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Abstract

Adenosine 5′-triphiosphate (ATP) is released from cells under physiologic and pathophysiologic conditions.
Extracellular ATP acts as an autocrine and paracrine agent affecting various cell types by activating cell surface P2
receptors (P2R), which include trans-cell membrane cationic channels, P2XR, and G protein coupled receptors, P2YR.
We have previously shown that ATP stimulates vagal afferent nerve terminals in the lungs by activating P2X2/3R.
This action could lead to bronchoconstriction, cough and the local release of pro-inflammatory neuropeptides. In
addition, ATP markedly enhances the IgE-dependent histamine release from human lung mast cells. Thus, we have
proposed for the first time that extracellular ATP plays a mechanistic role in pulmonary pathophysiology in general
and chronic obstructive pulmonary disease (COPD), and acute bronchoconstriction in asthma in particular. The
present review examines whether ATP could also play a role in bradycardia and syncope in a subset of patients
with pulmonary embolism.
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Background
For more than four decades it has been known that more
than 10% of patients with pulmonary embolism (PE)
manifest syncope and/or bradycardia [1]. The frequency
of PE patients with syncope ranges from 1 to 40% with an
average of 15% [2–6]. A recent multi-center prospective
study, which employed guidelines-based clinical assess-
ment of PE [7], has found that PE is identified in nearly
one of every six patients hospitalized for a first episode of
syncope [8].
According to the European Society of Cardiology and

American Heart Association, PE is classified into three
prognostic categories: Massive PE, sub-massive PE and
non-massive PE. Patients with massive PE may present with
severe symptoms including syncope, whereas those with
non-massive PE may be asymptomatic or have limited
symptoms. Three mechanisms have been proposed to ex-
plain PE-induced syncope [9, 10]: (i) Massive PE causing
drop in cardiac output, hypotension, and reduced cerebral

perfusion [1], (ii) A complete heart block in the setting of
preexisting left bundle branch block [11], and (iii) A central
vagal reflex [12] triggered by the stimulation of vagal
mechano-sensory nerve endings in the left ventricle caused
by right atrial stretch-dependent increased sympathetic in-
put to the heart in the setting of decreased left ventricular
filling [10]. A more recent study in PE patients have found
that right ventricular (RV) dysfunction and saddle embol-
ism were more prevalent in those patients with syncope
compared to those without [13]. However, it was not deter-
mined whether either RV dysfunction or saddle embolism
were just associated with syncope or one of its causes.
Adenosine 5′-triphosphate (ATP) is found in every cell

of the human body where it plays a major role in cellular
metabolism and energetics. ATP is released from cells
under physiologic and pathophysiologic conditions [14];
extracellular ATP acts as an autocrine and paracrine agent
before it is rapidly degraded to adenosine by ecto-enzymes
(mainly CD39 and CD73). The effects of extracellular
ATP are mediated by P2 cell-surface receptors (P2R),
which include trans-cell membrane cationic channels,
P2XR, and G-protein coupled receptors, P2YR. Various
cells types in the airways express P2R [15].
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We have previously shown that ATP stimulates vagal af-
ferent nerve terminals in the lungs by activating P2X2/3R
[16, 17]. This action could lead to bronchoconstriction
[18, 19], cough and the local release of pro-inflammatory
neuropeptides (see below). In addition, ATP markedly en-
hances the IgE-dependent histamine release from human
lung mast cells [20]. Furthermore, we have shown that
P2YR mediates ATP-induced increase of [Ca+ 2]i in eosin-
ophils [21], which is associated with the chemotactic ac-
tion of platelet-derive ATP on eosinophils [22]. Based on
these early studies in vitro and in vivo, we have proposed
in 2002 for the first time that extracellular ATP plays an
important mechanistic role in pulmonary disorders in-
cluding PE [23]. Since then, numerous studies have
yielded voluminous data supporting this hypothesis [24].
Here we consider the putative mechanistic role of

extracellular ATP in bradycardia and syncope associated
with PE.

ATP-triggered vagal reflexes
Since the early 1940s is was known that extracellular
ATP could increase vagal input to the heart, which is
manifested in negative chronotropic and dromotopic
effects (for a reviews see [25, 26]). The mechanism of
vagal recruitment by ATP constitutes a cardio-cardiac
central vagal reflex that is triggered by the activation of
P2X2/3R localized on vagal sensory nerve terminals in
the inferior-posterior wall of the left ventricle [27]. Simi-
larly, extracellular ATP stimulates vagal sensory nerve
terminals in the lungs by the activation of P2X2/3R
localized on C and Aδ fibers [16, 17], thereby triggering
a pulmonary-pulmonary central vagal reflex resulting in
bronchoconstriction and increased intra-airways pressure
[19]. In both heart and lungs, these vagal sensory termi-
nals are bimodal; i.e., they are sensitive to mechanical and
chemical perturbations, e.g., stretch and ATP, respectively.
In addition, it is highly likely that the stimulation of the
vagal sensory nerve endings results also in an axonal re-
flex, leading to the local release of neuropeptides, includ-
ing tachykinins and calcitonin gene-related peptide that
have pro-inflammatory effects in the airways. Further-
more, there is a large body of evidence for ATP being a
co-transmitter in most, if not all, peripheral and central
neurons, therefore, the activation of an axon reflex by
ATP probably results also in the localized release of ATP
in a positive feedback-loop manner.
ATP-vagal interactions in the heart and lungs could

have important clinical implications. In the heart, the
cardio-cardiac vagal reflex triggered by ATP could be in-
volved in vasovagal syncope as well as bradycardia asso-
ciated with inferior-posterior left ventricular (LV)
myocardial infarction. Indeed, it has been recognized
that “reflex vagal activity, probably enhanced by local
phenomena, plays an important role in bradyarrhythmias

occurring after acute myocardial infarction” [28], and
that atropine could be an effective treatment in this
setting [28, 29]. The pulmonary-pulmonary central vagal
reflex triggered by ATP could be involved in broncho-
constriction and cough associated with pulmonary
inflammation [23, 24].

Platelet activation, ATP and vagal stimulation
That abnormalities of ventilation are associated with
platelet activation has been known for many years; it is
manifested in various pulmonary pathophysiologic set-
tings, which include massive platelet activation, such as
in PE. Almost a century ago, Binger et al. reported that
freezing of the vagus nerves converted the rapid shallow
breathing associated with acute PE to slow deep breath-
ing [30]. Since then, numerous studies in different ani-
mal models have implicated the vagus nerve not only in
rapid shallow breathing but also in the bronchoconstric-
tion observed during the early phases of PE (see e.g. [31]).
Furthermore, in a rabbit model, lung irritant receptors
contribute to the reflex hyperpnea and bronchoconstric-
tion during PE [32]. In addition, platelet activating factor
(PAF) has been implicated in the pathophysiology of
asthma in general and bronchial hyperresponsiveness in
particular (see e.g. [33]). Indeed, depletion of platelets pre-
vents some of their pro-asthmatic effects (see e.g. [34]).
Platelets contain large amounts of ATP, i.e., in the molar

range [35], a significant portion of which is released during
platelet activation [36–38]. In addition to ATP, platelet acti-
vation is known to result in the release of a host of media-
tors, including serotonin and histamine [39, 40]. Both ATP
and serotonin induce vagal-dependent bronchoconstriction
in animal models [41], [19]. Thus, the massive activation of
platelets in PE could result in the localized release of large
amounts of ATP, which stimulates vagal sensory nerve end-
ing and thereby, increased vagal input to the lung and
heart.

Role of ATP in syncope and braydycardia
associated with PE
Based on the experimental data in animal models and ob-
servations in human subjects summarized above, it is
tempting to speculate that extracellular ATP could play a
mechanistic role in syncope and bradycardia associated
with PE. The proposed mechanism consists of the following
steps: (i) activation of platelets in the lungs, localized release
of ATP, and (ii) ATP-triggered pulmonary-pulmonary and
cardio-cardiac vagal reflexes.
Platelet activation, which is evident after acute PE, cor-

relates with the severity of RV dysfunction [42]. That
vasoactive mediators are released from activated plate-
lets associated with PE has been known for a long time
[43]; because large amounts of ATP are stored in plate-
lets, the localized release of ATP from activated platelets
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during PE is highly likely. Although it can be argued that
the ubiquitous presence of ecto-enzymes, which rapidly
degrade ATP, would preclude the activation of vagal sen-
sory terminals in the left ventricle by ATP originated in
the lungs, our previous studies have clearly shown that if
enough ATP reaches the right side of the heart, a potent
cardio-cardiac vagal reflex is triggered by ATP in the left
side of the heart [44]. This is supported by the fact that
intravenous, intra-sinus nodal artery or intra-right
atrium ATP does not activate vagal sensory terminals in
the right side of the heart (e.g., see [45, 46]).
An important related issue is the association between

COPD exacerbation [47] and PE, which is relatively high
(19.9 and 16.1%) [48, 49]. Platelets express P2Y1R,
P2Y12R and P2X1R; the first two are activated by ADP,
a metabolite of extracellular ATP and P2X1R is activated
by ATP. The activation of these three receptors by extra-
cellular ADP and ATP trigger and amplify platelets’ co-
agulation [50]. Thus, since abnormally high levels of
extracellular ATP are found in the lungs of patients with
COPD [24], relatively high frequency of PE in COPD ex-
acerbation is not surprising.

Conclusions
The data summarized above strongly suggest that ATP
released from activated platelets during PE plays a
mechanistic role in syncope and bradycardia associated
with PE. The P2X3R and/or P2X2/3R and vagal sensory
terminals in the lungs and heart could mediate the rele-
vant effects of ATP. Further studies are required to test
this hypothesis, which constitutes a potential explanation
for these phenomena.
Potential therapeutic guidelines: An established mechan-

istic role of P2X3R and/or P2X2/3R in this pathophysio-
logical setting would constitute a strong rationale for the
use of P2X3R-P2X2/3R antagonists such as Gefapixant,
which are currently being developed as drug-candidates for
the treatment of COPD and chromic cough [24], may also
be indicated after suitable clinical trials in patients with PE,
either as an acute treatment for bradycardia and syncope
but also as a preventive treatment once the diagnosis of PE
has been established.
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