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Abstract

Background: Little is known about the interactions between the lung microbiome and host response in chronic
obstructive pulmonary disease (COPD).

Methods: We performed a longitudinal 16S ribosomal RNA gene-based microbiome survey on 101 sputum
samples from 16 healthy subjects and 43 COPD patients, along with characterization of host sputum transcriptome
and proteome in COPD patients.

Results: Dysbiosis of sputum microbiome was observed with significantly increased relative abundance of
Moraxella in COPD versus healthy subjects and during COPD exacerbations, and Haemophilus in COPD ex-smokers
versus current smokers. Multivariate modeling on sputum microbiome, host transcriptome and proteome profiles
revealed that significant associations between Moraxella and Haemophilus, host interferon and pro-inflammatory
signaling pathways and neutrophilic inflammation predominated among airway host-microbiome interactions in
COPD. While neutrophilia was positively correlated with Haemophilus, interferon signaling was more strongly linked
to Moraxella. Moreover, while Haemophilus was significantly associated with host factors both in stable state and
during exacerbations, Moraxella-associated host responses were primarily related to exacerbations.

Conclusions: Our study highlights a significant airway host-microbiome interplay associated with COPD
inflammation and exacerbations. These findings indicate that Haemophilus and Moraxella influence different
components of host immune response in COPD, and that novel therapeutic strategies should consider targeting
these bacteria and their associated host pathways in COPD.

Keywords: Chronic obstructive pulmonary disease, COPD, Microbiome, Exacerbations, Clinical study, Transcriptome,
Proteome, Healthy, Smokers, Next-generation sequencing technologies

Background
Chronic obstructive pulmonary disease (COPD) is a het-
erogeneous lung disease in which recurrent bacterial in-
fections are a major etiological factor [1–4]. The human
microbiome in the respiratory tract differs between
healthy subjects and COPD patients [5–7], shifts in
composition during COPD exacerbations [8–12] and
varies among exacerbation subtypes [9], all suggesting a
close association between the lung microbiome and
COPD pathophysiology with potential involvement of

host immunity and inflammatory responses. It is thought
that disruption of microbiome, known as dysbiosis,
could trigger a dysregulated host immune response that
results in infection susceptibility, inflammation and
negative effects on host biology [13].
A systematic understanding of airway host-microbiome

interaction in relation to COPD pathogenesis could pro-
vide the mechanistic basis for modulation of host-microbe
interactions as a potential novel therapeutic strategy for
COPD. A previous study on COPD patients showed that
the lung microbiome was significantly associated with
sputum pro-inflammatory markers especially interleukin-
8 (IL8/CXCL-8, 9). In particular, there is a significant cor-
relation between sputum interleukin-8 (IL-8/CXCL-8)
with both alpha and beta diversity of the airway
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microbiome in COPD. In the correlation network, sputum
IL-8/CXCL-8 showed the highest degree of microbiota con-
nectivity with a significant negative correlation to 15 bacter-
ial operational taxonomic units (OTUs), suggesting sputum
IL-8/CXCL-8 could be an indicator of microbiome commu-
nity structure and diversity.
Few studies have simultaneously characterized both

lung microbiome and human multi-omics profiles in
COPD, and in other respiratory diseases in general. Sze
et al. measured the lung microbiome and host transcrip-
tome in COPD and found Firmicutes and Proteobacteria
were associated with different host gene expression pro-
files [14]. Molyneaux et al. profiled both lung micro-
biome and peripheral whole-blood transcriptome for
idiopathic pulmonary fibrosis patients and identified two
gene modules involved in host defense that are strongly
associated with the microbiome profile [15] However, a
comprehensive understanding of the collective host re-
sponse at both transcriptional and protein expression
levels to the lung microbiome community is lacking. A
systems biology approach integrating lung microbiome
and host multi-omics datasets is necessary to better
understand host-microbiome interactions in COPD.
Here we performed a 16S ribosomal RNA (rRNA)

gene-based survey on sputum microbiome from 16
healthy subjects and 43 COPD patients. Host sputum
cell counts, transcriptome and proteome were also char-
acterized for COPD patients. To our knowledge, this is
the first study that characterizes both lung microbiome
and host transcriptome and proteome profiles in stable
COPD and during exacerbations. We found significant
interplay between lung microbiome composition and
host response in COPD that is potentially important to
current treatments and future therapeutic strategies.

Methods
Patient selection
The presented study was conducted in accordance with
the Declaration of Helsinki [16] and Good Clinical Prac-
tice [17]. The human biological samples were sourced
ethically and in accord with the terms of the informed
consents under the University of Manchester and Uni-
versity Hospital of South Manchester IRB/EC approved
protocol (Approval number: 10/H1003/108).
Healthy subjects and COPD patients were enrolled at

the Medicines Evaluation Unit (Manchester University
Foundation NHS Trust Hospital). Patients with asthma,
or significant respiratory disease other than COPD, or
the inability to produce sputum after sputum induction
were excluded from the study. Patients were seen at
stable at least 6 weeks after the use of any short term an-
tibiotics. Patients contacted the research team if they ex-
perienced a change in symptoms consistent with an
acute exacerbation. Daily diary cards were used. Patients

were assessed by a clinician and exacerbations defined as
in increase in respiratory symptoms for two consecutive
days. Smoking status, historical exacerbation frequency,
GOLD status, inhaled corticosteroid (ICS) administra-
tion, Quality of Life (QoL) scores and lung function
measurements (FEV1, FVC and FEV1/FVC ratio) were
recorded for COPD patients (Table 1, Additional file 1:
Table S1). Smoking status and lung function measure-
ments were recorded for healthy subjects.

Sputum collection
Sputum samples were collected at a single time-point
from 16 healthy subjects and longitudinally from 43
COPD patients. Sputum sampling were performed prior
to any systemic therapy including treatment with oral cor-
ticosteroids and/or antibiotics. Sputum samples were ob-
tained by spontaneous expectoration or induced. For
COPD patients, spontaneous expectoration was attempted
first, if no sputum or too little sputum was produced, in-
duction was then performed. For healthy subjects, only in-
duction method was performed. Sputum samples from
COPD patients were collected at stable (defined as no evi-
dence of symptom-defined exacerbations in the preceding
4 weeks and the subsequent 2 weeks post-clinic visit), ex-
acerbations (defined according to Anthonisen criteria [18]
and/or healthcare utilization [19]), two and 6 week post-
exacerbations and 6 months from first stable visit. All ex-
acerbation sputum samples were collected prior to the in-
stitution of any exacerbation treatment. The missing
samples are mostly due to patients unable to produce suf-
ficient amount of sputum for downstream experiments
(Additional file 1: Figure S1).

Sputum processing
Sputum samples were processed to obtain cell pellets and
supernatant, for immune cell counting, host transcriptome
and proteome analysis, according to a previous method [20].
Briefly, sputum plugs were selected from saliva and put on
ice (minimum weight 0.1 g). Eight times volume of
phosphate-buffered saline (PBS) was added to the sputum.
The mixture was incubated in a roller mixer for 15min on
ice, vortexed every 5min and centrifuged at 790 g for 10
min. The supernatant was split into aliquots and stored at −
80 °C for sputum proteome analysis. For cell pellets, a four-
fold volume of 0.2% DTT was added and the mixture was
incubated for 15min in a roller mixer on ice, vortexed every
5min, filtered using 48 μm nylon-mesh filter and centri-
fuged. Cell pellets were resuspended in 1ml of PBS to per-
form haemocytometer cell counts, cytospin differential cell
counts and stored at − 80 °C for transcriptomic assays.

Microbiome 16S rRNA gene sequencing
For quality control purposes, bacterial DNA extractions,
sequencing and data analyses were performed in a single,
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centralised lab at the GlaxoSmithKline (GSK) R&D facil-
ity in Collegeville, PA, USA. The detailed procedure of
bacterial genomic DNA isolation, 16S library prepar-
ation, sequencing, reagent controls, and sequence data
processing was provided in the supplementary material
of our previous study [11]. Bacterial genomic DNA was
extracted from healthy and COPD sputum samples
using Qiagen DNA Mini kit. The variable 4 (V4) region
of the 16S rRNA gene was PCR-amplified with the ap-
propriate reagent controls [9, 11], and was sequenced
using Illumina Miseq. The demultiplexed and quality-
filtered sequencing reads were subject to open-reference
operational taxonomic unit picking (97% identity cutoff )
using QIIME 1.9 [21].
Seven OTUs were detected with > 10 sequencing reads in

the negative reagent controls (Additional file 1: Table S2).
Although negative reagent controls were performed for all
DNA isolation, extraction and PCR amplification step, we
performed further analyses to ensure that potential contam-
ination risks were minimized. We compared our results
against the 92 contaminant genera detected in sequenced
negative ‘blank’ controls by Salter et al. [22]. We failed to
detect 56 out of the 92 contaminant genera in our dataset
(Additional file 1: Table S3). Of the remaining genera
that were found in our data, none had an average
relative abundance greater than 0.0004, or had a rela-
tive abundance greater than 0.1 in a particular

sample, except for Streptococcus which contains
known lung pathogens.

Bacterial qPCR assays
All qPCR assays were performed using 384-well micro-
bial DNA qPCR arrays (Qiagen, Germantown, MD) on a
QuantStudio 12 K Flex Real-Time PCR System (Life
Technologies, Carlsbad, California, USA). The 10 μl re-
action mixture contained 5 μl of Microbial qPCR master
mix with ROX and 5 μl of Microbial-free water (Qiagen,
Germantown, MD). Each well was spotted with a mix of
two PCR primers (10 μM each) and one 5′-hydrolysis
probe (5 μM) with 10 ng of added sample DNA. The fol-
lowing cycling parameters were used: initial cycle of
95 °C for 10 min; 40 cycles of 95 °C for 15 s; and 60 °C
for 2 min. All qPCR templates were run in duplicate and
tested for amplification inhibition by use of a positive
PCR Control (Qiagen, Germantown, Maryland, USA).
For standard curve calculation, each plate run included
a decimal serial dilution of double-stranded DNA oligos
(Integrated DNA Technologies, Skokie, Illinois, USA)
designed from the 16S rRNA gene of pan-bacteria, Hae-
mophilus influenzae, Moraxella catarrhalis, Streptococ-
cus pneumoniae, Prevotella melaninogenica and
Veillonella dispar. The cycle threshold values and DNA
copy numbers were calculated using the QuantStudio

Table 1 Major demographic and baseline clinical features of all subjects in this study

Demographic and baseline clinical features Healthy Controls (N = 16) COPD Patients (N = 43)

Age, yearsa 55.0 (8.8) 65.0 (4.8)

Gender, n (% Male) b 11 (68.8) 31 (72.1)

Current Smoker, n (%) 8 (50.0) 16 (37.2)

Number of cigarette packs per year 34.4 (11.2) 50.9 (28.2)

GOLD Stage: I/II/III/IV, n (%) NA 2 (4.7)/19 (44.2)/16 (37.2)/6 (14.0)

Inhaled steroid use, n (%) NA 33 (76.7)

LABA use, n (%) NA 34 (79.1)

LAMA use, n (%) NA 35 (81.4)

Number of exacerbations per year NA 1.9 (1.4)

CAT score NA 21.8 (8.3)

SGRQ total score NA 49.0 (22.9)

mMRC score NA 2.1 (1.2)

Pre FEV1 (L) 3.0 (0.7) 1.1 (0.5)

Pre FVC (L) 4.1 (1.0) 2.8 (0.9)

Pre FEV1/FVC ratio 0.73 (0.0) 0.4 (0.1)

Post FEV1 (L) 3.1 (0.8) 1.2 (0.6)

Post FVC (L) 4.0 (0.9) 3.3 (1.0)

Post FEV1/FVC ratio 0.76 (0.0) 0.4 (0.1)
a Continuous data present as mean (SD)
b Categorical data present as number (proportion)
GOLD Global Initiative for Chronic Obstructive Lung Disease, LABA long-acting beta-agonist, LAM long-acting muscarinic antagonist, CAT COPD Assessment Test,
SGRQ St. George’s Respiratory Questionnaire, mMRC modified Medical Research Council, FEV1 forced expiratory volume in one second, FVC forced vital capacity
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12 K Flex software (Life Technologies, Carlsbad, Califor-
nia, USA).

Host RNA microarray analysis
Host transcriptome was profiled for 38 COPD sputum
samples (Additional file 1: Figure S1). Total RNA was
extracted using Trizol reagent (Invitrogen) from sputum
cell pellets and further purified with a RNeasy mini kit
(Qiagen, Valencia, California, USA) according to the man-
ufacturer’s instructions. RNA quality was evaluated on the
Agilent 2100 Bioanalyzer and quantitated by OD260. For
samples passing RNA QC criteria (RIN > 5.5, A260/280
value 1.6–2.4, total RNA > 50 ng, presence of distinct 28S
and 18S ribosomal RNA peaks), 50 ng RNA was used for
NuGEN amplification and labeling of probes using the
NuGEN Ovation RNA Amplification System (NuGEN
Technologies). The amplified sscDNA was purified using
the Agencourt RNAClean magnetic bead clean-up system.
The sscDNA samples were quantified by spectrophotom-
etry and profiled on Agilent 2100 Bioanalyser prior to
array hybridization. The array hybridization was per-
formed using Affymetrix GeneChip HG-U133 Plus 2.0
microarray (Affymetrix, Santa Clara, California, USA),
which contains 54,675 probe-sets interrogating 50,155 hu-
man transcripts. The raw microarray data (CEL files) were
corrected for background signal, quantile normalized and
summarized using robust multiarray average (RMA)
normalization to generate probe-set-level microarray data
using Array Studio v10.0 (OmicSoft, Cary, North Carolina,
USA). The probe-set-level microarray data were log2
transformed and converted to gene-level (24,442 genes)
by selecting the probe with greatest inter-quantile range
for its corresponding gene as suggested previously [23].
The microbiome and microarray data are deposited at the
National Centre for Biotechnology Information Sequence
Read Archive (SRP136124) and Gene Expression Omni-
bus databases (GSE112165), respectively.

Proteomic assays
Host proteome was characterized for 37 sputum samples
using the SOMAscan® platform (Somalogic, Additional file 1:
Figure S1). The SOMAscan® assay has been described in de-
tail previously [24–26]. The assay quantitatively transforms
the proteins present in a biological sample into a specific
SOMAmer-based DNA signal. Briefly, each SOMAmer® re-
agent binds a target protein (in total 1310 proteins) and is
quantified on a custom Agilent microarray hybridization
chip. Normalization and calibration were performed accord-
ing to SOMAscan® Data Standardization and File Specifica-
tion Technical Note (SSM-020). The output of the
SOMAscan® assay was reported in relative fluorescent units
and was log2 transformed for downstream analysis.

Statistical analysis
Differentially represented bacterial taxa were identified
using edgeR [27]. Differentially expressed genes in micro-
array were identified using limma in R bioconductor [28]
and were enriched for pathways using MetaCore v5.0
(Thomson Reuters). Multivariate modeling was performed
to associate microbiome, host transcriptome and prote-
ome data. The power calculation was performed following
the procedure of Morgan et al. [29]. Specifically, correlated
variable pairs were simulated with standard normal distri-
bution and a sample size of 40, the number of samples
that have both transcriptome/proteome and microbiome
data. The 80th percentile of raw P-values of the Spearman
correlation test was calculated as a function of true covari-
ance of the variables. The number of allowable tests for
80% power and 5% type I error rate was estimated by Bon-
ferroni correction, which is 0.05 divided by the 80th per-
centile of raw P-values calculated as above.
To reduce dimensionality, a Principal Component

Analysis (PCA) was performed on the gene-level micro-
array data. PCA was also performed on the Somalogic
proteome profile of 1310 proteins. The transcriptome
Principal Components (tPCs) and proteomic Principal
Components (pPCs) with proportion of variance > 2%
were selected for association testing. For the microbiome
datasets, 9 bacterial genera with average relative abun-
dance > 1% were selected for association testing. A
variance-stabilizing arcsin square root transformation
was applied to the microbiome proportion data. All con-
tinuous variables were scaled to unit variance. For each
genus and Shannon diversity, a general linear mixed
model (GLMM) was established associating the variable
with tPCs and pPCs adjusting for timepoints and patient
demographic factors including smoking status, GOLD
status and exacerbation frequency using lme4 in R [30].
Subject ID was included as a random variable to adjust
for multiple measures per subject. The model was opti-
mized in terms of Akaike information criterion (AIC)
through backward elimination of non-significant effects
in a stepwise algorithm using the “step” function in the
R lmerTest package [31]. The same GLMM was applied
for associating each pPCs with all tPCs. For association
within stable samples, as no repeated measures were in-
volved, a general linear model (GLM) was established
using glm in R [32]. The model was optimized in terms
of AIC through backward elimination of non-significant
effects in a stepwise algorithm using the “step” function
in the R stats package [32].
To assess functional enrichment of each tPC, all 24,

442 genes were ranked by their loadings in that tPC and
a Gene Set Enrichment Analysis (GSEA) [33] was per-
formed on the ranked gene list using concatenated
MetaCore (GeneGo), KEGG, Reactome, BioCarta and
Pathway Interaction Database (PID) pathways (a total of
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2809 pathways) using GSEAP reranked 6.0.10 in Gene-
Pattern [34]. The enrichment scoring scheme was set to
‘classic’ as suggested in the program instructions. One
thousand permutations were performed for each run.
Gene sets larger than 500 genes or smaller than 15 genes
were excluded from the analysis.
The false discovery rate (FDR) method was used to ad-

just P-values for multiple testing wherever applicable [35].

Results
Sputum microbiome between healthy and COPD and
during exacerbations
Sputum microbiome was characterized for 101 sputum
samples (Fig. 1a) from COPD patients (Fig. 1b) and
healthy controls (Fig. 1c). A total of 16,386,538 reads
were generated after demultiplexing and quality filtering.
After rarefaction to 89,462 reads per sample, 2807 OTUs
were identified among all samples. Similar to other lung
microbiome studies [5, 6, 8–10, 36–39], the majority of
OTUs belonged to Firmicutes (53.6%), Bacteroidetes
(21.9%) and Proteobacteria (19.5%) at the phylum level,
and Veillonella (37.7%), Prevotella (15.3%), Haemophilus
(14.0%), Streptococcus (8.6%) and Moraxella (2.9%) at
the genus level. Quantitative PCR showed significant
correlations between the absolute quantities of all five
species and their relative abundances in the microbiome
data (Spearman’s rho ≥0.43, FDR P = 2.57E-3).
Significantly increased relative abundance of Hae-

mophilus was observed in healthy smokers versus non-
smokers (log2FC = 3.36, FDR P = 0.041), and in COPD
ex-smokers versus current smokers (log2FC = 2.49, FDR
P = 0.025, Fig. 2a). Comparison of the microbiome pro-
files between healthy subjects and stable COPD patients
showed a significantly increased relative abundance of
the genera Moraxella, Streptococcus and Actinobacteria
(log2Fold Change (log2FC) ≥ 1.32, FDR P = 0.026, Add-
itional file 1: Table S4) and decreased alpha diversity
(Shannon, P = 0.036) in stable COPD patients (Fig. 2b). A
significantly increased Moraxella was observed at stable
state in GOLD III versus II patients and in inhaled corti-
costeroids (ICS) versus non-ICS exposed patients (Add-
itional file 1: Figure S2).
During COPD exacerbations, increased Moraxella

(log2FC = 3.14, FDR P = 0.019) and decreased alpha diversity
was observed compared to stable state (unpaired analysis,
Fig. 2b, paired analysis see Additional file 1: Figure S3), along
with significantly increased neutrophil and decreased
macrophage percentage (FC ≥ 1.2, P ≤ 0.05, Additional file 1:
Figures S4–S5). A non-significant increase of total bacterial
load was observed during exacerbations (Additional file 1:
Figure S6). Conversely, the trend of increased Moraxella
and decreased alpha diversity was reversed at post-
exacerbation time points (Fig. 2b).

Sputum neutrophil counts were most significantly as-
sociated with microbiome compositions, with positive
correlations with Haemophilus and Neisseria, and nega-
tive correlations with Streptococcus, Megasphaera and
Veillonella across all samples (Spearman’s rho = 0.33,
FDR P ≤ 0.05, Fig. 3, Additional file 1: Table S5). The sig-
nificant correlation between Haemophilus and sputum neu-
trophil count was further confirmed by qPCR (Spearman’s
rho = 0.37, P = 0.037, Additional file 1: Table S6). No bacter-
ial taxa or sputum cell counts were associated with QoL
scores, FEV1 or FVC.

Host transcriptome and proteome at COPD stable state
and exacerbations
We compared host transcriptome differences between
COPD stable and exacerbations. A substantial amount
of 2453 upregulated and 4814 downregulated differen-
tially expressed genes (DEGs) were identified at exacer-
bations versus stable state (FC ≥ 1.5, FDR P ≤ 0.05), in
which 239 and 8 MetaCore pathways were significantly
enriched respectively (FDR P ≤ 0.01, Additional file 2). A
large proportion of the upregulated pathways were in-
volved in immune response with the top pathways being
interferon and interleukin-6 signaling pathways. The
downregulated pathways included cell cycle, nucleotide
metabolism and phagocytosis pathways. No DEGs were
found between stable patient subgroups according to
clinical characteristics (GOLD stage, smoking status, ICS
administration and exacerbation frequency).
For patient proteome data, 790 of the 1310 proteins

had significantly higher expression levels in stable COPD
ex-smokers compared to current smokers, including
multiple pro-inflammatory markers such as interleukin-36,
fibrinogen and matrix metallopeptidase 10 (FC ≥ 1.5, FDR
P ≤ 0.05, Mann-Whitney-Wilcoxon test, Additional file 2).
No differentially expressed proteins were identified for
other comparisons.

Haemophilus and Moraxella are most significantly
associated with host transcriptome and proteome
To gain insights into airway host-microbiome interac-
tions in COPD, we established a multivariate linear
model between microbiome, host transcriptome and
proteome profiles across all samples (including exacer-
bations) and within stable samples only. We first per-
formed a power estimation and calculated that given a
true covariance of 0.5 between bacterial taxa and gene
expression in 40 samples (the number of samples with
both transcriptome/proteome and microbiome data), it
would be possible to perform a maximum of 102 pair-
wise tests (or approximately 10 microbiome and 10 host
expression factors) and retain 80% power and an alpha
of 0.05 using Bonferroni correction (Additional file 1:
Figure S7). As it is impossible for significant associations
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Fig. 1 (See legend on next page.)
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to survive correction for multiple testing of ~ 20,000 hu-
man genes, we performed an unsupervised dimensional-
ity reduction on host multi-omics data using PCA. A
total of 9 transcriptome and 8 proteome PCs (tPCs and
pPCs, respectively) with proportion of variance > 2% were
selected, together explaining 72 and 84% of observed vari-
ance. Using all samples (including exacerbations), a
GLMM was established between each of the 9 major bac-
terial genera and all tPCs or pPCs, adjusting for different
timepoints and patient demographic factors. Among all
genera, Haemophilus and Moraxella were most strongly
associated with host factors, in particular strong positive
correlations with tPC2 and tPC4, respectively (FDR P <
5.0E-4, Fig. 4a, Table 2, Additional file 3).
Examining the top loadings of tPC2 and tPC4 revealed

that they reflected increased expression of some immune
response genes, such as interleukin-1 receptor-associated
kinase 1 (IRAK1), interleukin-18 binding protein (IL18BP),
linker for activation of T-cells family member 1 (LAT) for
tPC2, and several interferon genes for tPC4 (Additional
file 1: Figure S8, Additional file 4), indicating that high
level of these two tPCs might correspond to increased im-
mune activities. We performed GSEA on the loadings of

each tPC to further understand its functional properties.
Both tPC2 and tPC4 were most significantly positively
enriched for host immune response pathways. Several T-
cell differentiation (i.e. Th1 and Th2 cell differentiation)
and pro-inflammatory cytokine (i.e. IL-12) signaling path-
ways were among the top positive pathways for tPC2,
while interferon signaling pathways were the top positive
pathways for tPC4 (Fig. 4b, Additional file 4). Individual
genes in the top pathways of tPC2 and tPC4 showed con-
sistent correlations with Haemophilus and Moraxella re-
spectively in both microbiome and qPCR datasets
(Additional file 5), further supporting the associations in
the multivariate models. Furthermore, both Haemophilus
and tPC2 exhibited positive correlations with pPC3 (FDR
P = 3.1E-3, Table 3, Additional file 3), together forming an
interconnected subnetwork (Fig. 4a). Likewise, both Morax-
ella and tPC4 were positively correlated with pPC1 (FDR
P = 0.014, Additional file 3). Multiple pro-inflammatory
markers such as interleukin-1 receptor, matrix metallopro-
teinase 7, galectin-2 and TNF-related weak inducer of
apoptosis were among the top loadings for pPC1 or pPC3
(Fig. 4c). In addition, several known bronchial epithelial cell
receptors that respond to bacterial lipopolysaccharide (LPS)

(See figure on previous page.)
Fig. 1 Overview of the sputum microbiome taxa distributions. a Overall study clustering for all 101 samples. b Clustering of 32 COPD stable
samples. c Clustering of 16 healthy samples. Each column represents one sample colored by different subgroups. Y-axis represents relative
abundances of major phyla and genera. Samples were clustered by UPGMA clustering based on the weighted UniFrac distances. HNS: healthy
non-smokers, HS: healthy smokers, CS: COPD current smokers, ES: COPD ex-smokers, non-ICS: non-ICS exposer, ICS: ICS exposer, IE: infrequent
exacerbators, FE: frequent exacerbators

Fig. 2 Sputum microbiome profiles in healthy subjects and COPD patients. a Shannon diversity and relative abundance of major bacterial taxa in
healthy controls and stable COPD patients, and in healthy and COPD subgroups in relation to smoking status. b Shannon diversity and relative
abundances of major bacterial taxa in COPD patients at different visits. The number of samples in each group is indicated in the parenthesis.
Significantly differentially represented bacterial taxa were identified using edgeR [27]. For visit, statistical analysis was performed on each adjacent two
time points. E0: COPD exacerbations, E2: 2 week post-exacerbations, E6: 6 week post-exacerbations, 6 Months: 6 months from first stable visit, HNS:
healthy non-smokers, HS: healthy smokers, CS: COPD current smokers, ES: COPD ex-smokers. *** FDR P < 0.001, ** FDR P < 0.01, * FDR P < 0.05
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such as angiopoietin-1 receptor [40] and Ephrin-A2 [41]
were among the top loadings for the two pPCs (Additional
file 4). The correlations of Haemophilus-tPC2-pPC3 and
Moraxella-tPC4-pPC1 were further confirmed by qPCR
(P ≤ 0.1, Additional file 1: Table S6). In addition, both tPC4
and pPC1 were increased at exacerbations versus stable
(Additional file 1: Figure S9). Both tPC2 and pPC3 were
significantly positively correlated with sputum neutrophil
counts (FDR P ≤ 0.05, Additional file 1: Table S5).
Among other major genera, Megasphaera was strongly

positively correlated with tPC1 and pPC7 (FDR P = 2.0E-
4), which were negatively enriched for host immune path-
ways such as IL-17 and interferon pathways (Fig. 4b) and
associated with reduced expression of pro-inflammatory
markers such as C-C motif chemokine 20 and interleukin-
36 (Fig. 4c, Additional file 4). Therefore, increased abun-
dance of Megasphaera could be associated with reduced
airway inflammatory responses. In comparison, other
major genera such as Streptococcus and Veillonella were
associated with relatively little host response.

Within stable samples only, the Haemophilus-tPC2-
pPC3 associations persisted, while Moraxella was not as-
sociated with any host PCs (Additional file 1: Figure S8,
Tables 2-3). Within stable, Streptococcus showed a sig-
nificantly negative correlation with tPC6 (FDR P = 3E-3,
Table 2, Additional file 3), in which several phagocytosis
and neutrophil migration pathways were most negatively
enriched. Thus, increased Streptococcus could be associ-
ated with greater expression of these pathways at stable.
Furthermore, an unknown genus in S24–7 family had
significant positive correlations with tPC9 at stable (FDR
P = 2E-3, Table 2, Additional file 3), in which IL-12, IL-
23 and T-cell differentiation pathways were most nega-
tively enriched. This genus, despite its low abundance,
could be associated with reduced inflammatory response
at stable.

Discussion
Here we present the first comprehensive study charac-
terizing airway host-microbiome interactions in COPD

Fig. 3 Significant spearman correlations (with 95% confidence intervals calculated by univariate regression model) between major sputum
microbiome compositions with sputum leukocyte percentages
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integrating lung microbiome and host multi-omics data-
sets both in stable state and during exacerbations. The
systems biology approach revealed a significant airway
host-microbiome interplay associated with COPD in-
flammation and exacerbations. Among all major genera,
Haemophilus and Moraxella were most strongly associ-
ated with host gene expression profiles, particularly im-
munity and inflammation, suggesting the two genera as
key players in airway host-bacterial crosstalk in COPD.
Importantly, our results revealed different timing of

host responses to these two genera. While Haemophilus
was associated with host responses both in stable state
and during exacerbations, the associations for Moraxella
were primarily related to exacerbations. This is consist-
ent with a previous study [42] and highlights the role of
Haemophilus as a stable airway colonizer and Moraxella

as an exacerbation-related opportunistic pathogen in
COPD. Furthermore, the Haemophilus-associated im-
mune responses were correlated with the degree of neu-
trophilic inflammation, underscoring the interactions
between bacterial presence, host immune responses and
cellular inflammation. This suggests that chronic airway
inflammation in some COPD patients may not respond
to anti-inflammatory therapies alone [43] unless the
underlying bacterial infection driving the abnormal im-
mune response is addressed.
To achieve statistical power for a genome-wide ana-

lysis associating microbiome and host multi-omics data-
sets in a relatively small sample set, we performed
dimensionality reduction on host data and used multi-
variate modeling to identify significant associations be-
tween microbiome composition and overall patterns of

Fig. 4 Multivariate modeling showed strong association of Haemophilus and Moraxella with host transcriptome and proteome profiles. a A host-
microbiome interaction network illustrating significant associations among the 9 most abundant bacterial genera and Shannon diversity, tPCs and
pPCs in GLMM. Each edge indicates a significant association (FDR P ≤ 0.05) colored by direction. The edge weight corresponds to the significance
of the P-value. The size of the node is proportional to the number of significant associations involving the node. b GSEA enrichment scores of
the top pathways on the loadings of each tPC. For each tPC, the top 10 positively and negatively enriched pathways (FDR P ≤ 0.01) were
included in the heatmap. Pathways were clustered using complete clustering and colored by their clustering groups. The functional categories of
the pathways are overall in agreement with their clustering groups. c Top loadings of each pPC. For each pPC, the top 6 proteins by magnitude
of loadings were included in the heatmap
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host gene expression. Similar approaches were employed
by Morgan et al. in associating gut microbiome with
host transcriptome in inflammatory bowel disease pa-
tients [29]. The strong correlations of Haemophilus and
Moraxella with host immune and inflammation-related
tPCs and pPCs highlight the positive links between the
two genera and host immune responses that predomi-
nated airway host-microbiome interactions. The pres-
ence of lipopolysaccharide-induced bronchial epithelial
receptors among the top loadings demonstrates that our
approach can recapitulate an active host-bacterial cross-
talk in COPD. While both Haemophilus and Moraxella
were positively associated with T-cell induced pro-
inflammatory signaling, the interferon signaling was
more strongly linked to Moraxella than Haemophilus.
This is consistent with one previous study showing that
M. catarrhalis but not H. influenzae induced interferon-
beta expression in bronchial epithelial cells [44] and
aligns with the different pathogenicity profiles between
the two pathogens [45]. Differential involvement of viral
co-infection could be another important factor [46]. We
have not fully characterized the sputum viral load of this
cohort due to limited sputum available. Additional viral
load data is key to further resolving this question.

Our multivariate analysis showed that Megasphaera and
an unknown genus in S24–7 family were associated with
reduced expression of host inflammatory pathways and
therefore could potentially reverse airway inflammation
(i.e. interferon, IL-12 pathway) induced by Haemophilus
and Moraxella. Furthermore, Megasphaera was negatively
correlated with sputum neutrophil counts. Megasphaera
is a known member of human lung microbiome [39] and
has beneficial effects on the host through short chain fatty
acids (SCFAs) production [47]. In the lung microenviron-
ment, bacterial SCFAs were shown to inhibit cytokine
production and inflammation after LPS stimulation of
macrophages [48]. Trompette et al. also showed that bac-
terial SCFAs reduce neutrophil recruitment to the airways
and protect against influenza virus infection in mice, sug-
gesting that it has anti-inflammatory effects [49]. Cait et
al. demonstrated that diet-derived SCFAs ameliorate
allergic inflammation in mice, suggesting its anti-
inflammatory effects in the lung [50]. One study on
oropharyngeal microbiome of H7N9-infected patients
showed that Megasphaera increased in patients without
secondary bacterial infection, suggesting its potential role
in preventing colonization of respiratory pathogens [51].
Further validation on the identity and prevalence of these

Table 2 Associations of the 9 bacterial genera and Shannon diversity with tPCs both across all samples and within stable samples in
generalized linear mixed models. FDR P-values are indicated in the table. Significant associations are highlighted in asterisks. Only
significant variables were included in the final model unless otherwise stated

Microbiome Transcriptome

tPC1 tPC2 tPC3 tPC4 tPC5 tPC6 tPC7 tPC8 tPC9

All Veillonella 0.57 0.05* 0.91 0.39 0.32 0.53 0.71 0.82 0.70

Prevotella 0.34 0.42 0.04* 0.25 0.93 0.92 0.59 0.59 0.14

Haemophilus 0.01* 1E-4* 3E-3* 0.97 0.68 0.41 0.01* 0.33 0.02*

Streptococcus 0.19 0.17 0.29 0.67 0.59 0.87 0.03* 0.36 0.36

Moraxella 0.03* 0.45 0.88 5E-4* 0.09 0.30 0.01* 0.02* 0.02*

Megasphaera 2E-4* 0.95 0.15 0.03* 0.28 0.78 0.91 0.84 0.79

Neisseria 5E-3* 0.92 0.26 0.29 0.21 0.05* 0.19 0.18 0.23

S24–7 0.72 0.73 0.38 0.52 0.94 0.84 0.80 0.57 0.46

Selenomonas 0.29 0.97 0.13 0.24 0.09 0.04* 0.33 0.21 0.48

Shannon 0.01* 0.10 0.02* 0.91 0.51 0.03* 0.04* 0.06 0.92

Stable Veillonella 0.27 0.06 0.05 0.25 0.26 0.95 0.08 0.83 0.53

Prevotella 0.37 0.36 0.27 0.51 0.56 0.67 0.27 0.90 0.27

Haemophilus 0.10 0.01* 0.04* 0.36 0.76 0.62 0.16 0.31 0.51

Streptococcus 0.80 0.64 0.73 0.28 0.56 3E-3* 0.08a 0.86 0.51

Moraxella 0.40 0.59 0.81 0.46 0.57 0.35 0.75 0.13 0.24

Megasphaera 0.58 0.43 0.02* 0.50 0.39 0.07a 0.45 0.67 0.78

Neisseria 0.73 0.49 0.95 0.44 0.09a 0.60 0.50 0.83 0.60

S24–7 0.39 0.73 0.52 0.82 0.42 0.90 0.03* 0.72 2E-3*

Selenomonas 0.02* 0.59 0.50 0.58 0.90 0.92 0.57 0.88 0.56

Shannon 0.06 0.10 0.08 0.33 0.26 0.37 0.92 0.07 0.26
aVariables not statistically significant but present in the model
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genera is warranted to explore their functions in the
COPD lung.
Our study provides novel insights on the impact of

smoking on the lung microbiome, although individual
subgroups had small sample sizes and the results need
further confirmation in larger cohorts. Our results sug-
gest that the effect of current smoking on the lung
microbiome differs between healthy subjects and COPD
patients. In healthy subjects, a significantly increased
Haemophilus was observed in smokers versus non-
smokers, suggesting that smoking could be a risk factor
for airway dysbiosis in healthy populations. In COPD pa-
tients, a significantly increased Haemophilus was ob-
served in ex-smokers versus current smokers. The
greater dysbiosis in COPD ex-smokers was further asso-
ciated with their greater airway inflammatory states, as
evident by significantly higher expression of sputum
pro-inflammatory markers. Our findings further support
the view that smoking likely had resulted in an irrevers-
ible airway inflammation in COPD, which persisted des-
pite smoking cessation [52].
We observed significant increase of Moraxella in

stable COPD patients versus healthy subjects, and in
COPD exacerbations versus stable, in agreement with

previous observations [5, 8, 9, 36]. The reversal trends of
microbiome diversity and composition prior and post
exacerbations further support the lung microbiome dys-
biosis during exacerbations. Increased Haemophilus and
Moraxella were found in stable ICS versus non-ICS ex-
posed patients, consistent with earlier observations [6, 9],
with the caveat being the small sample size of non-ICS
users. At stable, the microbiome was comparable between
frequent and infrequent exacerbators, suggesting that the
baseline microbiome does not effectively predict exacerba-
tion frequency. Identifying markers that predict the ex-
acerbation frequency is of great importance for COPD
management [53]. Differences in baseline respiratory
microbiota composition were hypothesized to explain the
different exacerbation frequency in COPD patients [13].
However, neither this study nor earlier reports support
this hypothesis [54, 11]. Instead, previous longitudinal
studies showed that there is an association between tem-
poral variability of the airway microbiome and patient ex-
acerbation frequency [11, 12], suggesting that the frequent
exacerbator phenotype might be more relevant to the de-
stabilization of the microbiome over time but not the
microbiome composition at baseline per se. We observed
no significant association between microbiome or

Table 3 Associations of the 9 bacterial genera and Shannon diversity with pPCs both across all samples and within stable samples
in generalized linear mixed models. FDR P-values are indicated in the table. Significant associations are highlighted in asterisks. Only
significant variables were included in the final model unless otherwise stated

Microbiome Proteome

pPC1 pPC2 pPC3 pPC4 pPC5 pPC6 pPC7 pPC8

All Veillonella 0.04* 0.82 0.54 0.62 0.40 0.19 0.62 0.04*

Prevotella 0.52 0.94 0.01* 0.11 0.02* 0.76 0.01* 0.34

Haemophilus 0.01* 0.06 1E-3* 0.69 0.25 0.47 0.64 0.56

Streptococcus 0.29 0.35 0.92 0.69 0.45 0.93 0.13 0.61

Moraxella 1E-3* 0.54 0.05a 0.45 0.13 0.40 0.85 0.52

Megasphaera 0.31 0.36 0.06a 0.67 0.51 0.01* 1E-4* 0.84

Neisseria 0.03* 0.06a 0.22 0.26 0.02* 0.01* 0.02* 0.06

S24–7 0.67 0.12 0.04* 0.24 0.21 0.58 0.49 0.55

Selenomonas 2E-3* 0.14 0.58 0.12 0.72 0.69 0.13 0.29

Shannon 0.04* 0.54 0.78 0.10 0.03* 0.56 0.58 0.09

Stable Veillonella 0.05a 0.10 0.10 0.23 0.71 0.47 0.99 0.34

Prevotella 0.73 0.05a 0.21 0.03* 0.86 0.38 0.70 0.50

Haemophilus 0.03* 0.03* 2E-3* 0.08 0.75 0.29 0.73 0.60

Streptococcus 0.03* 0.93 0.58 0.35 0.76 0.82 0.62 0.24

Moraxella 0.46 0.97 0.26 0.59 0.95 0.96 0.30 0.79

Megasphaera 0.38 0.76 0.80 0.69 0.80 0.27 0.67 0.25

Neisseria 0.23 0.66 0.58 0.70 0.46 0.85 0.55 0.99

S24–7 0.23 0.83 0.89 0.56 0.95 0.42 0.96 0.21

Selenomonas 0.75 0.01* 0.65 0.03* 0.07a 0.70 0.39 0.05*

Shannon 0.25 0.04* 0.13 0.02* 0.33 0.58 0.77 0.41
aVariables not statistically significant but present in the model
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sputum cell count changes with CAT score, FEV1 or
FVC, which suggests that different patient inflamma-
tory profiles (i.e. neutrophilic or eosinophilic inflam-
mation) and their associated airway microbiome
changes are likely independent of disease severity and
cannot be distinguished clinically [55].
There are several caveats to our study. First, the sam-

ple size was relatively small particularly for the subgroup
analysis, and the longitudinal profiling was limited due
to the limited amount of sputum produced in some
visits and the technical difficulty in extracting sufficient
material from sputum for the various aspects of down-
stream experiments (i.e. microbiome, transcriptome,
proteome, cell counting). We performed a power estima-
tion to ensure adequate statistical sensitivity could be
achieved after dimensionality reduction. Nevertheless,
the associations observed in our study need to be vali-
dated in larger independent patient cohorts. Second,
host transcriptome and proteome were not profiled for
healthy subjects, which is important to understand to
what extent the observed host-microbiome associations
are disease specific. Our study provides a method for
profiling airway host-microbiome interactions that
should catalyze future efforts on characterizing lung
microbiome and host multi-omics in larger healthy and
disease populations.

Conclusions
To our knowledge, this is the first study that depicts air-
way host-microbiome interactions in COPD and high-
lights the differential role of Haemophilus and Moraxella
in terms of host interactions. Our study provides support
for novel therapies targeting both genera and their associ-
ated host pathways to overcome the abnormal immune re-
sponse in COPD.
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