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Mesenchymal stromal cell-derived
extracellular vesicles attenuate lung
ischemia-reperfusion injury and enhance
reconditioning of donor lungs after
circulatory death
Matthew L. Stone1, Yunge Zhao1, J. Robert Smith2, Mark L. Weiss2, Irving L. Kron1, Victor E. Laubach1

and Ashish K. Sharma1*

Abstract

Background: Lung ischemia-reperfusion (IR) injury after transplantation as well as acute shortage of suitable donor
lungs are two critical issues impacting lung transplant patients. This study investigates the anti-inflammatory and
immunomodulatory role of human mesenchymal stromal cells (MSCs) and MSC-derived extracellular vesicles (EVs)
to attenuate lung IR injury and improve of ex-vivo lung perfusion (EVLP)-mediated rehabilitation in donation after
circulatory death (DCD) lungs.

Methods: C57BL/6 wild-type (WT) mice underwent sham surgery or lung IR using an in vivo hilar-ligation model
with or without MSCs or EVs. In vitro studies used primary iNKT cells and macrophages (MH-S cells) were exposed
to hypoxia/reoxygenation with/without co-cultures with MSCs or EVs. Also, separate groups of WT mice underwent
euthanasia and 1 h of warm ischemia and stored at 4 °C for 1 h followed by 1 h of normothermic EVLP using Steen
solution or Steen solution containing MSCs or EVs.

Results: Lungs from MSCs or EV-treated mice had significant attenuation of lung dysfunction and injury (decreased
edema, neutrophil infiltration and myeloperoxidase levels) compared to IR alone. A significant decrease in proinflammatory
cytokines (IL-17, TNF-α, CXCL1 and HMGB1) and upregulation of keratinocyte growth factor, prostaglandin E2 and IL-10
occurred in the BAL fluid from MSC or EV-treated mice after IR compared to IR alone. Furthermore, MSCs or
EVs significantly downregulated iNKT cell-produced IL-17 and macrophage-produced HMGB1 and TNF-α after
hypoxia/reoxygenation. Finally, EVLP of DCD lungs with Steen solution including MSCs or EVs provided significantly
enhanced protection versus Steen solution alone. Co-cultures of MSCs or EVs with lung endothelial cells prevents neutrophil
transendothelial migration after exposure to hypoxia/reoxygenation and TNF-α/HMGB1 cytomix.

Conclusions: These results suggest that MSC-derived EVs can attenuate lung inflammation and injury after IR as well as
enhance EVLP-mediated reconditioning of donor lungs. The therapeutic benefits of EVs are in part mediated through
anti-inflammatory promoting mechanisms via attenuation of immune cell activation as well as prevention of endothelial
barrier integrity to prevent lung edema. Therefore, MSC-derived EVs offer a potential therapeutic strategy to
treat post-transplant IR injury as well as rehabilitation of DCD lungs.
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Background
Lung transplantation provides a curative hope for many
with end-stage pulmonary disease but the long-term
survival and outcome remain the poorest of any solid organ
transplant with survival estimates demonstrating approxi-
mately 50% mortality after 5-years post-transplant [1]. One
of the major complications is lung ischemia-reperfusion
(IR) injury following transplantation which imposes a
significant threat to graft and recipient survival thereby
causing primary graft dysfunction [2]. Lung IR injury
involves oxidative stress and crosstalk between many cell
types including T cells, macrophages and alveolar type II
epithelial cells. Recent studies from our group have shown
that iNKT cell-produced IL-17 is critical for the initiation
and progression of lung IR injury [3]. We have previously
demonstrated that macrophage produced-HMGB1 (high
mobility group box 1) can activate RAGE (receptor for
advanced glycation end-products) on iNKT cells to amplify
IL-17 production to mediate lung IR injury [4]. However,
pharmacological modalities to immunomodulate the acti-
vation of these critical immune cells responsible for initiat-
ing lung IR injury remain elusive. Therefore, the first aim
of this study was to investigate the anti-inflammatory and
immunomodulatory role of human umbilical cord-derived
mesenchymal stromal cells (MSCs) and MSC-derived
extracellular vesicles (EVs) to attenuate lung injury and in-
flammation after IR.
Recent studies have shown that MSCs as well as

MSC-derived EVs have the potential to mitigate lung
injury and inflammation in various disease models
[5–8]. EVs released by MSCs include apoptotic bodies,
exosomes or microvesicles (MVs) [9]. The apoptotic bodies
(>1000 nm) are products of dying cells, while exosomes
(20–100 nm) have endosomal biogenesis and can be
composed of lipids, proteins, and nucleic acids [10]. MVs
(100–1000 nm) are generated by budding off from the
plasma membrane and can contain cellular fractions con-
sisting of microRNAs, mRNAs, proteins and mitochondria.
Both exosomes and MVs can interact with other cells via
paracrine secretions or internalized by cell-cell interactions
through ligand-receptor pathways leading to biologic
responses. Therefore, our aim was to investigate the immu-
nomodulatory potential of MSC-derived EVs in the attenu-
ation of inflammation and dysfunction associated with
lung IR injury.
Furthermore, hypothermic organ storage is associated

with oxidative stress, sodium pump inactivation, intracellu-
lar calcium overload, iron release, and cell death that
induce cell surface expression patterns and pro-
inflammatory mediators for leukocyte activation during the
reperfusion period [11]. Additionally, we and others have
previously shown that post-transplant lung function can be
significantly improved by ex-vivo lung perfusion (EVLP)
with Steen solution in non-heart beating donor lungs with

warm ischemia [12–15]. In this study, we hypothesize that
the protective effects of EVLP can be further enhanced by
treatment with MSCs or EVs during lung preservation
leading to enhancement of endothelial cell barrier integrity
in donor lungs.

Methods
Animals
This study utilized 8–12 week old male C57BL/6 wild-
type mice (Jackson Laboratory, Bar Harbor, ME) which
were randomly assigned to different groups that under-
went either the hilar ligation model of lung IR or DCD
followed by EVLP. This study conformed to the National
Institutes of Health guidelines and was conducted under
animal protocols approved by the University of Virginia’s
Institutional Animal Care and Use Committee.

Lung IR model
An in vivo hilar ligation model of lung IR was used wherein
mice undergoing IR were subjected to 1 h left lung
ischemia (via left hilar occlusion) followed by 2 h of reper-
fusion as previously described [3, 16]. Mice were treated
with or without MSCs or EVs (1 × 106) given intratracheally
1 h prior to ischemia. Sham animals received the same sur-
gery but without hilar occlusion. Mice were anesthetized
with inhaled isoflurane, intubated with PE-60 tubing and
connected to a pressure-controlled ventilator (Harvard
Apparatus Co, South Natick, MA). Mechanical ventilation
with room air was performed at 150 strokes/min, 0.5 cm3

stroke volume, and peak inspiratory pressure < 20 cm
H2O. Heparin (20 U/kg) was given immediately preceding
the ischemic period via external jugular injection to
minimize thrombosis in the pulmonary vasculature during
ischemia. Reperfusion was achieved by removing the clip,
tube and hilar suture. The mouse was extubated and
placed back in the cage during the 2-h reperfusion period.
To minimize pain and discomfort, an analgesic (0.2 mg/kg
buprenorphine) was administered to all animals at the
beginning of surgical intervention.

Murine lung DCD and EVLP
A murine lung DCD and EVLP model was used as
previously described [17]. Mice were anesthetized and
euthanized by cervical dislocation followed by a 60-min
period of “no-touch” warm ischemia. The left atrium
was then vented via an atriotomy followed by infusion of
the lungs with 3 mL 4 °C Perfadex® solution (Vitrolife
Inc., Denver, CO) supplemented with THAM Solution
(Vitrolife, Kungsbacka, Sweden). The chest was then
packed with ice and the lungs underwent cold static
preservation for 60 min at 4 °C followed by EVLP using
either KH (Krebs Henseleit) buffer, Steen solution, or
Steen solution supplemented with MSCs or EVs (3 ×
106). The lungs were perfused with Steen solution
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(EXVIVO Perfusion Inc., Englewood CO) at a constant
rate of 60 μl/g body weight/min. Steen solution within
the circuit was gradually warmed from 4 °C to 37 °C
(over approximately 10 min), and EVLP continued for
60 min. Steen solution was supplemented with
10,000 IU heparin, 500 mg cefazolin and 500 mg methyl-
prednisolone per 1500 mL, modeling preclinical and
clinical EVLP protocols (10, 12).

Pulmonary function
Pulmonary function was evaluated using an isolated, buffer-
perfused mouse lung system (Hugo Sachs Elektronik,
March-Huggstetten, Germany) as previously described [17,
18]. Briefly, mice were anesthetized with ketamine and
xylazine and a tracheostomy was performed, and animals
were ventilated with room air at 100 breaths/min at a tidal
volume of 7 μl/g body weight with a positive end expiratory
pressure of 2 cm H2O using a MINIVENT mouse
ventilator (Hugo Sachs Elektronik, March-Huggstetten,
Germany). The lungs were perfused at a constant flow of
60 μl/g body wt/min with KH buffer (Sigma-Aldrich, St.
Louis, MO) containing 0.1% glucose and 0.3% HEPES
(335–340 mOsmol/kg H2O). The buffered perfusate and
isolated lungs were maintained at 37 °C throughout the ex-
periment by use of a circulating water bath. The lungs were
maintained on the system for a 5-min equilibration period
before data was recorded for an additional 5 min.

Human Mesenchymal Stromal cell isolation and
characterization
Human umbilical cord-derived MSCs were isolated from
Wharton’s jelly and characterized by flow cytometry
confirming a pattern consistent with MSC population
showing an expression of CD90, CD73, CD105 and
CD44 [19, 20].The cords were discarded tissues from
apparently healthy, anonymous donors. The work with
human tissues was reviewed by the Kansas State University
Institutional Human Subjects Review Board and deemed to
be not human subject’s research (IRB review #5189). MSCs
lacked expression of CD45, CD34, CD11b, CD19, and
HLA-DR. MSCs were differentiated with StemPro dif-
ferentiation kits for chondrogenesis, adipogenesis and
osteogenesis following the protocols included with the
kits (Life Technologies, Grand Island, NY), as
previously reported [21].

Isolation and characterization of EVs
EVs were obtained from supernatants of MSCs cultured
overnight in RPMI deprived of Fetal Bovine Serum (FBS)
and supplemented with 0.5% of BSA (Sigma Aldrich, St.
Louis, MO). The cell viability was 99% for MSCs as de-
tected by trypan blue exclusion. To obtain EVs, the super-
natants from MSCs underwent centrifugation at 10,000 g
for 20 min to remove debris, and then cell-free supernatant

were centrifuged at 100,000 g (Beckman Coulter Optima
ultracentrifuge) for 1 h at 4 °C, washed in serum-free
medium HEPES (Sigma) and subjected to a second ultra-
centrifugation under similar conditions. The mean size and
particle concentration was evaluated using Nanosight
LM10 instrument (Malvern Instruments, Worcestershire,
UK). MSCs were used to successfully isolate and
characterize EVs which were isolated from the culture
media. The mean size (164 ± 10.4 nm) and particle concen-
tration of EVs were calculated by the Nanoparticle Tracking
Analysis software. Further characterization of EVs was
performed by imaging flow cytometry (ImageStreamX
imaging FC (ISX) [22] (EMD Millipore, Billerica, MA)
using CD90-FITC, CD44 APC, CD73-PerCP-Cy5.5
(eBioscience, Waltham, MA) and a lipophilic dye (DilC18;
Molecular Probes, Eugene, OR). Imaging flow cytometry
analysis of EVs by ImageStream confirmed the cell surface
marker expression for MSCs (i.e. CD90, CD44 and CD73)
thereby confirming the source of origin of the EVs. The
protein content of EVs was quantified by Bradford method
(BioRad, Hercules, CA). Total RNA was isolated from
EVs using the Qiagen RNAeasy kit (Qiagen Inc.,
Valencia, CA) and quality and concentration was assessed
by NanoDrop UV spectrophotometer (NanoDrop
Technologies, Wilmington, DE). Protein and total RNA
quantities of 50 μl EVs were 54.34 ± 5.99 μg and
35.97 ± 5.4 ng, respectively, released by 5 × 106 cultured
MSCs. This protein concentration falls in the range of
previously reported studies using EVs in lung and kidney
injury disease models [23, 24].

Bronchoalveolar lavage
At the conclusion of pulmonary function measurements,
left lungs were lavaged with 0.4 ml phosphate buffered
saline. The BAL fluid was centrifuged at 1500 rpm for
10 mins 4 °C, and the supernatant was stored at −80 °C.

Cytokine analysis
Cytokine concentrations in BAL fluid were quantified
using the Bioplex Bead Array technique and a multiplex
cytokine panel assay (Bio-Rad Laboratories, Hercules,
CA) as previously described [3].

Myeloperoxidase (MPO) measurement
MPO levels were measured in BAL fluid using a mouse
MPO ELISA kit (Hycult Biotech, Uden, The Netherlands).
MPO is abundant in the azurophilic granules of poly-
morphonuclear neutrophils and was used as an indicator
of neutrophil activation and infiltration into alveolar
airspaces.

Lung wet/dry weight
Lungs were weighed and then desiccated until a stable
dry weight was achieved. Lung wet/dry weight ratio was
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then calculated as an indicator of edema. Separate
groups of animals that did not undergo BAL were used
to measure lung wet/dry weight.

Immunohistochemistry
Immunostaining to identify neutrophils was performed
as described previously [3, 4, 16]. Lungs were inflation-
fixed at 20 cm H2O with 4% paraformaldehyde and par-
affin embedded. Immunostaining of lung sections was
performed with rat anti-mouse neutrophil antibody
(LY6B.2, Bio-Rad Laboratories) using Vectastain ABC kit
(Vector Laboratories, Burlingame, CA). Purified normal
rat immunoglobulin G (eBioscience Inc., San Diego, CA)
was used as a negative control. Alkaline phosphatase–
conjugated anti-rat immunoglobulin G (Sigma Aldrich,
St. Louis, MO) was used as the secondary antibody, and
signals were detected with Fast-Red (Sigma Aldrich).
Sections were counterstained with hematoxylin. For each
lung section, the number of neutrophils per high power
field were counted by a blinded reviewer in five random
fields at 40X magnification and averaged per tissue sam-
ple. These counts did not distinguish between cells in
various compartments of the lung (e.g. airspace,
interstitial or vascular) but included all cells in
peripheral lung tissue.

In vitro hypoxia-reoxygenation (HR)
Primary murine iNKT cells (isolated as previously
described [3, 16]) and MH-S macrophages were cultured
overnight with/without MSCs or EVs in RPMI media
containing 10% fetal bovine serum and 1% penicillin/
streptomycin (Invitrogen, Carlsbad, CA) at 37 °C and 5%
CO2. For exposure to HR, 24-well culture plates were
placed in a humidified, sealed hypoxic chamber (Billups-
Rothenberg, Del Mar, CA) that was purged with 95% N2

and 5% CO2 for 25 min to establish hypoxia as described
previously [25]. The chamber was then placed in a cell
culture incubator for 3 h after which it was opened and
the culture media was immediately analyzed for O2-
concentration using a blood-gas analyzer (Chiron
Diagnostics). The partial percentage of O2 in the culture
media after hypoxia exposure was consistently found to
be 5% versus 21% in normoxic cultures. Reoxygenation
was achieved by removing the plates from the hypoxic
chamber and placing them in a normoxic, humidified
incubator (37 °C, 5% CO2) for 1 h.

Transendothelial migration assay
Mouse primary lung microvascular endothelial cells
(LMVECs) were cultured overnight in endothelial cell
medium with supplements (Cell Biologics, Chicago, IL).
LMVECs (105 cells) were co-cultured on transwell mem-
brane inserts with/without MSCs or EVs (0.5 × 105) and
exposed to hypoxia/reoxygenation for 4 h to perform

the neutrophil transmigration assay per the manufac-
turer’s instructions (Cell Biolabs, Inc., San Diego, CA).
Polymorphonuclear leukocytes (PMNs) were harvested
from mouse spleens and isolated using a cell isolation
kit (Miltenyi Biotec, Germany). PMNs were labeled with
a fluorescent LeukoTracker dye and incubated with
LMVECs for 4 h. The migratory PMNs at the bottom of
the plate were then counted using a fluorescent plate
reader at 480 nm/520 nm.

Statistical analysis
All statistical analyses were performed using GraphPad
Prism 6.0 software, and data are presented as the
mean ± standard error of the mean. One-way ANOVA
with post-hoc Tukey’s test or Student’s t-test were used
as appropriate to compare experimental groups.
Statistical significance was set at P < 0.05.

Results
Pulmonary dysfunction after IR is attenuated by MSC-derived
EVs
The in vivo hilar ligation model of lung IR was used where
WT mice were subjected to 1 h ischemia followed by 2 h
of reperfusion with or without MSC or EV treatment
(Fig. 1a). Significant pulmonary dysfunction occurred after
IR in WT mice compared to sham as indicated by in-
creased airway resistance (1.87 ± 0.05 vs. 0.72 ± 0.02 cm
H2O/μl/s) and pulmonary artery pressure (12.6 ± 0.32 vs.
5.6 ± 0.15 cm H2O) as well as decreased pulmonary com-
pliance (2.72 ± 0.13 vs. 6.2 ± 0.19 μl/cm H2O) (Fig. 1b-d).
Lungs of mice treated with MSCs or MSC-derived EVs
were protected after IR compared to untreated mice as
shown by significantly decreased airway resistance
(1.1 ± 0.04 and 1.08 ± 0.04 cm H2O/μl/s) and pulmonary
artery pressure (7.3 ± 0.32 and 6.9 ± 0.42 cm H2O) as well
as increased pulmonary compliance (5.1 ± 0.34 and
4.7 ± 0.18 μl/cm H2O). There was no significant difference
in protection offered between MSCs and EVs after IR.
Also, sham mice treated with MSCs or EVs did not
change the lung function parameters compared to
untreated shams (data not shown). These results show
that MSC-derived EVs can mitigate lung dysfunction
after IR and are comparably protective as MSCs
themselves.

Lung injury and inflammation after IR is attenuated by
treatment with MSC-derived EVs
To determine the protective role of EVs on lung injury
after IR, neutrophil infiltration in lung tissue and myelo-
peroxidase (MPO) levels in bronchoalveolar lavage fluid
were measured (Fig. 2a-c). A marked increase in neutro-
phil infiltration and MPO levels occurred in WT mice
after IR which was blocked by treatment with MSCs or
EVs after IR compared to untreated mice. Similarly,
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pulmonary edema (wet/dry weight ratio), and pro-
inflammatory cytokine expression were measured to
evaluate the effect of MSC and EV-mediated effects on
lung edema and inflammation, respectively. We
observed a significant decrease in lung edema (Fig. 2d)
and proinflammatory cytokine (IL-17, TNF-α, HMGB1,
CXCL1, MCP-1, IL-6, MIP-1α, RANTES) production
after treatment with MSCs or EVs in WT mice undergo-
ing IR compared to IR alone (Fig. 3). Furthermore,
expression of keratinocyte growth factor (KGF), prosta-
glandin E2 (PGE2) and IL-10 was increased in the BAL
fluid of mice treated with MSCs or EVs after IR com-
pared to IR alone (Fig. 3). These results confirm that
MSCs or EVs can comparably and effectively attenuate
lung inflammation, edema and neutrophil infiltration
and activation after IR.

MSCs or MSC-derived EVs attenuate hypoxia/reoxygena-
tion-induced activation of iNKT cells and macrophages
Since our previous studies have shown that macrophage-
produced HMGB1 and TNF-α as well as iNKT cell-de-
pendent IL-17 production mediate lung IR injury [3, 4,
25], we investigated the role of MSC-derived EVs in the
mitigation of these pro-inflammatory mediators using
hypoxia/reoxygenation (HR) as an in vitro surrogate
model of IR. HR significantly increased the expression
of HMGB1 and TNF-α in MH-S cells which were
markedly decreased by co-culturing these cells with
either MSCs or EVs (Fig. 4a-b). Similarly, HR-exposed

iNKT cells induced a significant increase in IL-17 pro-
duction which was inhibited by co-culturing iNKT
cells with either MSCs or EVs (Fig. 4c). These results
signify that MSCs and EVs can effectively inhibit im-
mune cell activation and inflammation during lung IR
and demonstrate a direct immunomodulatory function
of MSCs and EVs.

Msc-derived EVs improve lung function and reduces
edema during EVLP of DCD lungs
To investigate the rehabilitative effects of EVs, we used a
murine EVLP model as previously described [17]. Mur-
ine lungs after DCD underwent EVLP with Steen solu-
tion and demonstrated significantly increased pulmonary
compliance and decreased pulmonary artery pressure
versus EVLP with a control KH solution (Fig. 5a-b). Fur-
thermore, EVLP with Steen solution supplemented with
MSCs or EVs significantly improved pulmonary compli-
ance and pulmonary artery pressure when compared to
EVLP with Steen solution alone. In addition, EVLP with
Steen solution significantly reduced pulmonary edema
compared to KH buffer (wet/dry weight) (Fig. 5c). A sig-
nificant decrease in neutrophil infiltration was observed
in mouse lungs treated after EVLP with Steen solution
compared to KH buffer (Fig. 5d-e). Moreover, supple-
mentation of Steen solution with either MSCs or EVs
further ameliorated neutrophil infiltration in the lungs
compared to Steen solution alone. Therefore, in synergy
with functional improvement, EVLP with Steen solution

a b

c d

Fig. 1 Pulmonary dysfunction after IR is attenuated by MSCs and EVs. a Schematic of murine lung IR protocol where pulmonary function was measured
in WT mice after sham surgery or IR. b-d Significant lung dysfunction occurred after IR as demonstrated by increased airway resistance and pulmonary
artery (PA) pressure as well as decreased pulmonary compliance compared to sham controls. Pretreatment with MSCs or EVs resulted in significantly
reduced lung dysfunction after IR. n = 6–8/group; *p < 0.05 vs. all
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supplemented with MSCs or EVs also significantly
reduced lung injury and edema compared to Steen
solution alone.

Msc-derived EVs inhibit neutrophil transmigration in
endothelial cells after hypoxia-reoxygenation
To further investigate the protective role of MSC-derived
EVs in protection against lung edema, primary lung micro-
vascular endothelial cells (LMECs) were exposed to HR
plus cytomix (TNF-α and HMGB1) and neutrophil trans-
migration through the endothelial monolayer was assessed
(Fig. 6a). A significant increase in neutrophil transendothe-
lial migration occurred in LMECs alone after exposure to
HR and cytomix which was significantly attenuated by in-
clusion of MSCs or EVs which were co-cultured with
LMECs (Fig. 6b). These results confirm that neutrophil
transendothelial migration in lung ECs can be effectively
blocked by EVs to protect the endothelial barrier integrity
against pulmonary edema, which is a hallmark of injury in
DCD lungs as well as after IR.

Discussion
In this study, our primary goal was to elucidate the pro-
tective immunomodulatory properties of MSC-derived
EVs in the mitigation of lung IR injury as well as
enhancement of EVLP-mediated reconditioning of DCD
lungs. We observed that EVs offered significant protec-
tion from lung dysfunction, inflammation, edema and
neutrophil infiltration after IR. Furthermore, in vitro
studies demonstrated that EVs can attenuate pro-inflam-
matory secretion of HMGB1, TNF-α from macrophages
and IL-17 production from iNKT cells thereby demon-
strating the direct immunomodulatory capacities of EVs
in immune cell activation during lung IR injury. Finally,
our results indicate that supplementation of Steen solu-
tion with EVs during EVLP enhances the protective and
rehabilitative effects of EVLP which is likely due to the
protective effects of EVs against loss of endothelial bar-
rier integrity.
Despite the favorable safety profile from clinical trials,

MSCs may have the capacity for spontaneous malignant
transformation depending on the in vitro preparation of
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Fig. 2 MSCs or EVs decrease neutrophil infiltration and activation as well as lung edema after IR. a Representative images showing neutrophil immunostaining
in lung sections. Neutrophils are stained red and sections are counterstained with hematoxylin. Scale bars indicate 50 μm. b The number of neutrophils per
high power field (HPF) was quantified from immunostained sections. Neutrophil infiltration was significantly attenuated after IR in mice treated with MSCs or
EVs compared to untreated mice. c Myeloperoxidase (MPO) levels in bronchoalveolar lavage fluid was significantly decreased after IR in mice treated with MSCs
or EVs. d Pulmonary edema (lung wet/dry weight) was significantly decreased after IR in wild-type mice treated with MSCs or EVs compared to untreated mice.
n = 5/group; *p < 0.05 vs. all
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the cells [26–28]. Therefore, a potential therapy that can
harness the beneficial aspects of MSCs would represent
the next therapeutic avenue for the clinical application.
MSC-derived EVs are small vesicles (100–1000 nm)
without nuclei released by the cell, and can offer a viable
cell-free approach to target inflamed and injured tissues.
More importantly, EVs can be as biologically active as
the stem cells themselves in vitro as well as in vivo [23,
29–32]. However, the exact role of EVs in the modula-
tion of immune cell activation and mitigation of lung IR
injury and enhancement of EVLP-mediated recondition-
ing remains to be fully elucidated. In the current study,
we demonstrate that EVs affect alveolar macrophages to
decrease HR-induced HMGB1 and TNF-α secretion as
well as diminishes iNKT cell-dependent IL-17A produc-
tion. We have previously demonstrated that these
immune cells play a critical role in the initiation and
progression of lung IR injury as [3, 4, 25]. A significant
upregulation of anti-inflammatory molecules (IL-10,
KGF, PGE2) was observed after MSC and EVs treatment

which further signifies the protective role of these treat-
ment modalities. Previous studies have also suggested
that elevated expression of KGF and PGE2 are a possible
mechanism for the beneficial aspects of MSCs and EVs
in models of lung injury and experimental sepsis,
respectively [33, 34]. However, the effects of KGF are
unclear in lung injury as a recent human clinical trial
showed no improvement in physiological or clinical out-
comes in ARDS patients that received recombinant KGF
[35]. Our results show that one potential mechanism of
EVs can be via paracrine secretion-dependent attenu-
ation of specific immune cells i.e. macrophages and
iNKT cell activation during lung IR injury. It is plausible
that EVs may upregulate these paracrine factors, i.e.
increased IL-10 expression, by modulating M2 macro-
phages or CD4 + CD25 + FoxP3+ T regulatory cell
activation during lung IR.
Human MSC-derived EVs have been recently shown

to attenuate acute lung injury when administered either
intratracheally or intravenously in experimental studies

Fig. 3 Lung inflammation after IR is attenuated by MSCs or EVs. Proinflammatory cytokine levels (IL-17, TNF-α, HMGB1, CXCL1, MCP-1, IL-6, MIP-1α and
RANTES) were significantly attenuated in BAL fluid after IR in mice treated with MSCs or EVs versus IR alone. Anti-inflammatory cytokine (IL-10) expression
as well as keratinocyte growth factor (KGF) and prostaglandin E2 (PGE2) levels were significantly increased in BAL fluid after treatment with MSCs or EVs
after IR compared to IR alone. n = 5/group; *p < 0.05 vs. all; #p < 0.05 vs. IR
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[36–38]. The presence of human MSC and exosome-
derived mitochondrial DNA in mouse lung tissue can be
detected up to 28 days post injection after a single
intratracheal or intravenous dose [38]. On the contrary,
intratracheal administration of MSCs might be associ-
ated with rapid degradation and poor retention of the
cells into the lung alveolar space, thereby impeding its
complete biological effect [39]. These findings support
the premise of our study focusing on EVs-derived from
MSCs, rather than using MSCs themselves, as a thera-
peutic tool which can be administered safely via different
routes thereby circumventing the issue of cell retention
and viability. EVs comprise of both exosomes and micro-
vesicles, either of which may contribute to the protective
effects observed in lung IR injury, and are increasingly
recognized as important mediators of cellular communi-
cation due to their capacity to merge with and transfer
bioactive molecular contents to the recipient cells. Such
factors include growth factors and their receptors, prote-
ases, adhesion molecules, signaling molecules, as well as
DNA, mRNA, miRNA and organelles (e.g. mitochon-
dria) [40]. EVs have also been reported to shuttle specific
patterns of miRNAs to modulate cell signaling and
biological responses [29, 41, 42]. In addition, miRNAs
have been implicated in dysregulation of gene expression
in signaling pathways associated with IR injury and hu-
man lung transplantation [43–47]. In a recent study, Yu
et al. demonstrated decreased cardiomyocyte apoptosis

via translocation of miR-221, a potent anti-inflammatory
miRNA, by MVs [48]. Furthermore, recent studies have
demonstrated that miRNAs and MSCs can tightly regu-
late each other to alter the expression profile of key
signaling pathways [48–52]. One such candidate is
miR-206 which we have shown to be significantly upreg-
ulated in lung tissue after IR [53]. It is plausible that spe-
cific miRNAs contained within the EVs are crucial
mediators of transcriptional regulation of inflammatory
cytokine secretion of activated target immune cells like
macrophages and iNKT cells in the context of lung IR in-
jury. Future studies using specific antagomiRs (anti-sense
miRNAs) and protectomiRs (overexpressing miRNAs) will
help decipher the mechanistic pathways involved in
EV-mediated protective effects via specific miRNAs in
lung IR injury.
Previous studies from our group and others have shown

that EVLP is a novel technique of normothermic lung
perfusion using a “lung box” that allows for both the func-
tional assessment of donor lungs as well as offering a plat-
form for the rehabilitation of these lungs ex vivo prior to
transplantation [12–14, 54–56]. However, this technology
is in its infancy, and many questions remain regarding its
potential application for the delivery of anti-inflammatory
or immunomodulatory therapies, and its ability to re-
habilitate marginal donor lungs [13, 15]. Recent reports
demonstrate the potential of MSCs and EVs to restore
alveolar fluid clearance in rejected donor lungs for

a

c

b

Fig. 4 MSCs and EVs inhibit macrophage and iNKT cell activation after HR. a-b MH-S (alveolar macrophages) cells were exposed to hypoxia/reoxygenation
(HR) and demonstrated a significant increase in HMGB1 and TNF-α production compared to normoxia (Norm) which was significantly attenuated by
treatment with MSCs or EVs. c Similarly, HR-exposed iNKT cells produced increased levels of IL-17 compared to normoxia which was significantly
attenuated by treatment with MSCs or EVs. n = 5/group; *, p < 0.05 vs. all
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transplantation [37, 57]. However, it is not well under-
stood how they exert their protective phenotype and
which specific lung cells are the targets of the paracrine or
intercellular interactions involving EVs. Our results using
the murine EVLP model demonstrate that EVs enhance
EVLP-mediated protection for rehabilitation of DCD
lungs by improving function and decreasing edema. Since
endothelial barrier permeability is essential to maintain
leukocyte trafficking and regulate pulmonary edema, our
results indicate that EVs can effectively mitigate neutro-
phil transendothelial migration. This points to an import-
ant mechanism by which EVs can maintain endothelial
barrier integrity and reduce edema in DCD lungs. These
crucial findings demonstrate the ability of MSC-derived
EVs as a viable therapeutic option to enhance the ability of
EVLP-mediated reconditioning of functionally compromised

DCD lungs for successful transplantation thereby offering a
possibility of increasing lung donor pool size.
There are few limitations of the current study. First,

the murine IR model recapitulates IR injury but does
not involve murine lung transplantation. However, the
acute lung injury and inflammation as well as the immu-
nobiology observed in the hilar ligation model are con-
sistent with biologic processes seen in murine and
human lung transplant studies [58, 59]. Secondly, EVLP
in the murine model was performed for 1 h compared
to 4 h which is routinely performed in clinical EVLP
protocols. Although 1 h of EVLP displayed significant im-
provements in the murine lungs, it is plausible that a lon-
ger time period of EVLP with repeated supplementation
of EVs could result in better outcomes for the human
lungs. This is specifically relevant for downregulation of

a b

c

e

d

Fig. 5 EVLP-directed delivery of MSCs or EVs enhances lung function and inhibits edema in DCD lungs. a-b EVLP with Steen solution significantly
increased pulmonary compliance and reduced pulmonary artery (PA) pressure compared to EVLP with Krebs Henseleit (KH) buffer. Supplementation of
Steen solution with MSCs or EVs provided enhanced improvement in lung function after EVLP compared to Steen solution alone. c Pulmonary edema
was significantly decreased with MSC or EV-treatment during EVLP with Steen solution compared to EVLP with Steen solution alone. d Representative
images showing neutrophil immunostaining in lung sections. Neutrophils are stained red and sections are counterstained with hematoxylin. e The
number of neutrophils per high power field (HPF) was quantified from immunostained sections. Neutrophil infiltration was significantly attenuated
after EVLP with Steen solution compared to KH. Supplementation of Steen solution with MSCs or EVs further decreased neutrophil infiltration
compared to Steen solution alone. n = 5–10/group; *, p < 0.05 vs. KH; #p < 0.05 vs. Steen
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gene expression and alteration of cytokine milieu from a
proinflammatory profile to anti-inflammatory environment
in the lungs during EVLP and subsequent transplantation.

Conclusions
In summary, we demonstrated that MSC and EVs produce
similar improvements to injured lungs during EVLP and
after IR. A key aspect of EV-mediated protection is that
not only involves direct modulation of immune cells such
as macrophages and iNKT cells during IR, but also have
the ability to protect against increased microvascular per-
meability and resultant edema during EVLP. Since innate
immunity has been implicated in the development of
acute allograft dysfunction in human lung transplantation,
we show that EVs are MSC derivatives that can be
effectively used in the immunomodulation of lung
inflammation after IR. We further propose that EVs can
be an effective supplement for Steen solution using the
EVLP platform to deliver these biologically active
MSC-derivatives in the rehabilitation of marginal donor
lungs for successful transplantation. Future studies using
modified EVs employing novel strategic molecules i.e.
miRNAs can offer possible therapeutic avenues to further
explore the clinical translation of these cell-free secretory
vesicles in the regeneration of tissue damage in patients
undergoing lung transplantation.
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significant increase in neutrophil transmigration, which was significantly attenuated by co-cultures with MSCs or EVs. n = 8/group; *, p < 0.05 vs. all
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