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Abstract

Background: It is unknown if the plasma lipidome is a useful tool for improving our understanding of the acute
respiratory distress syndrome (ARDS). Therefore, we measured the plasma lipidome of individuals with ARDS at two
time-points to determine if changes in the plasma lipidome distinguished survivors from non-survivors. We
hypothesized that both the absolute concentration and change in concentration over time of plasma lipids are
associated with 28-day mortality in this population.

Methods: Samples for this longitudinal observational cohort study were collected at multiple tertiary-care academic
medical centers as part of a previous multicenter clinical trial. A mass spectrometry shot-gun lipidomic assay was
used to quantify the lipidome in plasma samples from 30 individuals. Samples from two different days were
analyzed for each subject. After removing lipids with a coefficient of variation > 30%, differences between cohorts
were identified using repeated measures analysis of variance. The false discovery rate was used to adjust for
multiple comparisons. Relationships between significant compounds were explored using hierarchical clustering
of the Pearson correlation coefficients and the magnitude of these relationships was described using receiver
operating characteristic curves.

Results: The mass spectrometry assay reliably measured 359 lipids. After adjusting for multiple comparisons, 90
compounds differed between survivors and non-survivors. Survivors had higher levels for each of these lipids
except for five membrane lipids. Glycerolipids, particularly those containing polyunsaturated fatty acid side-chains,
represented many of the lipids with higher concentrations in survivors. The change in lipid concentration over time
did not differ between survivors and non-survivors.

Conclusions: The concentration of multiple plasma lipids is associated with mortality in this group of critically ill
patients with ARDS. Absolute lipid levels provided more information than the change in concentration over time.
These findings support future research aimed at integrating lipidomics into critical care medicine.
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Background
Despite years of research, the mechanisms by which ARDS
leads to multiple organ failure and death remains poorly
understood. While general improvements in ventilator
management and critical care medicine have improved
outcomes, no targeted therapies exist. To date, all treat-
ments designed to interrupt progression have failed in
clinical trials. This may represent an inadequate recogni-
tion of different phenotypes that exist within ARDS or an
incomplete understanding of relevant biologic pathways.
Metabolomics, the measurement of metabolites in a

biological system, can help with this by providing a fin-
gerprint of the biochemical milieu of affected patients.
This information will help find new biomarkers, develop
new therapeutic targets, and improve our ability to
personalize treatment. Several studies support this no-
tion in both critically ill adult [1–3] and pediatric [4] pa-
tients, with some of these studies suggesting that
carbohydrate and amino acid metabolism change early
during the inflammatory response followed alterations in
the lipidome [5].
Lipid biology likely plays an important role in the

pathophysiology of ARDS. For example, tumor necrosis
factor-α increases metabolism of arachidonic acid by cy-
clooxygenase, which generates the mediators responsible
for increased inflammation. A shift to metabolism by
lipoxygenase helps to terminate this process [6–8].
Knock-out models of both cyclooxygenases and lipoxy-
genases support the important role of lipid biology in
the inflammatory response by showing that deficiencies
in cyclooxygenase-2 lead to increased mortality in sepsis
[9], while decreased 5-lipoxygenase had the opposite ef-
fect [10]. Most metabolomic studies to date focus on
water-soluble metabolites. Additional research needed to
identify lipids with important roles in the pathophysi-
ology of critical illness.
To evaluate the informativeness of the plasma lipi-

dome in ARDS, we performed an analysis of samples
collected in a previous trial (ClinicalTrials.gov identifier:
NCT00201409). This previous trial examined the utility
of recombinant human granulocyte-macrophage colony
stimulated factor (GM-CSF) for patients with acute lung
injury based on pre-clinical data suggesting a protective
effect of GM-CSF on alveolar macrophages and alveolar
epithelial cells [11]. The results demonstrated no im-
provement with GM-CSF treatment. We hypothesized
that both the absolute concentration and change in con-
centration over time of plasma lipids are associated with
28-day mortality.

Methods
Study population
The Institutional Review Board at the University of
Michigan approved this study. Samples were previously

collected as part of a multi-centered prospective clinical
trial examining the utility of GM-CSF for critically ill
adult patients with ARDS. Research funds allowed for
the analysis of 60 samples. Therefore, 30 subjects with
samples available from two time points were selected to
maximize sequential organ failure assessment (SOFA)
scores. Two time points were analyzed in order to com-
pare the importance of the change in lipid concentra-
tions over time with the absolute lipid concentrations
measured early in the course of disease. The details of
the original study, which randomized patients with acute
lung injury or ARDS to receive GM-CSF or placebo,
have been published [11]. The definition of ARDS was
consistent with guidelines that were available at the time
of the original study [12]. Exclusion criteria for the ori-
ginal study included evidence of preexisting chronic re-
spiratory failure, neutropenia (absolute neutrophil count
< 1000 cells/mm3), and a history of hematologic
malignancy or bone marrow transplantation. Ventilator
management followed a protocol that focused on
minimizing tidal volumes and plateau pressures [13].

Sample preparation
Plasma samples were stored at − 80 °C until the time of
analysis, which was conducted by the Michigan Regional
Comprehensive Metabolomics Resource Core. Lipids
were extracted using a modified Bligh-Dyer Method
[14]. The extraction was performed using water/metha-
nol/dichloromethane (2:2:2 v/v/v) at room temperature
after the addition of internal standards. The organic
layer was then collected and dried under a stream of ni-
trogen before being re-suspended in 100 μL of Buffer B
(5%H2O:10%ACN:85%IPA containing 10 mM NH4OAc)
and analyzed using a liquid chromatography tandem
mass spectrometry (LC/MS/MS) lipidomics assay [15].

Liquid chromatography/mass spectrometry
The lipid extract was injected onto a 1.8 μm particle
50 × 2.1 mm internal diameter Waters Acquity HSS T3
column (Waters, Milford, MA) that was heated to 55 °C.
For chromatographic elution, we used a linear gradient
over a 20 min total run time. A 60% Solvent A and 40%
Solvent B gradient was used for the first 10 min. Then
the gradient was ramped in a linear fashion to 100%
Solvent B which was maintained for 7 min. Thereafter,
the system was switched back to 60% Solvent B and 40%
Solvent A for 3 min. The flow rate used for these experi-
ments was 0.4 mL/min and the injection volume was
5 μL. The column was equilibrated for 3 min before the
next injection and run at a flow rate of 0.400uL/min for
a total run time of 20 min. Data were acquired in posi-
tive and negative modes using data-dependent MS/MS
with dynamic mass exclusion. Pooled human plasma
samples and pooled experimental samples (prepared by

Maile et al. Respiratory Research  (2018) 19:60 Page 2 of 8

http://clinicaltrials.gov


combining small aliquots of each experimental sample)
were used to control for the quality of sample prepar-
ation and analysis [16]. A randomization scheme was
used to distribute pooled samples within the set and a
mixture of pure authentic standards was used to moni-
tor instrument performance on a regular basis.

Lipid identification
Lipids were identified using the LIPIDBLAST computer-
generated tandem MS library [17]. This database contains
212,516 spectra covering 119,200 compounds represent-
ing 26 lipid classes, including phospholipids, glycerolipids,
bacterial lipoglycan, and plant glycolipids. Quantification
of lipids was completed using AB-SCIEX MultiQuant soft-
ware. After excluding compounds with a relative standard
deviation greater than 30% in the pooled samples, the raw
mass spectrometry data were normalized using the in-
ternal standards and adjusted for batch effects using loess
smoothing. The nomenclature used for individual lipids
begins with the abbreviation of the lipid class (Table 1)
followed by the number of carbon atoms in the molecule
and then by the number of double bonds. If the same lipid
was detected in both the positive and negative modes, an
underscore after the name of the lipid was used to denote
the second measurement.

Statistical analysis
We removed lipids with coefficients of variation > 30%
to focus on more precisely measured compounds. The
remaining concentrations were log transformed and auto
scaled (mean-centered and divided by the standard devi-
ation of each variable) to create normally distributed
lipid concentrations and make the lipid concentrations

more comparable to each other, respectively. To ensure
that the administration of GM-CSF did not impact lipid
concentrations, the lipid levels were compared between
those did and did not receive the study drug. Next, the
differences in lipid concentrations between survivors
and non-survivors were compared using repeated
measures analysis of variance. Lipid concentrations were
the independent variable and mortality was the
dependent variable. False discovery rate (FDR) adjusted
p-values (q-values) were used to account for multiple
comparisons [18]. A q-value less than 5% was considered
statistically significant. Heatmaps were used to display
both the relative concentrations of significant lipids and
the Pearson product-moment correlation coefficient
(PPMCC) between significant lipids. The PPMCC was
calculated separately for each combination of lipids ana-
lyzed. Scatterplots of each lipid relationship were exam-
ined to identify the presence of nonlinear relationships.
Hierarchical clustering was performed using Pearson
distance and the complete linkage clustering algorithm.
The overall differences in the variability and distribution
of lipid concentrations between survivors and non-
survivors was evaluated using principal component ana-
lysis (PCA). Finally, in order to describe associations be-
tween lipid concentrations and outcomes, the area
under the receiver operating characteristic (AUROC) for
the lipid concentrations at the first time point were
compared with the Acute Physiology Score (APS) from
the Acute Physiology and Chronic Health Evaluation III
[19] at randomization and the SOFA [20] score obtained
at the time of sample collection. Software used in the
analysis of these data were MetaboAnalyst 3.0 (Xia Lab,
McGill University, Montreal, Canada) [21], SAS software
(Version 9.4, SAS System for Windows, SAS Institute
Inc., Cary, NC, USA), and R (version 3.2.1; R
Foundation, Vienna, Austria).

Results
The study population consisted of 30 critically-ill sub-
jects with ARDS who each had samples analyzed from
two different days (Table 2). This group contained a
similar number of males (53%) and females (47%) and
was almost entirely white. Most subjects received nutri-
tional support on the days that samples were collected;
only five did not. The original study did not collect de-
tails about the type or amount of nutritional support re-
ceived by participants.
Three hundred fifty-nine compounds remained after

eliminating those with a high coefficient of variation.
Those remaining consisted of lipids from four of the
eight lipid categories described by the LIPID MAPS con-
sortium (glycerolipids, glycerophospholipids, sphingoli-
pids, and sterol lipids). No significant associations
existed between subjects receiving and not receiving

Table 1 Lipid classes included in this study and their abbreviations

Lipid Class Abbreviation

Phosphatidylcholine PC

Lysophosphatidylcholine lysoPC

Plasmenyl Phosphatidylcholine plasmenyl-PC

Phosphatidylethanolamine PE

Lysophosphatidylethanolamine lysoPE

Plasmenyl Phosphatidylethanolamine plasmenyl-PE

Sphingomyelin SM

Phosphatidic acid PA

Phosphatidylinositol PI

Phosphatidylglycerol PG

Cardiolipin CL

Cholesteryl ester CE

Monoacylglycerol MG

Diacylglycerol DG

Triacylglycerol TG

Maile et al. Respiratory Research  (2018) 19:60 Page 3 of 8



GM-CSF. Therefore, all 359 lipids were included in the
subsequent analysis of associations between the plasma
lipidome and mortality in ARDS.
Ninety lipids (25% of all lipids studied) differed between

survivors and non-survivors after adjusting for multiple
comparisons (q > 0.05). Given the large number of com-
pounds, we increased the significance level several times
to identify the compounds that were most consistently al-
tered in those with 28-day mortality (Fig. 1). This revealed
strong associations between mortality and altered concen-
trations of lipids within the DG, TG, and PA classes.
While the concentration of multiple lipids differed be-

tween cohorts, no association existed between mortality
and the change in concentration over time. The relation-
ship between mortality and both the absolute concentra-
tion and the change in concentrations is visualized using
a heatmap (Fig. 2). Regarding the absolute lipid concen-
tration, almost all levels were higher in survivors. Only
five membrane lipids (PE 32:1 and 38:2 and PC 31:1, 31:
0, and 37:0) had the opposite relationship. Regarding the
intrasubject change in lipid concentration over time, no
associations existed between the within subject lipid
concentration change over time. The table located in
Additional file 1 contains the values that correspond to
the colors in the heatmap.
To explore the relationship of the 90 significant lipids

with each other, we created separate correlation matrices
for survivors and non-survivors and then calculated the

difference in the correlation coefficients between these co-
horts. We generated a heatmap based on these differences
and used hierarchical clustering to group lipids per the
group difference in correlations (Additional file 2). This
matrix displays information from the first time point of all
30 subjects across 90 lipids and reveals which lipids have a
greater correlation in survivors or non-survivors and pro-
vides insights into the inter-lipid relationships that are im-
portant for each cohort. Four of the five lipids with greater
concentrations in non-survivors were clustered together
and tended to have greater correlation with other lipids in
the cohort that survived. In other words, for non-
survivors, we observed an altered relationship in this
group of lipids. Clusters of lipids that showed the greatest
increase in correlation among survivors and were overall
higher in concentration contained many glycerolipids
composed of polyunsaturated fatty acids (PUFAs).

Table 2 Subject characteristics at enrollment

Characteristics Alive (n = 22) Dead (n = 8)

Median (Q1,Q3) Median (Q1,Q3)

Age (years) 48 (36, 54) 41 (39.5, 66)

SOFA Score 5 (4, 7) 7 (4.5, 9)

APS Score 52.5 (41.0, 61.0) 67.5 (51.5, 71.0)

n (%) n (%)

Diagnosis

Pneumonia 9 (40.9) 3 (37.5)

Sepsis 8 (36.4) 3 (37.5)

Aspiration 2 (9.1) 1 (4.6)

Pancreatitis 0 (0.0) 1 (4.6)

Postoperative 1 (4.6) 0 (0.0)

Emergent Surgery 1 (4.6) 0 (0.0)

Other 1 (4.6) 0 (0.0)

Male 12 (54.6) 4 (50.0)

Race

White 20 (90.9) 8 (100.0)

Black 1 (4.6) 0 (0.0)

Other 1 (4.6) 0 (0.0)

APS Acute Physiology Score, ARDS Acute Respiratory Distress Syndrome,
Q1 First Quartile, Q3 Third Quartile, SOFA Sequential Organ Failure Assessment

Fig. 1 Composition of the lipidome for all lipids, those that differ
between cohorts at a significance level of 0.05, and those that differ
between cohorts at a significance level of 0.005. This reveals that
diacylglycerols, triacylglycerols and phosphatidic acids represent a greater
proportion of the total as the significance level is increased, which
demonstrates that the lipids most strongly associated with mortality do
not mirror the composition of the lipidome. The percentages
represented by the bars sum to 100% for each of the criteria
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Fig. 2 (See legend on next page.)
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Finally, to further investigate the associations between
lipid concentrations and outcome, we calculated the
AUROC for the 90 significant lipids, the APS at
randomization, and the SOFA score at the time the sam-
ple was obtained (Additional file 3). Most of the lipids that
differed between survivors and non-survivors had better
discrimination than both the APS (AUROC= 0.67) and
SOFA score (AUROC = 0.64). Three lipids (SM 43:1, TG
56:6, TG 52:6, and TG 52:5) had excellent discrimination
with each having an AUROC > 0.9 (Fig. 3).

Discussion
This study found multiple associations between the
plasma lipidome and ARDS mortality. Ninety lipids dif-
fered between survivors and non-survivors when using a
relatively strict level of significance for exploratory re-
search (q < 0.05). Except for five compounds, lipids dif-
fering between groups had a higher concentration in
survivors. These findings are consistent with those pub-
lished by Ferrario et al., who reported a similar

relationship in a study of septic shock [22]. Together,
these studies suggest that reduced lipid substrate under-
lies poor outcomes in critical illness. Given the
decreased concentrations of PUFA containing glyceroli-
pids in non-survivors, inadequate substrate for energy
production or generation of mediators may drive part of
the poor outcome. Unlike the study by Ferrario et al.
[22], we did not find a relationship between mortality
and the change in lipid levels over time. Explanations for
this difference include the lower severity of illness found
or more stringent significance level used in our study.
A large body of evidence exists pertaining to the im-

portance of PUFAs for ARDS mortality. Previous guide-
lines even recommended the administration of fish oil
(source of the omega-3 eicosapentaenoic acid and
docosahexaenoic acid) and borage oil (source of the
omega-6 fatty acid linolenic acid) to individuals with
ARDS [23–27]. These PUFAs were thought to reduce
the inflammatory process that led to progressive lung in-
jury. This practice decreased after the OMEGA trial
showed no difference with treatment and possible harm
[28], although some still advocate for this practice [29].
A potential reason for the failure of this therapy is a fail-
ure to correctly distinguish which individuals would
benefit. Our results raise the possibility that the plasma
lipidome provides a tool that may identify a subset of
ARDS patients who would benefit from lipid supple-
mentation with certain lipids. Inadequate lipid substrate
may prevent a critically ill individual from meeting the
increased metabolic demands, mounting an adequate in-
flammatory response, or generating the mediators neces-
sary to terminate the inflammatory response. Conversely,
providing excess substrate to individuals with an adequate
supply may overwhelm regulatory processes leading to un-
necessary inflammatory or anti-inflammatory responses.
While most lipids were decreased in non-survivors,

several were not. We found increased concentrations of
one sphingomyelin, two phosphatidylcholines, and two
phosphatidylethanolamines compounds in this population
(Fig. 2, Additional file 1). These also showed greater cor-
relation with other significant lipids in survivors compared
to non-survivors (Additional file 2). A similar relationship
has been described before for phosphatidylcholine [30]
and sphingomyelin [22] while our findings for phosphati-
dylethanolamine are novel. The importance of these com-
pounds may relate to their involvement in the coagulation
system. For example, phosphatidylethanolamine increases

(See figure on previous page.)
Fig. 2 Heatmap of the relative concentrations of each of the 90 lipids that differed between survivors and nonsurvivors. Measurements are
separated according to the outcome of the subject and the time point. Overall, the concentration of most lipids (85 of 90) are greater in survivors
compared to nonsurvivors. No pattern is appreciated between the two time points. Average values for the two cohorts can be found in
Additional file 1: Table S1. Lipids are arranged based on hierarchical clustering using a complete linkage algorithm. The dendrogram shows how
lipids were arranged relative to each other. The labels at the bottom of the figure show the subject number and time point

Fig. 3 Area under the receiver operating characterstic curves for
the three lipids with the best discrimination between survivors and
non-survivors. Two commonly used severity of illness scores are
also displayed for comparison. Many plasma lipids, including the
one sphingomyelin and two triacylglycerol species displayed,
outperformed the sequential organ failure assessement score
and the acute physiology score
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the inactivation of factor Va by activated protein C when
added to phospholipid vesicles [31] and sphingomyelin is
involved in the regulation of thrombin generation [32].
Therefore, release of these membrane lipids into the circu-
lation may mediate some of the coagulation disorders seen
in critical illness [33]. The use of lipid assays to identify af-
fected individuals may help to isolate individuals that
would benefit from therapies such as activated protein C
[34, 35], which failed to improve outcomes when adminis-
tered to an untargeted group of patients [36, 37].
Our findings must be tempered by the hypothesis-

generating nature of this work and several limitations
should be considered when interpreting these results.
First, since this study contained a small number of sub-
jects relative to the number of lipid mediators, we were
not able to perform post-hoc analyses aimed at under-
standing the mechanisms underlying the observed differ-
ences. While adjustments were made for multiple
comparisons, we had inadequate power to adjust for the
confounders such as propofol administration. Propofol
contains both soybean oil and egg lecithin, which contain
acylglycerols with fatty acids from the phosphatidylcho-
line, phosphatidylethanolamine, and phosphatidylinositol
classes [38]. Both lipids that were increased and decreased
in survivors could have been affected and future research
is needed to understand if lipid containing medications
affect the patients in ways other than their primary phar-
macodynamic effect. Second, this study did not determine
the location of double bonds present in fatty acids. It is
known that n-3 and n-6 fatty acids affect the inflammatory
response in different ways, but our analysis was not able
to determine the proportion of fatty acids of each type.
Finally, the participants of this study were almost entirely
white and findings may not apply to other races.

Conclusions
These findings suggest that the plasma lipidome of pa-
tients with ARDS may identify those at high risk for
mortality. If this is confirmed in subsequent studies, lipi-
domic profiles may allow us to more accurately deter-
mine who will benefit from certain treatments and move
us toward personalized care of critically ill patients.

Additional files

Additional file 1: Table S1. Relative lipid concentrations ranked
according to the difference between cohorts. (DOCX 52 kb)

Additional file 2: Heatmaps of the differences in the Pearson’s r
correlation coefficient between survivors and nonsurvivors. Lipids are
arranged based on hierarchical clustering using a complete linkage
algorithm. The dendrogram shows how lipids were arranged relative
each other. The group of lipids that has a greater correlation in survivors
(red font) contains most of the lipids that had a greater concentration in
those who died and contains many lipids that originate from the cell
membrane. The cluster with the greatest amount of correlation among

non-survivors (yellow highlighting) contains primarily glycerolipids
consisting mostly of polyunsaturated fatty acids. These observations
suggest that these groups of lipids play an important role for the
outcome of patients with ARDS. (PDF 119 kb)

Additional file 3: Table S2. Area under the receiver operating
characteristic curve for lipids that differ between survivors and non-
survivors. (DOCX 35 kb)
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