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Abstract

are also reviewed.

Since the initial discovery of the oncogenic activity of WNT ligands our understanding of the complex roles for
WNT signaling pathways in lung cancers has increased substantially. In the current review, the various effects of
activation and inhibition of the WNT signaling pathways are summarized in the context of lung carcinogenesis.
Recent evidence regarding WNT ligand transport mechanisms, the role of WNT signaling in lung cancer angiogenesis
and drug transporter regulation and the importance of microRNA and posttranscriptional regulation of WNT signaling

Background

Lung cancer (LC) is one of the deadliest forms of cancer
worldwide [1, 2] affecting both genders [3, 4]. The two
main types of LC-s are small cell lung cancer (SCLC)
and non-small cell lung cancer (NSCLC). SCLC repre-
sents 15-20% of all LC cases and is the more aggressive
form; it metastasizes early and therefore surgical inter-
vention is rarely a therapeutic option [5]. On the other
hand, NSCLC denotes 80-85% and can be further classi-
fied into adeno (AC)-, squamous cell (SCC) -, large cell
(LCC) and various mixed type carcinomas [6]. Unfortu-
nately, the majority of NSCLC patients are diagnosed at
an advanced stage of the disease narrowing down thera-
peutic options and leading to a limited median survival
of about 18 months [7]. Recent studies have confirmed
that therapy-surviving cancer stem cells (CSC) play a
cardinal role in drug resistance and therefore, rapid
progression of the disease [8]. While the carcinogenic
process in the lung can be traced back to genetic muta-
tions, malfunctioning signaling pathways are also highly
important modulators of tumor formation and individual
features of the disease.

An increasing amount of evidence has shown that the
WNT pathway is one of the main signaling pathways
involved in maintaining lung homeostasis and that aberrant
activation of this pathway may underlie several debilitating
lung diseases. Similarly, to other human cancers, WNT
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signaling plays an important part in lung carcinogenesis.
Interestingly, however, while some epigenetic changes that
affect WNT pathway inhibitors are similar to those seen in
other malignancies, genetic mutations of the WNT path-
way are uncommon in NSCLCs [9].

This review will summarize some novel aspects of
WNT signaling, what is currently known about WNT
associated LC pathogenesis as well as some important
features of WNT mediated events in LC therapies.

The complexity of WNT signaling - Canonical and
non-canonical WNT signaling pathways

WNT proteins are secreted glyco-lipoprotein morphogens
that are required during lung development for cell-fate spe-
cification, cell proliferation and the control of asymmetric
cell division. In adults, WNT signaling is essential for stem
cell maintenance for regulation of tissue homeostasis [10].
Most of the 19 WNT ligands and the 10 main receptors,
Frizzleds (FZD) that have been identified in mammalian
cells can be identified in the human lung [9, 11]. The
two main different WNT pathways include i) the beta-
catenin-dependent or canonical pathway, and ii) the
beta-catenin-independent or non-canonical pathways
including the planar cell polarity (PCP) and the WNT/
Ca2+ pathways (Fig. 1).

Canonical or beta-catenin dependent WNT signaling.

In the lung, the role of WNT signaling has been exam-
ined in detail by multiple studies which mostly focus on
beta-catenin-dependent signaling. In the canonical pathway
during the absence of WNT, a beta-catenin destruction
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Fig. 1 Multiplicity of canonical (a) and non-canonical (b) WNT pathways. Binding of WNT ligands to individual or different combination of their re-
ceptors including FZD and LRP5/6, or FZD in combination with ROR1, ROR2 or RYK activate multiple beta-catenin dependent (a) and beta-

complex is assembled, consisting of: Axis inhibition protein
(AXIN), adenomatous polyposis coli (APC), and glycogen
synthase kinase 3-beta (GSK-3-beta) whereby beta-catenin
is phosphorylated at serine and threonine sites and then
proteolytically degraded [9, 12]. If WNT is available to bind
to one of the ten FZD receptors then a receptor complex
between WNT, FZD, lipoprotein receptor—related protein
(LRP), Disheveled (DVL), and AXIN is formed [9]. Within
this active complex, DVL becomes phosphorylated and
eventually inhibits GSK-3-beta resulting in reduced
phosphorylation and consequently stops the proteolytic
destruction of beta-catenin. Beta-catenin subsequently
accumulates in the cytoplasm. The cytoplasmic beta-
catenin can then migrate to the nucleus and forms a
complex with members of the T-cell factor (TCF)/
Lymphoid enhancer-binding factor (LEF) family of tran-
scription factors and transcriptional coactivators including
cAMP response element-binding protein (CREB)-binding
protein (CBP) and p300. The many target genes include
c-myc and cyclin D1 [9]. The transmembrane receptor
tyrosine kinase orphan receptor ROR2 (which is im-
portant in non-canonical WNT signaling) may also be
involved in canonical signaling via interactions with
FZD2 [13]. ROR2 [14], as well as the other WNT-binding

receptors such as receptor-like tyrosine kinase RYK [15],
can therefore act as regulatory receptors for the beta-
catenin dependent WNT signaling.

Non-canonical WNT signaling

The two non-canonical WNT pathways are activated by
several WNT ligands including WNT4, WNT5a, WNT7a,
WNTI11 and WNT16 [16-18]. Activation of the PCP
signaling pathway, for example by WNT11, leads to the
activation of the small GTPases RhoA (RAS homologue
gene-family member A) and RAC1 (Ras-related C3 botu-
linum toxin substrate 1). This, in turn, activates the stress
kinases JNK (Jun N-terminal kinase) and ROCK (Rho-
associated coiled-coil-containing protein kinase 1) that
initiates remodeling of the cytoskeleton thus leading to
changes in cell adhesion and motility [19-21].

The best known activator of Ca2 + —dependent WNT
signaling is WNTb5a. It triggers signal transduction via
DVL-3, heterotrimeric G proteins and phospholipases
[22]. Activation of this pathway leads to a transient
increase in cytoplasmic free Ca2+ level that in turn can
activate the protein kinase C (PKC) family, CaMKII
(calcium calmodulin mediated kinase II) and the phos-
phatase calcineurin [23]. Apart from the well-known
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Ca2 + —dependent WNT signaling pathway, a novel,
FYN tyrosine kinase and Signal Transducer and Activa-
tor of Transcription (STAT3) transcriptional regulator-
mediated non-canonical WNT signaling pathway has
also been identified in tumor cells [24].

Although WNT signaling pathways seem distinct, WNT
proteins are promiscuous and can share receptors and
regulate the expression of WNT signaling molecules, as
well as modify WNT signaling pathway activity. Non-
canonical WNT signaling, for example, represses canonical
WNT activity via various mechanisms involving PKC-
alpha, CaMKII-Transforming growth factor beta-Activated
Kinase (TAK)1, Nemo-like Kinase (NLK), Siah2 E3 ubi-
quitin ligase or calcineurin-NFAT [21, 25-28]. Reports
describing activation of the canonical pathway by non-
canonical WNT ligands also exist [21, 29] making WNT
signaling difficult to decipher and even more difficult to
modulate in cancer therapy.

Functional variations of WNT signaling among cell types

Functional analyses of the canonical and non-canonical
WNT pathways revealed that the canonical, PCP and
Ca2+ pathways regulate multiple cellular activities in the
lung that are dependent on the specific cellular context.
In most cell types, non-canonical WNT signaling regu-
lates canonical WNT activity, which is also critical for
many aspects of lung biology. In response to canonical
WNT signaling for example, beta-catenin/TCF/LEF
signaling is activated in different lung cell types including
the primordial epithelium (PE), alveolar epithelium (AE),
and adjacent mesenchyme [30]. Human tissue studies have
highlighted that in the developing lung, beta-catenin is
found mainly in the peripheral epithelium, LEF1 expression
is detected in alveolar and bronchial epithelium, while
TCF4 is observed in epithelium and mesenchyme [31].
Tissue-specific deletion of beta-catenin in lung epithelial
cells of test animals led to disrupted lung morphogenesis,
lack of differentiation of the peripheral lung, enhanced
formation of the conducting airways and consequently to
death at birth due to respiratory failure [32]. Furthermore,
beta-catenin phosphorylation can also lead to respiratory
defects. Phosphorylation of beta-catenin at tyrosine 489
stimulates its nuclear localization and fibroblast activation
which is a characteristic feature of bronchopulmonary dys-
plasia [33]. While deletion of the non-canonical WNT5a
causes hyper-thickening of the mesenchymal interstitium
and over-branching of the epithelial airways [34], overex-
pression of WNT5a in the epithelium disrupts epithelial-
mesenchymal interaction and causes malformations in both
the airway epithelium and the surrounding mesenchyme
[35]. WNT5a also has a role in epithelial-mesenchymal
transition (EMT) in LC; where expression of WNT5a and
its receptor FZD2 have an inverse correlation with the
expression of markers of epithelial differentiation, such as
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EpCAM, E-cadherin or keratin. Expressions of WNT5a
and FZD2 positively correlate with the expression of
vimentin, N-cadherin and fibronectin, which are well-
known mesenchymal markers and are used to identify
EMT during carcinogenesis [36].

Consequently, constitutive activation of either the
canonical or the non-canonical WNT pathways in the
developing lung can result in non-differentiated, dysfunc-
tional lung phenotypes that resemble certain subtypes of
LCs [37]. In support of this, investigation of constitutive
activation of beta-catenin has shown that hyperactive
canonical WNT signaling may channel NSCLC carcino-
genesis towards the adenocarcinoma subtype [38].

WNT signaling in LC

Various LC subtypes are believed to originate from stem
cells in different histological parts of the lung. Adenocar-
cinoma, one of the NSCLC subtypes, has been reported
to develop from various progenitor cells including alveo-
lar type (AT) II cells, Clara cells, and bronchioalveolar
stem cells (BASCs) [39—41]. The other NSCLC subtype,
squamous cell carcinoma, initiates from basal cells [42]
whereas SCLC is derived from pulmonary neuroendocrine
cells (PNECs) [43]. Studies using genetic manipulation,
however, have proved that such “histologically localized
stem cell origin” approaches in LC are oversimplified.
Overexpression of RAS for example in PNECs, a cell type
thought to be the origin of SCLC leads to adenocarcinoma
[44], while inactivation of p53 and Rbl in ATII cells
results in SCLC instead of adenocarcinoma [45]. Such
studies indicate that driver mutations are more important
than the cell of origin.

Murine cancer models

In murine models, activation of WNT signaling is associ-
ated with increased carcinogenic potential [46] especially if
activation of canonical WNT signaling is triggered parallel
with KRAS mutation [47, 48]. This process is also observed
in human LC [49]. In human lung adenocarcinoma cases
KRAS mutations are missense mutations which introduce
amino acid substitution at one of the positions 12, 13, or
61. The result of these mutations is constitutive activation
of the KRAS signaling pathway and it has been shown that
if activation of KRAS and WNT signaling are combined,
the joint activation leads to increased tumor size [49].
While tumors in WNT1 transgenic mice regress as
WNT signals are blocked, tumor growth becomes WNT-
independent in p53-deficient mice [50]. In the KRAS
G12D substitution induced lung adenocarcinoma mouse
model, WNT signaling enhances proliferation and EMT.
Also, if down-regulation of SOX2 and upregulation of
SOX9 and GATA6 simultaneously accompany KRAS
mutation [51] then alterations in WNT signaling do not
modulate the final outcome [48].
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WNT pathway mutations differ in LC from other cancer types

The most studied WNT pathway mutations in cancers
include inherited and sporadic mutations in APC and
beta-catenin genes. Since APC is part of the degradation
scaffold for beta-catenin, mutations of APC result in
reduced degradation and increased nuclear accumulation
of beta-catenin, leading to activation of target oncogenes
including cyclin D1 and c-myc [52]. Such mutations are
not universal in all cancer types and while APC mutations
occur more frequently in cancers of the colon, the lung is
rarely affected by such mutations. A constitutively active
beta-catenin-LEF1 fusion protein under tissue specific
promoter control has been designed to express mutant,
degradation-resistant beta-catenin to mimic the effect of
mutation in the degradation scaffold [37]. The fusion pro-
tein was used to mimic the constitutive activation of beta-
catenin which has also been described in cancers of the
lung. Increased levels of beta-catenin [53, 54] and loss of
heterozygosity on chromosome 5q, which contains the
APC locus, have been observed in LC types (Table 1).
While specific site mutations of the APC [55] or the beta-
catenin genes are rare in LCs, LC types are much better
characterized by dysregulation of WNT ligand transcrip-
tion [56—58]. For example, loss of WNT7a mRNA is a fre-
quent feature of some LC cell lines and primary tumors
[59]. NSCLC cells transformed with WNT7a show inhib-
ition of anchorage independent growth via the JNK/AP1
dependent PCP signaling pathway [60]. In some other
NSCLCs, elevated levels of WNT1 [61] and WNT2 [62]
have been reported. Experimental inhibition of WNT2
induced signaling leads to down-regulation of the anti-
apoptotic gene, Survivin and consequently initiates apop-
tosis [62]. The Sox2 gene coding the SOX2 transcription
factor that is essential for maintaining self-renewal is also
highly expressed in the main histological types of LCs
[63]. Inhibition of SOX2 expression in lung adenocarcin-
oma induces apoptosis of tumor cells [64] and down-
regulates WNT1/2, Notchl, and c-myc gene expression.
On the other hand, stabilization of beta-catenin signaling
blocks Clara cell differentiation to ciliated cells [65], while
deletion of beta-catenin in basal cells is able to suppress
proliferation and triggers apoptosis [66]. Moreover, auto-
crine insulin-like growth factor-I (IGF-I) signaling induces
WNT5a dependent trans-differentiation of ATII cells to
ATTI-like cells [67].

Shifts between canonical and non-canonical WNT signaling
modulate the carcinogenic process.

A shift from canonical to non-canonical WNT signaling,
or vice versa, has also been reported in certain NSCLS
subtypes. Up-regulation of the canonical WNT7b was
detected in adenocarcinomas, while increased expression
of WNT5a was found in primary squamous cell carcin-
omas [68]. Additionally, although the metastatic stage of
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any tumors are associated with EMT [69] and generally
linked to increased beta-catenin-dependent signaling
[70], the non-canonical WNT5a, which also regulates
fibroblast growth factor (FGF) 10 and sonic hedgehog
(SHH) expression [35], is overexpressed in lung metasta-
ses [71]. Matrix metalloproteinases, which are essential
for tissue remodeling and are elevated in invasive cancers
[72, 73], are target genes of both canonical and non-
canonical WNT signaling pathways.

It is not only the WNT ligands, but also various signaling
molecules that are dysregulated in LCs. For example, over-
expression of DVL-3, a signal transducer molecule and posi-
tive regulator of WNT signaling pathways, was reported in
75% of primary NSCLCs compared to autologous matched
normal tissue controls [74]. Down-regulation of WNT path-
way antagonists, like Dickkopf-3 (DKK-3) [75], WNT inhibi-
tory factor (WIF) [76, 77] and secreted Frizzled-Related
Protein (SFRP) [78], have also been reported in various sub-
types of LCs (summarized in Table 1).

Genome-wide association studies and LC susceptibility

Genome-wide association studies recently identified three
LC susceptibility loci in chromosome regions 15q25, 5p15
and 6p21 [79]. Importantly, the nicotinic acetylcholine re-
ceptor (nAChR) subunit genes are located on the 15q25
chromosomal region. As nAChRs are expressed on bron-
chial cells and bind tobacco-related carcinogens with higher
affinity than nicotine itself, therefore it is not surprising
that the risk of LC is drastically increased in smokers
[80]. Nicotinc AChRs in general, and alpha7 nAChRs in
particular have been linked to nicotine-stimulated prolifera-
tion of lung carcinoma cells [81]. The nicotine induced up-
regulation of WNT/PPAR-gamma (peroxisome proliferator
activated receptor gamma) signaling can also regulate
cigarette smoke-induced trans-differentiation of lung fibro-
blast to myofibroblasts that participate forming the cancer-
associated stroma [82]. The BAT3 gene on the 6p21 locus
affects p53 function and the cellular response to stress and
apoptosis [83]. The same locus has also been associated with
increased LC risk [80]. The telomerase reverse transcriptase
(TERT) is located on the 5p15 locus and its modifications
can cause aberrant proliferation and increased LC risk in
both smokers and non-smokers [84]. The TERT-mediated
developmental programs are similar to Myc and WNT-
mediated responses and therefore, the increased risk for pro-
liferative diseases is not surprising [84]. Interestingly, a
genome-wide association study conducted on people who
had never smoked revealed a strong correlation between the
reduced transcription level of the glypican-5 (GPC5) gene
and genotypes of the replicated SNP (rs2352028 at 13q31.3)
in lung adenocarcinomas. GPC5 is a member of the glypican
gene family of heparin sulphate proteoglycans that control
the signaling pathway of WNT, hedgehog (HH), fibroblast
growth factors (FGFs), and bone morphogenetic proteins
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Table 1 WNT ligands and signaling molecules associated with LC
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Gene Function Mutation type/level of expression References
APC Part of beta-catenin destruction complex No mutation [184]
Suppressed expression by promoter methylation
AXIN Negative regulator of WNT signaling. No mutation [185]
Promotes beta-catenin phosphorylation Reduced expression
which leads to beta-catenin degradation
CTNNB1 Main component of canonical signaling, Missense mutation of exon 3 results in substitution [38]
it serves as a transcription activator, of Ser/Thr residues
binding to TCF/LEF family
No mutation [186]
Increased expression in cytoplasm and nuclear
compartment associated with poor prognosis
DKK1 Binding to LRP5/6 leads to its endocytosis Increased expression detected in serum [187]
and inhibition of canonical signaling
DKK3 Secreted WNT antagonist No mutation [188]
Reduced expression
DVL1 Required for FZD induced signaling No mutation [189]
pathway activation Increased expression associated with advanced stages
DVL2 No mutation [189]
Increased expression is associated with advanced stages
DVL3 No mutation [190]
Increased expression
FzD8 Receptor for WNT proteins No mutation [191]
Increased expression
GSK-3-beta Phosphorylates beta-catenin resulting No mutation [192]
in beta-catenin degradation Ser9 phosphorylation is associated with poor prognosis
SFRP1 Inhibits WNT signaling by binding to No mutation [193]
WNT proteins Reduced expression regulated by promoter hypermethylation
TCF4 Transcription factor that complexes No mutation [194]
with beta-catenin upon activated Increased expression in poorly differentiated tumor
canonical WNT signaling
WIF1 Binding to WNT proteins to prevent No mutation [195]
their interaction with receptors Increased expression
WNT1 Non-canonical WNT ligand No mutation [196]
Increased expression in NSCLC
WNT11 WNT ligand which can activate both No mutation [68]
canonical and non-canonical WNT pathway Increased expression
WNT2 Canonical WNT ligand No mutation [197]
Increased expression
WNT3 Canonical WNT ligand No mutation [107]
Increased expression
WNT5A Non-canonical WNT ligand No mutation [134]
Increased expression in SCC
WNT7A Non-canonical WNT ligand No mutation [198]
Reduced expression due to promoter hypermethylation
WNT7B Canonical WNT ligand No mutation [199]

Increased expression in AC

Most of the WNT pathway associated molecules are not mutated but the WNT signaling pathway is deregulated

(BMPs) which are all important regulators of cellular prolif-
eration and differentiation [85].

WNT ligands are “posted” in lipid envelopes

Gradients of WNT proteins are essential for tissue
maintenance. Importantly, WNT gradients lead to differ-
ent gene expressions at certain points of the gradient in

the tissue. Such concentration differences generated
along the gradient might even explain how designated
“canonical” and “non-canonical” WNT proteins can
alternate between signaling pathways. How the gradient
is maintained is not yet entirely clear. Due to their lipid
residues, WNT proteins are highly hydrophobic; they
attach tightly to cell membranes [86] and then insert
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themselves into the lipid bilayer. If the lipid residues are
removed from the amino acid backbone, WNT proteins
become biologically inactive [87]. Due to their lipid modi-
fications, WNT ligands understandably cannot be directly
secreted into aqueous body fluids (Fig. 2). Recent studies
indicate that WNT signals are most likely to be trans-
duced via lipid-coated particles including extracellular
vesicles [88]. For decades, extracellular vesicles or exo-
somes have been disregarded as a potential route of cellu-
lar communication, but recently they have leaped into the
center of interest. Lipid envelopes can influence long-
range WNT signal gradients [89] via Reggie-1/flotillin-2
(FLOT?2) [90], a major component of lipid microdomains
in membranes that can promote WNT secretion and
diffusion [91]. Recent studies have revealed that high
FLOT?2 expression both mRNA and protein level pre-
dict poor outcomes in NSCLC [92]. Such findings indi-
cate that it is not just differential WNT expression but
also WNT concentration at various points of its gradi-
ent, membrane availability of WNT ligands and endo-
cytosis of specific WNT molecules can change during
carcinogenesis, thus modulating cellular activity and
potentially drug response.
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Posttranslational modifications of WNT pathway
molecules in regulation of LC

Secreted inhibitors and activators that regulate complex
interactions within the complicated molecular network
of WNT signaling [93] are under intense investigation.
Epigenetic modulation, such as DNA methylation or
histone deacetylation contributes to the deregulation of
WNT signaling pathways. Down-regulation of several
WNT signaling inhibitors have been reported in NSCLCs
including AXIN, sFRPs 1-5, WIF-1, DKK-1, DKK-3, human
homolog of Dapper (HDPR)1, runt-related transcription
factor (RUNX)3, APC, caudal type homeobox (CDX)2, Dap-
per homolog (DACT)2, transmembrane protein (TMEM)88,
Chibby, naked cuticle homolog (NKD1), empty spiracles
homeobox (EMX)2, inhibitor of growth family (ING)4, and
miR-487b. Although the mechanisms are not yet entirely
clear, methylation and hypermethylation are the likely causes
of reduced inhibitor levels [94, 95]. DACT 2 is one of
the Dact gene family members, which inhibit canonical
WNT signaling. If expression of DACT2 is lost due to
hypermethylation of its promoter, then beta-catenin
dependent signaling is no longer suppressed and un-
controllable proliferation ensues [96]. Similarly to
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DACT2, GPC5 is downregulated in lung adenocarcinomas
due to significant promoter hypermethylation. The
methylation level of GPC5 promoter negatively corre-
lates with its transcriptional expression and beta-
catenin dependent signaling [97]. Restoration of its
WNT pathway inhibitory function results in reduced
WNT signaling, decreased cell proliferation, and in-
creased apoptosis. Apart from promoter methylation
of WNT pathway inhibitors, methylation of the beta-
catenin promoter has also been described that leads to
loss of beta-catenin protein expression and a poor
prognosis in NSCLC patients [98].

Epigenetic modulation of the “anti-aging” Klotho [99]
is also significant in carcinogenesis [100-102]. Klotho
can act as an antagonist of the beta-catenin-dependent
WNT signaling pathway; therefore overexpression of
Klotho can reduce active beta-catenin and target c-myc
and cyclin D1 levels [102], resulting in reduced prolifera-
tion. Supporting the above findings, down-regulation of
Klotho increases cisplatin resistance while Klotho expres-
sion can attenuate resistance of LC to cisplatin-based
chemotherapy and increase apoptosis [103]. Clinical sur-
vival analysis of various cancer types, however, has not
demonstrated unequivocal involvement of Klotho in the
carcinogenic process and it is still unclear whether the
inconsistent role of Klotho in carcinogenesis is dependent
on epigenetic variability or other factors [104, 105]. Recent
discovery has exposed that apart from histone or DNA
methylation of WNT signaling regulators, arginine methy-
lation of the DVL-associated G3BP2 protein is a necessary
post-translational modulation for LRP6 phosphorylation
to initiate WNT3a induced canonical beta-catenin signal-
ing from the receptor complex [106]. As WNT3a is one of
the WNT ligands that promotes LC progression [107],
investigation of methylation dependency of signaling mol-
ecules in the canonical signaling cascade can open up new
therapeutic targets for drug discovery.

Methylation, however, is not the only posttranslational
modification that modulates WNT signaling. AXIN, for
example, can be destabilized by tankyrases [108] that
regulate protein interactions and protein stability by
poly-ADP-ribosylation. The post-translational modification
of the N-terminal region of histone, by acetylation, methy-
lation, ubiquitination, phosphorylation, or sumoylation, reg-
ulates DNA transcription, replication and repair. Recent
epigenetic and transcriptomic profiling of human primary
alveolar epithelial cells during in vitro differentiation re-
vealed interactions amongst known regulatory pathways of
distal alveolar epithelial cell differentiation. Interactions
amongst the WNT signaling pathways, the transforming
growth factor beta (TGF-beta) pathway, the hepatocyte nu-
clear factor 4 alpha (HNF4A) and the retinoid X receptor
(RXR) signaling pathway [109] were strongly dependent on
posttranslational changes.
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MicroRNAs targeting WNT signaling and LC

The non-coding microRNAs or miRNAs suppress gene
expressions by inhibiting translation or increasing deg-
radation of target gene mRNAs [110]. miRNAs, simi-
larly to WNT proteins and various lipophilic molecules
are delivered to target cells mostly in extracellular vesicles
that are shed into body fluids from a great variety of cells
for secure “message” delivery. For diagnostic purposes,
collecting cancer specific miRNAs from extracellular vesi-
cles rather than serum is more reliable, as the extracellular
vesicle protects miRNAs from degradation [111].

Several miRNAs have been identified in association
with various types of LCs in recent years (Table 2). For
example, down-regulation of miR-29 and let-7 were
shown to be DNMT3A3B [112] and KRAS [113] targeting
miRNAs, respectively, allowing upregulation of their targets.
Meanwhile, KRAS, MYC, WNT5a, BMI1, and SUZ12 are
targeted by miR-487b, which is down-regulated in certain
types of LCs supporting the carcinogenic process [114].
Down-regulation of miR-214 levels was documented in
cancer stem cells (CSCs) leading to stem cell marker expres-
sion including Nanog, OCT4, and SOX2 [115]. Amongst
miR-214 targets in lung adenocarcinomas several beta-
catenin-interacting proteins were also found [115], while
beta-catenin itself was rather affected by miR-3619-5p. miR-
3619-5p has been documented to suppress tumor growth in
A549 and H460 NSCLC cell lines via binding to the 3'-UPR
region of the beta-catenin gene [116]. Additionally, overex-
pression of miR-376¢ inhibits the growth of NSCLC cells via
a WNT-related orphan nuclear receptor, the liver receptor
homolog-1 (LRH-1) [117].

Table 2 miRNAs regulating WNT signaling in LC

microRNA Regulation References
miR-34a Inhibits beta-catenin activity [200]
miR-17-92 Increases beta-catenin activity [201]
miR-21 Increases beta-catenin expression [202]
miR-27b Upregulated by WNT5a, inhibits vascular [134]
branching
miR-29 Downregulates beta-catenin expression [203]
miR-31 Decreases WNT antagonists and increases [119]
WNT5a
miR-191 Increases beta-catenin pathway activation [204]
miR-374a Targets WNT5a [205]
miR-376¢ Suppresses canonical WNT signaling [117]
miR-410 Activates beta-catenin pathway [118]
miR-487b Reduces WNT5a activity [114]
miR-544a Downregulates GSK3beta [206]
miR-574-5p Enhances beta-catenin phosphorlyation [207]
miR-708 Increases canonical WNT signaling [208]
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In contrast, miR-410 can accelerate tumor growth by
suppressing the expression of SLC34A2, a type 2b
sodium-dependent phosphate transporter (NaPi-1Ib) that
is located in the apical membrane of ATII cells. Decreased
NaPi-IIb levels have been shown to activate the WNT/beta-
catenin pathway leading to enhanced tumor growth and in-
vasion [118]. Perhaps not surprisingly, miRNA expression is
also regulated by one of the primary causes of LCs, cigarette
smoke. miR-31 for example that targets the WNT pathway
inhibitor DKK1 is triggered by cigarette smoke leading to
enhanced tumorigenesis in the lung [119].

Although some miRNAs have not been directly associ-
ated with WNT signaling in NSCLCs, in other tumor types
they have been demonstrated to play important WNT
pathway regulatory function. For example miR-148b sup-
presses tumor growth via inhibiting canonical WNT signal-
ing in hepatocellular carcinoma [120], while miR-499 can
stimulate blood vessel formation via WNT signaling activa-
tion in various other tumor types [121]. Their precise role
in LCs awaits further investigation.

WNT signaling in LC angiogenesis

WNT signaling has a fundamental role in both normal and
tumor angiogenesis [122]. The canonical WNT pathway
can regulate cadherin junctions in endothelial cell con-
nections and therefore vascular permeability [123, 124].
Additionally, WNT signaling controls trans-endothelial
migration of tumor cells via beta-catenin-dependent
regulation of endothelial VE-, E- and N-cadherin ex-
pression [123-125]. The WNT-Ca2+ pathway -which is
often referred to as a pro-angiogenic signaling pathway- in-
duces endothelial cell proliferation and enhances capillary
network formation, while activation of the PCP WNT path-
way coordinates endothelial cell migration [126]. Activation
of the PCP pathway via FZD4 impairs vascular morphogen-
esis [127], while activation of downstream components,
such as DAAM-1 can reverse the changes [126]. The
WNT/PCP pathway is responsible for impaired pericyte
motility and as pericytes are important components of
vessel formation and integrity, the balance of WNT
pathways are important in forming and maintaining a
functional lung vasculature [128]. Any imbalances in
canonical and non-canonical WNT signaling could, there-
fore, modulate blood vessel formation in tumors and con-
sequently affect therapeutic responses.

Induction of neovascularization - Similarities and
differences in LC subtypes

Cancer cells can induce neovascularization when the
solid tumor reaches more than 2 mm in diameter [129]
and hypoxia occurs in the inner center of the tumor.
Intra-tumor angiogenesis is best characterized by micro-
vessel density. Extensive vascularization and higher vessel
density indicate disease progression and predict a poor
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outcome in NSCLCs [130]. Amongst several other pro-
angiogenic factors like Hypoxia-Inducible Factor (HIF)lal-
pha [131], Vascular Endothelial Growth Factor (VEGF)-A
is of vital importance for endothelial cell proliferation and
motility [132]. The pro-angiogenic factors are under com-
plex molecular regulation. VEGE-A for example is docu-
mented to be under beta-catenin-dependent, canonical
WNT control via a PPAR-gamma dependent mechanism
[133]. Interestingly, PPAR-gamma down-regulation that is
essential for VEGF-A up-regulation, can also be induced
by a WNT5a triggered miR27b dependent manner [134].
Although tumors including NSCLC subtypes use the same
molecular components to attract the necessary cell types
for blood vessel formation as normal tissues, tumor
vessels are often leaky, poorly differentiated and not
hierarchic. This is due to differential WNT expression
induced modulation of cellular morphology and function
leading even to cellular mimicry of cells in the resident
vascular network [135, 136]. For instance, WNT5a signal-
ing can induce vascular mimicry [137], while canonical
pathway activation by WNT3a or WNT7b is associated
with increased angiogenesis [138, 139].

Angiogenesis and WNT target genes: Matrix
metalloproteinases

The canonical WNT pathway mediated EMT [140],
which correlates with E-cadherin down-regulation [68]
and VEGEF-A up-regulation is associated with microme-
tastasis formation [141, 142]. Blood vessel formation in
lung tumors, however, also need the WNT target pro-
teolytic matrix metalloproteinase enzymes (MMPs) [143]
that are responsible for degradation of the extracellular
matrix components during new blood vessel formation
or vessel branching. MMP-2, -3, -7 and MMP-9 have
been shown to be important in NSCLCs [93] and angio-
genesis in general [143]. One of the most studied enzymes
is MMP-9 which degrades type IV collagen, modulates
VEGEF bioavailability through direct cleavage and also reg-
ulates vascular permeability [144]. In lung adenocarcin-
omas, MMP-9 levels correlate with increased risk of
relapse [143, 145], although its direct regulation by canon-
ical WNT3a signaling has only been studied in colorectal
cancer [146]. MMP-7 is up-regulated by canonical WNT
signaling and associated with increased invasion of LCs
[147-149]. Additionally, up-regulation of MMP1 by the
non-canonical WNT5a has also been shown in NSCLC
[137]. Proteomic analysis of an Mmpl-/- mouse model
revealed that tumor growth is hampered by the absence of
MMP1 activity and is also associated with decreased levels
of chitinase-3 like 3 (CHI3L3) and accumulation of the re-
ceptor for advanced glycation end-products (RAGE) and
its ligand, S100A8 [150]. The molecules identified in the
mouse model are important markers for lung develop-
ment, aging and tumorigenesis. Upregulation of RAGE,
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for example, is observed in type I alveolar epithelial
cells (ATI) during lung development, which process is
associated with reduced beta-catenin-dependent WNT
signaling [151]. Interestingly, during aging RAGE is
highly expressed [152], while in malignant lung tumors
RAGE is down-regulated [153, 154]. More studies are
needed to explain such differences and to identify the pri-
mary role of RAGE in aging normal lung tissue and in LC.

The angiogenic process as a therapeutic target

As the angiogenic process is a therapeutic target in solid
tumors, anti-angiogenic agents have become important
in therapy. The anti-VEGF-A monoclonal antibody,
bevacizumab is the first approved antiangiogenic agent
to be applied in NSCLSs [155]. Despite some success
of anti-angiogenic agents in cancer treatment, the
expected break-through in cancer therapy has not oc-
curred. A randomized phase II study investigated the
effect of bevacizumab mono- and paclitaxel-carboplatin-
bevacizumab combination therapy. Although the latter
combination increased progression free survival, serious
hemorrhage was detected in some patients mostly with
squamous histology [156]. As there is a well-documented
difference in the WNT ligand profile of the two NSCLC
subtypes [68], further studies of WNT controlled regu-
lation of blood vessel formation is needed to more ef-
fectively stratify patients for the most appropriate
anti-angiogenic treatment. The most worrying aspect
is that in some cases — mostly in glioblastomas [157-160] -
administration of anti-angiogenic drugs contributed to
formation of even more invasive tumors and failure of cyto-
toxic treatment.

Maintenance of cancer stem cells and therapeutic
resistance

The accumulation of highly chemotherapy resistant can-
cer stem cells (CSC) are thought to play an important role
in the incurability of LCs [161]. In CSCs beta-catenin
dependent canonical WNT signaling is highly active and
helps to maintain CSCs that express putative stem cell
markers such as octamer-binding transcription factor 4
(OCT4) [162], Leucine-Rich Repeat-containing G-protein
coupled receptor 5 (LGR5/GPR49), CD44, CD24, EpCAM
[163], and cyclin D1 [11, 162]. The above markers are
associated with increased cell proliferation rate and clone
formation efficacy [164]. Such CSCs are highly resistant to
several chemotherapeutic drugs [164] due to overexpres-
sion of ATP-binding cassette (ABC) transporter protein
G2 (ABCG2 or BCRP1) [165, 166] resulting in increased
drug efflux [167]. Apart from ABCG2 the presence of
other ATP-binding cassette (ABC) transporter family
members, such as ABCB1 (MDR1 or Pgp) are frequently
tested as they are responsible for chemotherapeutic drug
removal from cancer cells. Recently, the canonical WNT
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pathway dependent beta-catenin target TCF/LEF tran-
scription factors were shown to activate the ABCB1 pro-
moter indicating that WNT signaling is involved in the
regulation of efflux transporter expression [168]. Studies
of ABCBI revealed that paclitaxel and irinotecan - the
two drugs often used in cisplatin or carboplatin combin-
ation therapy of LCs [169, 170] - are both substrates of
ABCBI. Cisplatin, a widely used drug in LC therapy, can
also activate the canonical WNT pathway [162] which
may explain the increased expression of efflux drug trans-
porters including ABCB1 and ABCG2 correlating with re-
duced survival of NSCLC [171] and SCLC patients [172].
In contrast, inhibition of the beta-catenin dependent
WNT pathway by high serum levels of the canonical path-
way inhibitor DKK1 [173] has been detected in patients
suffering from NSCLC and esophageal carcinoma. In-
crease in DKK1 levels was also associated with resistance
to platina-based chemotherapy [174]. Based on previous
research data, the role of WNT signaling in ABC trans-
porter regulation appears contradictory, therefore more
studies are needed to understand the molecular regulation
and to identify potential therapeutic targets in WNT path-
way associated chemoresistance.

Although increased expression of drug transporters in
chemoresistant lung tumors suggests that the drug
transporters might be useful therapeutic targets, sadly,
clinical trials using ABC transporter inhibitors have not
been successful. For example, the ABCB1 (MDR1) inhibi-
tors tariquidar and CBT-1(R) [175-177] were tested unsuc-
cessfully in two phase III clinical studies where treatment of
stage IIIB/IV NSCLC patients with tariquidar in combin-
ation with vinorelbine or carboplatin/paclitaxel did not
show any advantages and the trial was finished prematurely
(ID NCT00042302 and NCT00042315) [178]. Additionally,
inhibitors of efflux transporters can seriously damage the
non-cancerous stem cell pool by increasing toxicity and en-
hancing the serious side effects of such therapies [179].

Conclusions

Complex deregulation of WNT signaling is an important
element of lung carcinogenesis, controlling not just the
carcinogenic process, but also tumor vascularization,
drug response and disease progression. While current
cancer research frequently cites the importance of precision
medicine, therapeutic approaches and even drug develop-
ment are still strongly focused on genetic mutations [180].
Individual variations in genetic driver and passenger muta-
tions, along with non-mutated but deregulated signaling
pathway combinations receive less attention, but can be just
as important. Novel drugs are therefore under development
to interfere with molecules of the WNT signaling pathway.
Recently, NSCLC patients have been recruited into a clin-
ical trial (NCT01957007) testing an anti-FZD7 antibody
(OMP18R5 or Vantictumab) in combination therapy [181].
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Further studies, however, are also needed to show the effect
of WNT pathway interference on tumor cells and non-
tumor cells alike [182]. The WNT-receiving cells respond
to WNT proteins in a concentration-dependent manner by
activating different target genes. Simply, blocking a receptor
therefore may result in different cellular response in tumor
cells and non-tumor cells at various points of the WNT
ligand concentration gradient. To understand such com-
plexity, experimental models of human cancer tissues [183]
are essential for future studies. This will allow us to expand
our understanding of carcinogenesis beyond mutation ana-
lysis and allow intricate investigation of the tissue micro-
environment and its effect on epigenetic signal modulation
in carcinogenesis and therapeutic drug response.
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