of CFTR
promotes emphysema upon aging independent of an ex-
ternal inflammatory or oxidative stimulus. Our finding
that only KO aged mice develop emphysema, while both
Het and KO mice exposed to cigarette smoke do, may
suggest that decreasing CFTR expression sensitizes the
lung to the effects of cigarette smoke. This may imply
that individuals carrying CFTR mutations might be more
prone to developing emphysema.

The mechanisms behind which CFTR dysfunction
promotes emphysema are currently unclear. It has been
suggested that CFTR dysfunction contributes to emphy-
sema through its regulation of pro-inflammatory
ceramide signaling [19]. In addition, it has been shown
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Fig. 1 Development of emphysema-like changes in elderly mice. Healthy 14-20 month old wild-type (WT), CFTR-heterozygous (Het), and CFTR-

knockout (KO) mice were sacrificed and lungs were fixed and inflated with formalin. (a) Representative micrographs of lung parenchyma stained
with hematoxylin and eosin; and (b) mean linear intercepts (L) of WT, Het, and KO mice. Magnification: 400X. Scale bar =50 um. ***p < 001 via
one-way ANOVA with Tukey's post-hoc multiple comparison. N = 7-9 mice per group
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Fig. 2 Emphysema-like changes in mice exposed to cigarette smoke. Mice wild-type (WT), CFTR-heterozygous (Het), and CFTR-knockout (KO)
were exposed to filtered air (FA) or cigarette smoke (CS) for 10 months. (a) Representative micrographs of lung parenchyma stained with
hematoxylin and eosin and (b) mean linear intercepts (L) of wild-type (WT), CFTR-heterozygous (Het), and CFTR-knockout (KO) C57BL/6 J mice
exposed to filtered air (FA) or cigarette smoke (CS) for 10 months. N = 4-9 mice per group. (c) Percentage of monocytes/macrophages in
bronchoalveolar lavage fluid of mice exposed to cigarette smoke for 4 weeks. N=8 from each group. Magnification: 400x. Scale bar =50 ym. *

p <.05, ** p <.001 between groups indicated by line; ## p < .01, ### p <.001 compared to FA mouse of same genotype. NS indicates there is no
significant difference between FA and CS WT mice. Significance was determined via one-way ANOVA with Tukey's post-hoc multiple comparison

J

that CFTR inhibition increases the permeability of the
pulmonary vasculature, and it has been hypothesized
that this may lead to increased trafficking of inflamma-
tory cells to the lung [20]. These studies however, were
conducted using stressors such as cigarette smoke or
lipopolysaccharide. Our novel finding in aged mice may
suggest that an alternative, or at least an additional
mechanism is playing a role.

The effect of aging on lung architecture has previously
been investigated in BALB/c mice [21]. The authors
found that while both alveolar surface area and volume
increased, Ly; did not change after 28 months [21]. Ly,
represents the alveolar volume to surface area ratio [22].
Thus, our results in WT and Het mice are in agreement
with these findings [21]. Interestingly, several mouse
models of accelerated aging also display signs of emphy-
sema [23]. Mice homozygous for nonfunctional klotho
have a maximal lifespan of about 12 weeks [24], and
display alveolar epithelial cell apoptosis by 2weeks of
age, and increased Ly; by 4 weeks [25]. Klotho is a Fib-
roblast Growth Factor-23 co-receptor with pleiotropic

downstream signaling effects which are potentially re-
lated to its “Anti-aging” role, such as suppression of oxi-
dative stress and senescence [26]. Another mouse model
of accelerated aging is the Senescence Marker Protein-
30 (SMP30) knockout mouse [27]. Compared to WT
C57BL/6 controls, SMP30 KO mice displayed increased
Ly beginning at 1 month and persisting up to 6 months
of age [27]. In another study, SMP30 KO mice dis-
played increased Ly, following 8 weeks of CS exposure,
while WT mice did not [28]. Our finding that aged
CFTR KO mice display increased Ly is in agreement
with those in Klotho- and SMP30-KO mice, as well as
several other strains of Senescence-Accelerated Mouse
[23]. However, compared to the accelerated aging mice,
CFTR KO mice take considerably longer (14 months) to
display increased Ly, and display normal lifespan due
to gut correction (expression of human WT-CFTR in
the intestinal epithelium under intestinal FABP
promoter).

It is worth noting that similarly to the Klotho mouse,
the CFTR KO mice display increased Ly later in life that
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does not further increase with age [25]. This suggests
that our findings are not directly caused by a develop-
mental defect associated with knocking out CFTR, which
is important to note because it has been suggested that
CFTR plays a role in lung development in both mice
and humans [29]. It also suggests that our findings rep-
resent a discrete occurrence, rather than a continuous
process. Thus, all mice in the range of 14-20 months
were considered “aged” for this study. While many signs
of cellular senescence have been noted in CF [30], fur-
ther research will be necessary to determine if this ex-
plains our findings in aged CFTR KO mice. The main
novelty of our findings in aged mice is that CFTR KOs
develop increased Ly, despite only poorly recapitulating
the pathophysiology of human CF patients which is
characterized by chronic lung infection [14, 15].

Considering the age-related nature of COPD, several
studies have investigated whether aging itself increases
susceptibility to the effects of cigarette smoke. One study
noted that between 6 month- and 12 month-old mice,
there were no differences in Ly, recruitment of macro-
phages and neutrophils, or gene expression of several
inflammatory cytokines in lung tissue following 8 weeks
of CS exposure [31]. Another recent study found that
following 6 months of CS exposure, there was no differ-
ence in Ly; between young (14—16 months old) and old
(23-24 months old) mice [32]. The study also found that
aging enhanced the inflammatory response to CS, but
did not exacerbate protein expression of the senescence
marker pl6, or expression of several senescence-associ-
ated genes. Interestingly however, aged mice not ex-
posed to cigarette smoke did display an increased Ly
and increased lung compliance, indicative of emphysema
[32]. These results suggest that aging and CS contribute
to COPD independently of each other, but not addi-
tively, even though age enhances CS-induced inflamma-
tion. Thus, our failure to detect differences in Ly; any
earlier than 10 months of CS exposure could more likely
be explained by the requirement of time for the effects
of CS to manifest, rather than the age of the mice. In the
4 week CS exposure study, we noted a change in BAL
composition in both Het and KO mice compared to WT
mice. This was characterized by a slight increase in mac-
rophages/monocytes, and a slight decrease in neutro-
phils without affecting the total cell number. Whether
slight changes in inflammatory profile are responsible
for the change in lung architecture we report is difficult
to ascertain but warrants further investigation.

In the present study, WT mice did not display in-
creased Ly; upon aging (between 14 and 20 months),
however we did not age them past 20 months. Our find-
ing that CFTR KO mice develop increased alveolar space
enlargement similar to emphysema following aging or
CS exposure may suggest a protective role for CFTR
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against both processes. This is further supported by our
finding that CFTR Het mice develop emphysema only in
response to CS. It is well established that CS decreases
CFTR expression, while aging is not known to. In fact, a
search for cftr in a recent transcriptomics database of
the aging mouse lung shows that CFTR gene expression
decreases by only 8% in alveolar type-II cells, and does
not significantly change in any other cell type [33].
Further studies will be necessary to fully determine a
mechanism for CFTR in protection against emphysema.

Conclusion

To conclude, we report for the first time that mice
lacking Cftr develop alveolar remodeling similar to
emphysema upon aging, and that genetic reduction of
Cftr expression contributes to emphysema-like changes
following smoke exposure. Our results in aged mice may
have implications for a CF population whose life expect-
ancy is rapidly increasing [34]. Cystic fibrosis is associ-
ated with several age-associated pathologies, including
diabetes and bone disease; and now emphysema. This
may suggest emphysema as a significant future problem
for aging CF patients, as well as foreshadow problems
often associated with old age, such as neurological and
cardiovascular diseases, which currently receive little
basic research attention in the context of CF. Finally, CF
carriership is fairly common [35], and our results in
heterozygous mice exposed to cigarette smoke suggest
that CF carriers may be more susceptible to the effects
of cigarette smoke, including secondhand smoke, carry-
ing significant cautionary implications. Our data may
also suggest CFTR as an attractive therapeutic target in
emphysema, however more research needs to be done.
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