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Abstract

growth and biofilm formation.

Background: Smoking is a leading cause of respiratory infections worldwide. Tobacco particulate matter disrupts
iron homeostasis in the lungs and increases the iron content in the airways of smokers. The airway epithelia secrete
lactoferrin to quench iron required for bacteria to proliferate and cause lung infections. We hypothesized that
smokers would have increased bacterial growth and biofilm formation via iron lactoferrin imbalance.

Methods: We collected bronchoalveolar lavage (BAL) samples from non-smokers and smokers. We challenged these
samples using a standard inoculum of Staphylococcus aureus and Pseudomonas aeruginosa and quantified bacterial
growth and biofilm formation. We measured both iron and lactoferrin in the samples. We investigated the effect of
supplementing non-smoker BAL with cigarette smoke extract (CSE) or ferric chloride and the effect of supplementing
smoker BAL with lactoferrin on bacterial growth and biofilm formation.

Results: BAL from smokers had increased bacterial growth and biofilm formation compared to non-smokers after both
S. aureus and P. aeruginosa challenge. In addition, we found that samples from smokers had a higher iron to lactoferrin
ratio. Supplementing the BAL of non-smokers with cigarette smoke extract and ferric chloride increased bacterial growth.
Conversely, supplementing the BAL of smokers with lactoferrin had a concentration-dependent decrease in bacterial

Conclusion: Cigarette smoking produces factors which increase bacterial growth and biofilm formation in the BAL.
We propose that smoking disrupts the iron-to-lactoferrin in the airways. This finding offers a new avenue for potential
therapeutic interventions to prevent respiratory infections in smokers.

Background
Respiratory infections are one of the leading causes of
mortality worldwide and smoking is considered a risk
factor for developing upper and lower respiratory infec-
tions [1-3]. In addition, exposure to cigarette smoke is
associated with increased risk of airway bacterial
colonization compared to non-smokers [4, 5].

The pathogenesis of infectious airway disease caused by
cigarette smoke is complex. Smoking damages airway

epithelia, increases mucus production, decreases
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mucociliary clearance, impairs cell immunity and the pro-
duction of antimicrobial peptides and proteins (AMPs) in
the airway [6—11]. Besides impairing the host response to
infectious challenges, cigarette smoke can also affect
bacterial virulence [12].

The airway surface liquid (ASL) is a layer of fluid cover-
ing the airways that is a first line of defense responsible
for antimicrobial activity against airborne pathogens. One
of the most abundant AMPs present in the ASL is lacto-
ferrin, a bacteriostatic protein that chelates iron, which is
required for bacteria to grow and form biofilms [13]. The
impairment of AMP activity plays a fundamental role in
the origin of infectious lung diseases. Several factors can
alter the activity of AMPs such as decreased pH, increased
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ionic strength especially due to divalent cations such as
iron, magnesium, and calcium [14—18].

Tobacco contains particulate matter and multiple
chemicals that can potentially alter the iron homeostasis
in the lungs [19, 20]. Since iron promotes bacterial growth
and biofilm formation and inhibits AMP activity against
pathogens, we hypothesized that the ASL from smokers
would grow more bacteria and develop more biofilm com-
pared to non-smokers [21-23]. Repeated respiratory infec-
tions in smokers influences the development of chronic
inflammation and lung function decline leading to chronic
obstructive pulmonary disease (COPD) [24, 25].

We have chosen Staphylococcus aureus and Pseudomonas
aeruginosa as models to study relevant culturable airway
pathogens. They are both representative airway Gram posi-
tive and negative pathogens. S. aureus colonizes the nostrils
of smokers in a higher prevalence than non-smoking popu-
lation [26]. This carrier state has been associated with an
increased risk of lethal infections by endogenous strains
[27]. Pseudomonas aeruginosa is a pathogen present in the
airways of patients with COPD at both baseline and during
exacerbations [28]. This organism is more prevalent in
severe COPD and is associated with poor clinical outcomes
in hospitalized patients [29, 30]. Therefore, it is relevant to
determine mechanisms implicated in increased risk of
respiratory infections in smokers.

Sampling ASL is extremely challenging as it is present
at a very small volume in the lungs [31]. Therefore, we
have used bronchoalveolar lavage as a surrogate of ASL.
Bartlett et al. examined the protein composition of bron-
choalveolar lavage (BAL) and ASL from new born pigs
and found they had 514 protein in common, including
AMPs such as lactoferrin, lysozyme and cathelicidins [32].
We challenged the BAL from smokers and non-smokers
with bacteria and assessed growth and biofilm formation.
We also investigated the effect of supplementing iron,
cigarette smoke extract, and lactoferrin to explore the role
of iron in the bactericidal and anti-biofilm properties of
the airway.

Methods

Human BAL collection and processing

We used biobank-stored BAL samples from non-smokers
(n =11) and smokers (n=11) from the study Human
Lung Responses to Respiratory Pathogens that aimed to
study the relationship of vitamin D levels and the innate
defense of the lung against inhaled bacteria. Participants
were selected if they were between the age 18-60, if
smoker, FEV1 had to be more than 60% of predicted. Par-
ticipants characteristics were similar between smokers and
non-smokers (Table 1). Participants were excluded if they
had history of positive tuberculin test or tuberculosis,
pneumonia, recent airway infections, antibiotic use or
vaccination, were taking vitamins or medications with
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selected exceptions, were pregnant, breast-feeding, had
asthma, diabetes, heart disease or allergy to lidocaine.
More detailed inclusion and exclusion criteria for this
study were previously published [33]. The collection was
approved by the Institutional Review Board at the University
of Iowa (IRB# 200607708). BAL collection was performed as
previously described [33]. Briefly, after subjects signed an
informed consent, and pregnancy was ruled out using a
urine test, participants were premedicated with atropine
(0.6 mg intramuscularly (IM)), and either morphine (10 mg
IM) or meperidine (12.5-25 mg IM). The airways were
locally anesthetized using 2-4% lidocaine. A pulmonary
physician performed the bronchoscopies by a standard pro-
cedure using a flexible bronchoscope (model P160 or P180;
Olympus) at the University of Iowa Hospitals and Clinics
(Iowa City, Iowa, USA). Under clinical monitoring, five BAL
samples (20 mL) were suctioned into a trap container from
three segments of the lungs. The liquid in the collection
traps was transferred into conical 50 mL centrifuge tubes.
Tubes were centrifuged to separate cells from the rest of the
BAL. The supernatant of the tubes was pooled into one
Falcon® Cell Culture Flasks and stored at — 80 °C. The selec-
tion of flasks that was retrieved from the biobank were
thawed at once on ice, aliquoted into working samples, and
stored again at — 80 °C. Working samples were thawed and
used once for every experiment to avoid multiple freeze-
thaw cycles.

Assessment of BAL bacteriostatic effect on bacteria

To assess bacterial growth, we used bioluminescent
Pseudomonas aeruginosa Xen 05 and Staphylococcus
aureus Xen 29 (Caliper Biosciences, USA). It has been
reported that Relative Light Units (RLU) correlate closely
with Colony Forming Units (CFU) [16]. Briefly, P. aeruginosa
Xen 05 was cultured overnight in tryptic soy broth (TSB)
and then subculture in iron-free media M9 (BD Difco™,
USA) overnight at 37 °C, and then washed twice with
Phosphate Buffered Saline without calcium and magnesium
(PBS-/-). Thereafter, we combined 100 pL of BAL samples
with 10 pL of bacteria (~5 x 10° CFU) in a 96-well plate
(Optiplate-96, Perkin-Elmer, USA). We measured RLU
(527 nm) 6 h after bacterial challenge as a surrogate of
live bacteria.

Table 1 Comparison of participant characteristics by smoking

status

Characteristics Smokers Non-Smokers p-value
Age mean 328 (11) 37.7 (13) 0.3881
Male gender (%) 54 81 NA
Recovery rate (%) 773 (10.5) 70.7 (16.4) 0.2542

Data expressed as mean and standard deviation
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S. aureus Xen 29 was cultured overnight in TSB. The
next day we washed a subculture of mid-log phase bac-
teria, twice with PBS—/-. Because S. aureus does not grow
in M9 iron-free media, we resuspended in minimal essen-
tial media (10 mM Sodium phosphate buffer, pH 7.4,
100 mM NaCl, 1% TSB). Thereafter, we combined 10 pL
of BAL samples with 10 pL of bacteria (~ 5 x 10° CFU) in
a Optiplate-96 and measured RLU 30 min after challenge
as a surrogate for live bacteria.

To test the effect of lactoferrin supplementation on bac-
terial growth, we combined 10 pL of increasing concentra-
tions of recombinant lactoferrin from human milk (10, 30,
100, or 300 pg/mL, final concentration) (Sigma-Aldrich)
or phosphate buffer control with 90 pL of the BAL for
30 min at 37 °C. Subsequently, we added 10 pL of bacteria
(~5x10° CFU) and measured RLU at 30 min for S
aureus and 6 h for P. aeruginosa after bacterial challenge.

Assessment of biofilm formation

We investigated the formation of biofilms in the BAL from
smokers and non-smokers using two methods. For S.
aureus we used a microtiter dish biofilm formation assay as
previously described [34]. Briefly, we combined 10 pL of
BAL with 190 pL of bacteria Xen 29 (~5x10° CFU)
suspended in minimal media in a 96 well plate. After 48 h,
we extracted the liquid, washed the wells with distilled
water, stained the biofilm using crystal violet, removed the
excess crystal violet with distilled water, dissolved the stain
with 30% acetic acid and read the ODg of every well.

To test the effect of lactoferrin supplementation on
the smokers BAL biofilm formation, we combined 40 pL
of PBS containing varying concentrations of lactoferrin
(30, 300, and 1000 pg/mL) or PBS control with 150 pL
of BAL samples from smokers and non-smokers and
assessed biofilm formation. This mixture was incubated
for 30 min at 37 °C. Thereafter, we added 10 uL of Xen
29 S. aureus (~ 1.5 x 10* CFUs) to the 96-well plate and
incubated for 48 h at 37 °C. Biofilm formation was
assessed at 48 h as previously described.

For P. aeruginosa we grew PAO1 overnight in TSB. The
overnight culture was washed twice with M9 and cultured
for 4 h in M9. Subsequently, 50 pL of the bacterial solution
(~ 1.5 x 10" CFUs) was added to a 96 well plate containing
100 pL of BAL with a coverslip mounted perpendicular to
the bottom of each well. After 48 h, the coverslips were
stained using concanavalin-A conjugated with Texas-red.
We used confocal microscopy to measure the depth of bio-
film formation by quantifying fluorescence. The Z-stacks
were used to create surface plots of biofilm growth based
on concanavalin A-Texas red intensity. Intensities are
expressed as relative fluorescent units (RFUs) as previously
described [21]. To test the effect of lactoferrin supplemen-
tation on the smokers BAL biofilm formation, we used a
final concentration of 300 pg/mL lactoferrin or phosphate
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buffer control in the samples and assessed biofilm as previ-
ously described.

Cigarette smoke extract (CSE) production

We produced the CSE as previously described with modifi-
cations [35]. We filled a 50 mL syringe with 10 mL of
media and inserted the filter end of a research cigarette
from the University of Kentucky (Code 3R4F) into the wide
end of a 1000 pL pipette tip. We lit the cigarette and the
narrow end of the pipette was placed into the tip of the
60 mL syringe. The syringe plunger was pulled smoothly to
aspirate smoke from the cigarette, through the pipette tip,
and into the syringe and mixed with the media by vigorous
shaking. We repeated this process of smoke aspiration and
media/smoke mixing until one cigarette was consumed.
The resulting mixture was filtered through a 0.22 pm filter
unit (EMD Millipore). CSE was made fresh for each experi-
ment using the ODsyo to standardize the solution. An
OD3y0 equal to 1.00 corresponded to 100% CSE.

Bacterial growth in the presence of CSE alone

For S. aureus, we combined 50 pL of increasing concen-
trations of CSE solutions in PBS -/- (0.1, 0.3, 1, or 3%)
with 150 pL of ~ 500 CFUs of log phase Xen 29 S. aureus
bacteria in sodium phosphate buffer (10 mM, 100 mM
NaCl, 1% TSB) in a round bottomed 96-well plate for
30 min at 37 °C. After 30 min, each condition was plated
onto tryptic soy agar (TSA) plates, incubated overnight at
37 °C, and CFUs were counted.

For P. aeruginosa, Xen 05 bacteria were cultured over-
night in TSB media and subculture in M9 media for 12 h
at 37 °C. We combined 100 pL of bacterial solution in M9
(2.25 x 10° CFUs) with 100 L of increasing concentration
of CSE in M9 (0.01, 0.1, 1, or 3%) in a 96 well-plate and
incubated for 18 h at 37 °C. The next day the samples
were plated on TSA plates, incubated overnight at 37 °C
to count colonies the following day.

Bacterial growth in BAL supplemented with CSE and

ferric chloride

To supplement BAL with CSE we coincubated 50 pL of
increasing concentrations of CSE (0.1, 0.3, 1, or 3%) with
140 pL of non-smokers BAL for 30 min. Thereafter, we
added 10 pL of S. aureus Xen 29 (~ 1.5 x 10* CFU) and
measured RLU at 30 min.

For P. aeruginosa, we coincubated 100 uL of a combin-
ation of non-smokers BAL with either CSE (1%), FeCls
(1 pg/mL) or control with 100 pL of Xen 05 in M9 (~
1.5x10” CFU) in a 96 well-plate. The sealed plate was
incubated overnight and RLU were measured at 18 h.

Measurement of lactoferrin in the BAL
We diluted BAL 1:5 using water. Thereafter, we measured
lactoferrin using a human lactoferrin (HLF2) ELISA kit
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(Abcam, USA) interpolating the unknowns to a standard
curve to calculate the lactoferrin concentration in the BAL
samples. The data was corrected for the dilution factor.

Measurement of metals in the BAL

Trace metals in BAL were analyzed using a Thermo X
series II inductively coupled plasma mass spectrometer
ICP-MS with a collision cell (ThermoFisher Scientific).
Samples were spiked with 0.5 mL of a 1 part per million
indium solution (Inorganic ventures CGIN1-1) to serve as
an internal standard. A 1:10 dilution was performed with
2% nitric acid (Fisher Chemical, Trace metal grade) and
final sample volume was 10 mL. Calibration curves were
prepared for each analyte of interest from a multi-element
standard (Inorganic Ventures QCP-QCS-3 s source). Stan-
dards were prepared in concentrations from 1 to 200 parts
per billion with the same internal standard. Standards were
diluted with 2% nitric acid. Calibration curves were plotted
using the response ratio of analyte/internal standard on
the Y axis and concentration of analyte on the X axis. The
slope was then used to obtain concentration of analyte in
samples after a blank subtraction (2% nitric acid). The
data was corrected for the dilution factor and samples that
were below blank level concentration were considered as
below the limit of detection and plotted as 0.

Data analysis

Data are expressed as mean + SEM. For BAL growth, we
used raw RLU and for the CSE experiments we normal-
ized data as percent of control using this formula:

RLU fi 1
U from sample <100

Percent of live bacteria = RLU from control vehicle
All experiments had # =11, were done in replicates in
at least two independent experiments. The exception was
the metal measurements in the BAL that was done once
with all samples using the same standard to ensure that
they were comparable. We determined the statistical sig-
nificance between two related groups using paired ¢-tests.
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We used multiple comparison ANOVA and Kruskal-
Wallis to compare three or more concentrations to their
respective control. We also used the Pearson test to
calculate correlation coefficients. Data analysis was per-
formed using Graph Pad Prism 6.00 (GraphPad Software,
California, USA).

Results

Bacteria grows more in the BAL from smokers compared
to non-smokers

We hypothesized that BAL from smokers would have
increase bacterial growth compared to non-smokers. To
investigate this hypothesis we challenged BAL samples,
collected via bronchoscopy, with bioluminescent S. aureus
Xen 29 and measured RLU at 30 min. We found signifi-
cantly more live bacteria in RLU from the smokers BAL
compared to non-smokers. (Fig. 1a). We also challenged
the BAL with Pseudomonas aeruginosa and found an
average of about 64% more RLU at 6 h in the BAL from
smokers compared to non-smokers (Fig. 1b). These results
suggest that there is increased bacterial growth in the BAL
of smokers compared to non-smokers.

Bacteria develops more biofilm mass in the BAL from
smokers compared to non-smokers

Since BAL from smokers had more S. aureus and P.
aeruginosa growth compared to non-smokers, we inves-
tigated the ability of these bacteria to form biofilms. We
challenged BAL samples with S. aureus and assessed bio-
film formation at 48 h by measuring the optical density of
crystal violet staining of the biofilm. We found that S.
aureus in the BAL from smokers had about 52% more
biofilm mass compared to non-smokers (Fig. 2a). We also
challenged BAL samples with P. aeruginosa and quantified
the biofilm formation at 48 h by measuring the RFUs of
concanavalin-A conjugated with Texas red staining of the
bacterial biofilm matrix. We found that P. aeruginosa in
the BAL of smokers had three times more biofilm matrix
compared to non-smokers (Fig. 2b and c). These results
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Fig. 1 S. aureus and P. aeruginosa grow more in the BAL from smokers compared to non-smokers. a S. aureus bacterial growth assessed by RLU
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Fig. 2 S. aureus and P. aeruginosa develop more biofilm mass in the BAL from smokers compared to non-smokers. a S. aureus biofilm formation
at 48 h assessed by a microtiter dish biofilm formation assay (*p < 0.0001, by unpaired t-test). b P. aeruginosa biofilm formation at 48 h assessed
by fluorescence intensity of Texas-red conjugated to concanavalin-A (Con A-Texas Red) in relative fluorescent units (RFU) (*p < 0.0001, by unpaired
t-test). ¢ Representative surface intensity plot of PAO1 biofilm formation from non-smokers BAL. d Representative surface intensity plot of PAO1
biofilm formation from smokers BAL

suggest that bacteria grow more as a biofilm in the BAL
from smokers compared to non-smokers.
Table 2 Concentration of metals present in the BAL from

Metals concentration in the BAL smokers and non-smokers

Since tobacco contains iron containing particulate matter,  flement Metal concentration (ng/mL) Pvalue®
we hypothesized that smokers would have higher concen- Nom-Smokers BAL Srokers BAL

tration of metals in the BAL. To investigate this hypoth- =" BBL 073 (189) NA

esis, we measured the concentration of selected metals in

the BAL of smokers and non-smokers using ICP-MS. We Arsenic 346 (086) 424119 00933
found that some metals, such as aluminum, lead, and ~ C@lcium 8117 (18161) 8568 (18334) 05691
vanadium were only detected in the BAL of smokers.  Chromium 0003 (0.01) 003 (0.06) 0.1142
Despite that the mean concentration of metals was higher  Copper 477 (49) 4(2.26) 06411
in smokers (e.g. iron was almost four times higher) they o 638 (9.12) 2337 (2847) 00741
were not statistically different (Table 2 and Fig. 3a). Lead BEL 007 (0.16) NA

Lactoferrin concentration in the BAL Magnesium 389.06 (66.93) 428.76 (11042) 0.3200
Exposure to cigarette smoke has been associated with ~ Manganese 0.12(0.16) 021(0.24) 0.2785
increased lactoferrin concentration in human secretions  Nickel 022 (0.12) 05 (055) 0.1205
[36, 37]. Therefore, we decided to measure this AMP in  Vanadium BBL 0.06 (0.02) NA

our samples. We found that there was not a significant 7 4045 (20.99) 48.16 (35.06) 05385

difference in the concentration of lactofemn in the BAL of o ———— oressed in mean (SD). BBL below blank level
smokers compared to non-smokers (Fig. 3b). Because the  2Compared by unpaired t-test. NA not apply
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BALSs can have different dilutions, we calculated the ratio of
iron to lactoferrin in the BAL samples. We found that the
ratio iron/lactoferrin was five times higher in the smoking
group compared to non-smokers (Fig. 3c). These data
suggest that smokers have an excess of iron in relation to
lactoferrin compared to non-smokers.

Bacteria grow more in non-smokers BAL supplemented
with CSE compared to non-supplemented

Since we found that smokers had an increased iron to
lactoferrin ratio in their BAL, we investigated if adding
CSE to non-smokers BAL would have a similar effect as
smoking on bacterial growth. First, we investigated if CSE
alone had an effect on bacterial growth. We combined in-
creasing concentrations of CSE (0.1-3%), with S. aureus
and P. aeruginosa and measured bacterial growth by
standard CFU counting. We found that there was no
significant increase in bacterial growth in the presence of
CSE alone at these concentrations (Additional file 1:
Figure S1). These results suggest that CSE by itself is not
sufficient to cause increased bacterial growth. We then
supplemented BAL samples from non-smokers with CSE
at several concentrations and observed a concentration-

dependent increase in S. aureus growth at 30 min com-
pared to samples exposed to buffer control (Fig. 4a).
Thereafter, we exposed BAL from non-smokers to either
CSE (0.1%), ferric chloride (1 pg/mL), or control, chal-
lenged with P. aeruginosa, and read RLU overnight. We
found that BAL from non-smokers supplemented with
CSE similar to smoking increased bacterial growth of P.
aeruginosa (Fig. 4b). We found a similar response to CSE
when we added ferric chloride to the BAL of non-smokers
(Fig. 4c). These results suggest that CSE, similar to iron,
enhances bacterial growth.

BAL from smokers supplemented with lactoferrin reverts
bacterial growth and biofilm formation

We hypothesized that chelating iron using lactoferrin
would prevent the increase in bacterial growth and biofilm
formation found in the smokers BAL. To investigate this
hypothesis, we coincubated the BAL from smokers with
increasing concentration of lactoferrin (10-300 pg/mL),
challenged with S. aureus (~5 x 10° CFU), and measured
live bacteria in RLU after 30 min. We found a concentra-
tion dependent decrease in live bacteria in the samples
from smokers treated with lactoferrin (Fig. 5a). BAL

a S. aureus (30 min) b P aemginosa(1sh) € P. aeruginosa (18 h)
31751 . 25 " 5257 -
(§ X 20+ X 20+
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Fig. 4 Non-smokers BAL supplemented with CSE has increased bacterial growth. a Effect of coincubating BAL from non-smokers with increasing
doses of CSE on S. aureus bacterial growth (*p < 0.05, compared to control by ANOVA). b Effect of coincubating BAL from non-smokers with CSE
(1%) on P. aeruginosa bacterial growth (**p < 0.0001, by paired t-test). ¢ Effect of coincubating BAL from non-smokers with FeCl; (1 pg/mL) on P.
aeruginosa bacterial growth (**p < 0.0001, by paired t-test)
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samples from smokers treated with lactoferrin (300 pg/
mL) were not statistically different from the non-smokers
control (7389 +139.5, n =8, vs 6963 +202.4, n=8, re-
spectively p =0.1055 by unpaired t-test). We also chal-
lenged the BAL samples from smokers treated with
lactoferrin (300 pg/mL) with P. aeruginosa, and measured
RLU at 6 h. We found decreased RLU in the smokers
BAL samples treated with lactoferrin compared to control
(Fig. 5b). We also supplemented the BAL of smokers with
lactoferrin and found a concentration-dependent decrease
in the biomass produced by S. aureus (Fig. 5¢). BAL sam-
ples from smokers treated with lactoferrin (1000 pg/mL)
were not statistically different from the non-smokers con-
trol (0.06763 + 0.002432, n =11 vs. 0.06835 + 0.001963, n
=11, p =0.8184 by unpaired ¢-test). We also found that
supplementing BAL from smokers with lactoferrin
(300 pg/mL) significantly decreased the biofilm formation
by P. aeruginosa at 48 h (Fig. 5d). These results suggest
that adding lactoferrin to the smokers BAL decreased
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bacterial growth and biofilm formation compared to the
untreated BAL.

Discussion

We investigated the bacteriostatic properties of human
BAL collected in vivo from smokers and non-smokers
using a standard bacterial inoculum. We found that S.
aureus and P. aeruginosa grow more and develop more
biofilm in the BAL samples taken from the lungs of
smokers compared to non-smokers.

It has been proposed that the surface of the airways is
iron-depleted to limit bacterial growth and virulence
[38, 39]. Although the study was underpowered to
detect significant differences in iron concentrations, we
found that smokers had four times higher mean iron
concentration in the BAL than non-smokers. This find-
ing is consistent with several reports that have found
that smokers have increased iron concentration in their
lungs [20, 40—43]. This result and the report of other
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Fig. 5 Lactoferrin supplementation decreases bacterial growth and biofilm development in the human BAL from smokers. a Effect of coincubating
smokers BAL with increasing concentrations of lactoferrin on S. aureus growth at 30 min. (**p = 0.0003 and ****p < 0.0001, compared to control by
ANOVA). b Effect of coincubating BAL from smokers with lactoferrin (300 ug/mL) or control on P. geruginosa growth at 6 h. (**p = 0.0002, by paired
t-test). ¢ Effect of supplementing increasing concentrations of lactoferrin with smokers BAL on S. aureus biofilm formation at 48 h. (*p =0.0188,
compared to control by ANOVA). d Effect of coincubating BAL from non-smokers with lactoferrin (300 pg/mL) or control on P. aeruginosa biofilm
formation at 48 h. (**p = 0.0092, by paired t-test)
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investigators is in part explained by the disruption of
iron homeostasis mechanisms in the lungs of smokers.

Cigarette smoke particles are rich in iron and can
directly increase iron concentration in the airways [20]
where particulate matter is deposited. Some of the parti-
cles are endocytosed and metal oxides on their surface
can adsorb intracellular free iron to form ferruginous
bodies decreasing its concentration available for the cell.
In turn, low iron can be sensed by iron-regulatory pro-
teins that activate iron-responsive elements to post-
transcriptionally increase transferrin receptors in the cell
basolateral membranes, upregulating iron uptake and
further increase the iron content in the lungs [44-46].
In addition, cigarette smoke contains polyhydroxyben-
zenes that can react with ferritin to release iron [47].
Furthermore, iron in the airways might come from dam-
age in the airway epithelial cells, which results in serum
leakage [40].

Increased iron concentration in the airways correlates
with the severity of lung disease in cystic fibrosis and
chronic bronchitis [38, 48]. It has been proposed that
changes in iron homeostasis can affect the susceptibility of
the airway to develop infections [46]. Most bacteria rely
on a continuous supply of host iron to proliferate [49] and
high levels of serum iron can increase the risk of develop-
ing active infections such as tuberculosis [50, 51]. In
addition, iron nanoparticles can directly impair airway
innate mechanism such as AMP activity [21].

We found that other metals such as aluminum, lead,
and vanadium that were not present in the airways of
non-smokers. Accumulation of metals other than iron has
also been observed in the lung and serum of patients with
COPD [52, 53]. Some these metal have been showed to
impair mechanism involved in airway immunity associated
with the pathogenesis of COPD such as decreased release
of the AMP and decreased cystic fibrosis transmembrane
conductance regulator (CFTR) function [52, 54—56].

When we exposed S. aureus and P. aeruginosa to only
CSE, there was no increased growth compared to a solu-
tion control. It has been reported that CSE has variable
effects on bacterial growth. In general, it has an inhibitory
effect that is greater in Gram positive than Gram negative
bacteria [12, 57]. However, these experiments with only
CSE were done using doses that would also cause cell
death in airway epithelial cells and do not necessarily
recapitulate what occurs in the airways [35].

When we supplemented BAL from non-smoking sub-
jects with CSE, as a way to recreate in part the airway
microenvironment, we found that CSE impaired BAL bac-
teriostatic properties. We found a similar impairment of
the BAL when we supplemented with iron chloride. These
results might suggest that iron bioavailability could be a
mechanism for regulating airway antimicrobial activity.
One key AMP in the airways is lactoferrin. One of its
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major function is iron chelation, which reduces the
amount of bioavailable iron in biological fluids, including
ASL [13]. The function of lactoferrin is affected when
saturated with iron [58]. Therefore, we speculate that
cigarette smoke contains iron nanoparticles that might
not only be a source of iron for bacterial growth but could
also inhibit the bacteriostatic properties of the ASL.
Conversely, longer times were needed to notice a differ-
ence between control BAL and CSE or iron supplemented
BAL in P. aeruginosa (6 vs 18 h). These results suggest
that other factors present in the BAL from smokers such
as heme-iron, inflammatory mediators, different compos-
ition of AMP might also contribute to the increased
bacterial growth.

Both active and passive smoking has been associated
with an increase in lactoferrin concentrations in human
secretions [36, 37]. In our samples, we found no signifi-
cant differences in the concentration of lactoferrin
between smokers and non-smokers. However, we found
an increased ratio of iron to lactoferrin. We speculate
that the relative variability in iron/lactoferrin ratio of our
samples is responsible to the heterogeneity of some of the
results. Especially those experiments using Pseudomonas
(Figs. 1b, 5b & d). (Fig. 3c). Pseudomonas has evolved to
efficiently uptake iron by robust and redundant mecha-
nisms [59, 60]. This feature has allowed them to survive in
a wide array of environments, such as water currents,
plants, nematodes, insects, and in mammals, including
humans [61]. Previous studies have suggested that iron in
the lungs might be important for Pseudomonas airway
colonization [62]. As airway disease progresses in COPD,
iron deposits in the airways also increases [63]. It is also
known that lung diseases such as severe COPD has higher
rates of Pseudomonas airway colonization. We also specu-
late that iron/lactoferrin imbalance will also increase the
probabilities of being colonized by this pathogen associated
with poor clinical outcomes in hospitalized patients [29, 30].

When we supplemented BAL samples with excess lacto-
ferrin we reverted the impaired bacteriostatic activity and
biofilm formation observed in the BAL of smokers. One
likely mechanism for excess lactoferrin reverting bacterial
growth and biofilm formation in smokers is by decreasing
bioavailability of iron. Despite that lactoferrin has other
antimicrobial mechanisms such as direct binding to LPS,
osmotic effect, and bacterial membrane permeabilization,
these are also impaired when iron is bound to lactoferrin
[64—66]. We acknowledge that the concentration of lacto-
ferrin added to the samples could be considered supraphy-
siologic. However, commercially available lactoferrin is
partially saturated with iron. For this reason, higher doses
of AMP were used to observe an effect, particularly in the
biofilm experiments.

As a limitation of our study, we acknowledge that
Haemophylus influenzae, an important organism in COPD
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exacerbations was not considered for this study. However,
this organism needs hemin, an iron containing protopor-
phyrin and nicotinamide adenine dinucleotide to grow in
vitro, the addition of these elements could confound the
hypothesis of smoking as a source of iron for bacteria.

Several investigators have recently reported that current
and former smokers with preserved lung function by spir-
ometry have increased respiratory symptoms and evidence
of airway disease by imaging [67, 68]. This study demon-
strates that the imbalance between iron content and lacto-
ferrin abundance in the airways can result in conditions
that will impair airway innate immune mechanisms,
resulting in an increased risk of respiratory infections.
Since the development of airway infections has been
proposed as an important mechanism for lung function
decline and development of chronic bronchitis, our results
provide a potential mechanism for some of the recent
reports of respiratory symptoms in smokers without
spirometry evidence of COPD [24, 25].

The implications of iron/lactoferrin imbalance in the de-
velopment of COPD might go beyond increasing bacterial
growth. A recent discovery demonstrated that a gene that
encodes for an iron receptor protein was associated with
dysfunctional mitochondrial iron loading affecting muco-
ciliary clearance and contributing to the development of
COPD [69, 70]. In the same study, the use of deferiprone,
an USDA approved drug that functions as an iron chelator
in a mouse model of COPD, improved features of airway
disease progression and acute lung injury such as weight
loss, pulmonary inflammation, and decreased mucociliary
clearance despite continuous cigarette smoke exposure.
Further studies will have to determine the feasibility of this
intervention but suggest a promising avenue to prevent the
progression from smoking to COPD by iron chelation.

Conclusion

We conclude that in vivo BAL collected from smokers
grows more bacteria and develops more biofilm compared
to non-smokers. We presume that excess iron compared
to lactoferrin in the airways of smokers impairs the ability
of the lungs to control bacterial airway pathogens.

Additional file

Additional file 1: Figure S1. Cigarette smoke extract alone does not
increase bacterial growth. (A) S. aureus growth overnight in the presence
of increasing concentrations of CSE assessed by CFU. (B) P. aeruginosa
overnight growth in the presence of increasing concentrations of CSE
assessed by CFU. (TIFF 601 kb)
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