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Abstract

Background: Variable ventilation has been shown to improve pulmonary function and reduce lung damage in
different models of acute respiratory distress syndrome. Nevertheless, variable ventilation has not been tested
during pneumonia. Theoretically, periodic increases in tidal volume (V) and airway pressures might worsen the
impairment of alveolar barrier function usually seen in pneumonia and could increase bacterial translocation into
the bloodstream. We investigated the impact of variable ventilation on lung function and histologic damage, as
well as markers of lung inflammation, epithelial and endothelial cell damage, and alveolar stress, and bacterial
translocation in experimental pneumonia.

Methods: Thirty-two Wistar rats were randomly assigned to receive intratracheal of Pseudomonas aeruginosa (PA) or
saline (SAL) (n = 16/group). After 24-h, animals were anesthetized and ventilated for 2 h with either conventional
volume-controlled (VCV) or variable volume-controlled ventilation (W), with mean V=6 mlL/kg, PEEP = 5¢cmH,0,
and FiO, =04. During W, tidal volume varied randomly with a coefficient of variation of 30% and a Gaussian
distribution. Additional animals assigned to receive either PA or SAL (n = 8/group) were not ventilated (NV) to serve
as controls.
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Results: In both SAL and PA, W improved oxygenation and lung elastance compared to VCV. In SAL, W decreased
interleukin (IL)-6 expression compared to VCV (median [interquartile range]: 1.3 [0.3-2.3] vs. 5.3 [3.6-7.0]; p =0.02)
and increased surfactant protein-D expression compared to NV (2.5 [1.9-3.5] vs. 1.2 [0.8-1.2]; p=0.0005). In PA,
compared to VCV, W reduced perivascular edema (2.5 [2.0-3.75] vs. 6.0 [4.5-6.0]; p < 0.0001), septum neutrophils (2.
0 [1.0-4.0] vs. 5.0 [3.3-6.0]; p = 0.0008), necrotizing vasculitis (3.0 [2.0-5.5] vs. 6.0 [6.0-6.0]; p = 0.0003), and
ultrastructural lung damage scores (16 [14-17] vs. 24 [14-27], p < 0.0001). Blood colony-forming-unit (CFU) counts
were comparable (7 [0-28] vs. 6 [0-26], p=0.77). Compared to NV, VCV, but not W, increased expression
amphiregulin, IL-6, and cytokine-induced neutrophil chemoattractant (CINC)-1 (2.1 [1.6-2.5] vs. 0.9 [0.7-1.2], p=0.
025; 12.3 [7.9-22.0] vs. 0.8 [0.6-1.9], p=0.006; and 4.4 [2.9-5.6] vs. 0.9 [0.8-1.4], p =0.003, respectively). Angiopoietin-
2 expression was lower in VW compared to NV animals (0.5 [0.3-0.8] vs. 1.3 [1.0-1.5], p=0.01).

Conclusion: In this rat model of pneumonia, VW improved pulmonary function and reduced lung damage as
compared to VCV, without increasing bacterial translocation.
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Background

Despite advances in medical care, the prevalence and
mortality rates of pneumonia remain relatively high [1].
The cornerstone of pneumonia treatment is antibiotic
therapy. However, patients may also require mechanical
ventilation to maintain adequate gas exchange and re-
duce the work of breathing. In fact, pneumonia is a
major risk factor for the acute respiratory distress syn-
drome (ARDS) [2], for which protective ventilation with
low tidal volumes has been advocated [3]. However,
overdistension and cyclic opening and closure of alveo-
lar units, two of the major mechanisms of ventilator-
induced lung injury (VILI), may occur even during pro-
tective lung ventilation [4-6].

The use of variable tidal volumes, i.e., variable ventila-
tion, has been shown to improve pulmonary function
and reduce lung damage in different experimental
models of direct [7-9] and indirect [8, 10] ARDS.
Nevertheless, variable ventilation has not been tested
during pneumonia. Theoretically, periodic increases in
tidal volume (V1) and airway pressures might worsen
the impairment of alveolar barrier function usually seen
in pneumonia [11], and could increase bacterial trans-
location into the bloodstream [12, 13]. On the other
hand, since variable ventilation can recruit the lungs
[10] and thereby decrease regional stress and strain, a pro-
tective effect against lung damage and bacterial transloca-
tion might result.

In the present study, we investigated the impact of
variable ventilation on respiratory mechanics, gas ex-
change, and lung histologic damage, as well as markers
of lung inflammation, epithelial and endothelial cell
damage, and alveolar stress, in a rat model of pneumo-
nia induced by Pseudomonas aeruginosa. We hypothe-
sized that variable ventilation would improve pulmonary
function and reduce lung damage without increasing
bacterial translocation.

Methods

Animal preparation and experimental protocol

Thirty-two Wistar rats (weight, 300-410 g) were anesthe-
tized under spontaneous breathing with 2% isoflurane
(Isoforine; Cristalia, Itapira, SP, Brazil) and randomly
assigned to two groups: 1) Pneumonia (PA, n=16), in
which Pseudomonas aeruginosa 01 (ATCC27853, 5 x
107 CFU diluted in 200 uL saline) was instilled intratrache-
ally (i.t.) (see Additional file 1 for details of the develop-
ment of the pneumonia model); and 2) Control, in which
200 pL saline was instilled i.t. (SAL, # = 16). Eight animals
in the SAL and PA groups were not ventilated (NV) and
served as controls for computation of lung damage score,
ultrastructural damage score, and molecular biology ana-
lyses. After 24 h, animals were premedicated intraperitone-
ally (ip.) with 10 mg/kg diazepam (Compaz, Cristdlia,
Itapira, SP, Brazil), followed by 100 mg/kg ketamine (Keta-
min-S+, Cristdlia, Itapira, SP, Brazil) and 2 mg/kg midazo-
lam (Dormicum, Unido Quimica, Sdo Paulo, SP, Brazil).
An intravenous (i.v.) catheter (Jelco 24G, Becton, Dickin-
son and Company, New Jersey, NJ, USA) was inserted into
the tail vein, and anesthesia induced and maintained with
midazolam (2 mg/kg/h) and ketamine (50 mg/kg/h). Fol-
lowing local anesthesia with 2% lidocaine (0.4 ml), a mid-
line neck incision and tracheostomy were performed. A
second catheter (PE-50, Becton, Dickinson and Company)
was then placed in the right internal carotid artery for
blood sampling and gas analysis (Radiometer ABL80
FLEX, Copenhagen NV, Denmark), as well as monitoring
of mean arterial pressure (MAP) (Networked Multiparam-
eter Veterinary Monitor LifeWindow 6000 V; Digicare
Animal Health, Boynton Beach, FL, USA). A 30-cm-long
water-filled catheter (PE-205, Becton, Dickinson and
Company) with side holes at the tip, connected to a differ-
ential pressure transducer (UT-PL-400, SCIREQ, Mon-
treal, QC, Canada), was used to measure the esophageal
pressure (Pes). The catheter was passed into the stomach
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and then slowly returned into the esophagus; its proper
positioning was assessed with the “occlusion test” [14]. Ani-
mals were then paralyzed with 2 mg/kg pancuronium
bromide iv. (Cristdlia, Itapira, SP, Brazil), and lungs
mechanically ventilated (Inspira, Harvard Apparatus, Hol-
liston, MA, USA) in volume-controlled ventilation (VCV)
mode with V1 =6 mL/kg, respiratory rate =80 breaths/
min, FiO, =04, and positive end-expiratory pressure
(PEEP) = 5cmH,O. Arterial blood gases and lung mechan-
ics were analyzed (Baseline). SAL and PA groups were then
randomly assigned to 2 h of conventional VCV or variable
VCV (VV). Conventional ventilation settings were similar
to those previously applied (V1 =6 mL/kg, respiratory
rate = 80 breaths/min, FiO, =0.4, and PEEP = 5cmH,0).
At the end of the experiments (End), arterial blood gases
were measured and 20 pL of peripheral blood was sam-
pled for bacterial counts. Animals were killed by ex-
sanguination through the arterial line, and their lungs
extracted at PEEP = 5cmH,0 for light microscopy and
molecular biology analyses.

Variable ventilation

Variable ventilation was applied as described in detail else-
where [15, 16] Briefly, a sequence of randomly generated V
values (normal distribution, mean = 6 mL/kg, coefficient of
variation [CV]=30%, n=600) was applied in volume-
controlled mode using a routine developed by our group
(nVentInspira, Dresden, Germany). The sequence continu-
ously looped itself until the end of the experiments. All
other mechanical ventilator settings were kept un-
changed: mean V1=6 mL/kg, respiratory rate =80
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breaths/min, FiO, = 0.4, and PEEP = 5cmH,O. Figure 1
depicts representative tracings of airflow, volume, and
airway pressure (Paw) during conventional ventilation
(VCV, left column) and variable ventilation (VV, right
column).

Lung mechanics

Airflow (V*), as well as Paw and esophageal pressure (Pes)
were continuously recorded throughout the experiments
with a computer running customer-made software written
in LabVIEW (National Instruments, Austin, TX) [17]. V1
was calculated by digital integration of V. All signals were
amplified in a four-channel signal conditioner (SC-24,
SCIREQ, Montreal, QC, Canada). The mechanical proper-
ties of the lungs, namely elastance (E;) and resistance
(Rp), were calculated by fitting the signals to the equation
of motion, according to transpulmonary pressure (Pp =
Paw-Pes), as shown in Equation 1:

Pr(t) =Ry eV (t) +ELsV(t)+ Py, (1)

where Py, is Py at end expiration.

Lung damage score

The left lung was removed, fixed, and embedded in par-
affin. Sections (4 pum thick) were cut and stained with
hematoxylin and eosin. A lung damage score based on
features commonly seen in pneumonia models was com-
puted [18]. For this purpose, the following histological
features were analyzed in the tissue sections: perivascu-
lar edema, septal neutrophils, and necrotizing vasculitis.
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Each feature was scored according to severity, with 0 de-
noting no effect and 4 denoting maximum severity, and
extent, with 0 denoting no appearance and 4 denoting
full involvement. The results were calculated as the
product of severity and extent of each feature, ranging
from O to 16, and added to yield the total lung damage
score, ranging from 0 to 48.

Ultrastructural lung damage

To obtain a stratified random sample, three 2 x 2 x 2 mm
slices were cut from different segments of the left lung. Ul-
trathin sections from selected areas were examined and
micrographed in a JEOL electron microscope (JSM-6100 F;
Tokyo, Japan). In each image (r = 15/animal), the following
structures were analyzed: 1) type II epithelial cell damage;
2) alveolar-capillary membrane damage; and 3) organelle
injury. A procedure similar to that adopted for total lung
damage score calculation was used to compute the ultra-
structural damage score.

Blood bacterial counts

Blood samples (20 pL) were seeded in Petri dishes with
Tryptic Soy Agar growth medium (Fluka Analytical, St
Louis, MO, USA). Manual counts of colony forming units
(CFU) were performed after 24 h of incubation at 37 °C.

Biomarkers of inflammation, alveolar stretch, and cell
damage

Quantitative real-time reverse transcription polymerase
chain reaction (PCR) was performed to measure bio-
markers associated with inflammation (interleukin [IL]-6
and cytokine-induced neutrophil chemoattractant [CINC-
1]), type II alveolar cell mechanotransduction (surfactant
protein-D [SP-D]), endothelial cell injury (angiopoietin
[Ang]-2), and alveolar stretch (amphiregulin). The primers
used are described in the online supplement (Additional
file 1: Table S1). Central slices of the right lung were cut,
collected in cryotubes, flash-frozen by immersion in liquid
nitrogen, and stored at — 80 °C. Total RNA was extracted
from frozen tissues using the RNeasy Plus Mini Kit (Qia-
gen, Hilden, Germany), following the manufacturer’s rec-
ommendations. RNA concentrations were measured by
spectrophotometry in a Nanodrop ND-1000 system (Ther-
moScientific, Wilmington, DE, USA). First-strand cDNA
was synthesized from total RNA using a Quantitec re-
verse transcription kit (Qiagen, Hilden, Germany). Rela-
tive mRNA levels were measured with a SYBR green
detection system in an ABI 7500 real-time PCR system
(Applied Biosystems, Foster City, California, USA). Sam-
ples were run in triplicate. For each sample, the expression
of each gene was normalized to the acidic ribosomal
phosphoprotein PO (36B4) housekeeping gene [19] and
expressed as fold change relative to respective NV
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animals, using the 2722 Ct method, where ACt = Ctyefer.
ence gene — Cttarget gene [20]'

Statistical analysis

Sample size calculation was based on effect estimates
obtained from previous studies in rodents using similar
ventilator settings [8]. A sample size of eight animals per
group would provide the appropriate power (1 - =0.8)
to identify significant (« = 0.05) differences in respiratory
system elastance between VCV and variable ventilation,
taking into account an effect size d = 1.38, a two-sided test,
and a sample size ratio =1 (G*Power 3.1.9.2, University of
Disseldorf, Diisseldorf, Germany).

The Kolmogorov-Smirnov test with Lilliefors correction
was used to assess the normality of data, whereas the
Levene median test was used to evaluate the homogeneity
of variances. For the pneumonia model, the Student ¢-test
and Mann-Whitney U test were used for comparisons of
parametric and nonparametric data respectively.

For comparison between conventional and variable venti-
lations, two-way analysis of variance (ANOVA) followed by
Holm-Sidak multiple comparisons was used for analyses of
lung mechanics, blood gas exchange, and postmortem pa-
rameters (lung damage score, ultrastructural damage score,
and blood bacterial counts). Molecular biology analyses
were performed using the Kruskal-Wallis test followed by
Dunn multiple comparisons within the SAL (NV, VCV,
VV) and PA (NV, VCV, VV) groups. Parametric data were
expressed as mean * standard deviation (SD), and nonpara-
metric data, as median (interquartile range). All tests were
performed using the GraphPad Prism v6.01 statistical soft-
ware package (GraphPad Software, La Jolla, California,
USA). Significance was established at p < 0.05.

Results

The characterization of the pneumonia model is presented
in the online supplement (Additional file 1: Fig. S1, Tables
S1, S2, and S3). In PA animals, hemorrhagic areas are
present (Additional file 1: Fig. S1), with perivascular edema,
neutrophils in alveolar septa, and necrotizing vasculitis
(Additional file 1: Table S2). Additionally, an intense inflam-
matory process characterized by increased cell counts in
BALF and blood was observed in PA compared to healthy
rats (Additional file 1: Table S3), thus leading to reduced
oxygenation (Additional file 1: Table S1). Taken together,
those alterations suggest that the pneumonia model was
adequate.

MAP was stable throughout the experiment (Table 1).
Both in SAL and PA, mean V1 was comparable in VV and
VCV, whereas CV was higher in VV (Table 1). Compared
to VCV, VV reduced E; and increased oxygenation in SAL
and PA.
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Table 1 Respiratory and blood gas-exchange parameters at Baseline and End
SAL PA
Parameter VeV W ey W
Mean V7 (mL/kg) Baseline 58+03 6.0+0.1 60+03 59+04
End 59+06 6.2+03 6.0+£03 62+04
CV of V1 (%) Baseline 25£08 23104 19+09 19+08
End 1.7£10 26.5 + 1.8%%%* 1.7+£08 206 £ 1.2 #i###
E, (cmH,O/mL) Baseline 36+05 42+09 39+06 46+0.7
End 41405 25£0.3* 38+05 2702 ##
R (cmH,O/mL/s) Baseline 0.19+£0.03 0.18 £0.03 0.30+0.07** 031£0.10
End 0.19+£ 003 0.16 £0.01 0.25+0.07 0.27£0.10
pHa Baseline 74401 74400 73+0.1 73£0.1
End 74+£0.1 74+00 74+0.1 74+00
PaO,/FiO, Baseline 372+£126 311+83 260+ 59 285+ 80
End 292+78 449 + 50** 302117 454 + 504##
PaCO, (mmHg) Baseline 402 +80 396+60 402 +49 429+11.1
End 364 £10.1 339+£73 37.2+£48 365+88
HCO; (mEg/L) Baseline 23.7+31 24025 208+32 208+32
End 189+44 200+44 215426 215126
MAP (mmHg) Baseline 109 + 24 99+12 96 + 34 110+27
End 99+ 15 110+ 22 97 +£28 112428

Values are mean * standard deviation (SD) of 8 animals in each group

Abbreviations: SAL-VCV rats administered intratracheal saline and ventilated with volume-controlled ventilation, SAL-VV rats administered intratracheal saline and
ventilated with variable ventilation, PA-VCV rats administered intratracheal Pseudomonas aeruginosa and ventilated with volume-controlled ventilation, PA-VV rats
administered intratracheal Pseudomonas aeruginosa and ventilated with variable ventilation, Vr tidal volume, CV coefficient of variation, E,; dynamic lung elastance,
R, lung resistance, pHa arterial pH, PaCO, arterial carbon dioxide partial pressure, PaO,/FiO, arterial oxygen partial pressure divided by fraction of oxygen inspired,

HCO;3 bicarbonate, MAP mean arterial pressure

Comparisons were performed using two-way repeated measures ANOVA followed by the Holm-Sidék post-hoc test (p < 0.05). **p < 0.005; ****p < 0.0001 vs SAL-

VCV. ##p < 0.01; ###H#p < 0.0001 vs PA-VCV

Light microscopy images of representative animals from
each group are shown in Fig. 2. As depicted in Table 2,
compared to VCV, VV yielded less perivascular edema,
septum neutrophils, and necrotizing vasculitis during PA,
but not SAL. Additionally, there was less damage to the
lung ultrastructure in VV compared to VCV.

In SAL, IL-6 expression was lower in VV compared to
VCV (Additional file 1: Fig. S2). Moreover, SP-D expres-
sion was higher in VV than NV (Additional file 1: Fig. S2).

In PA, gene expressions of IL-6, CINC-1, and amphir-
egulin were higher in VCV, but not in VV, compared to
NV. Furthermore, Ang-2 expression was lower after VV
compared to NV (Fig. 3).

Blood CFU counts were higher in PA than SAL ani-
mals (Fig. 4), but values did not differ significantly be-
tween VCV and VYV, irrespective of group.

Discussion

The main findings of the present study were: 1) in both
SAL and PA, VV improved E; and oxygenation compared
to VCV; 2) in SAL, VV was associated with lower IL-6 ex-
pression in lung tissue than VCV and increased surfactant
protein-D expression compared to NV; 3) in PA, VV

reduced perivascular edema, septum neutrophils, necrotiz-
ing vasculitis, and ultrastructural lung damage, with no
significant difference in blood CFU counts, compared to
VCV. Furthermore, mRNA expression of amphiregulin,
IL-6 and CINC-1 was higher in VCV, while expression of
Ang-2 was lower in VV compared to NV.

A major strength of the present study is that the
pathogen chosen, Pseudomonas aeruginosa, is a com-
mon cause of both community and hospital-acquired
pneumonia [21], which is associated with considerable
morbidity and mortality [22]. In addition, different as-
pects of the pneumonia model, including functional,
structural, and ultrastructural features, the inflammatory
response, and the potential for translocation of bacteria
during mechanical ventilation, were characterized in de-
tail (Additional file 1: Figure S1, Tables S1, S2, and S3).
We chose a CV of 30% in V because this level of vari-
ability has been shown to improve lung function [8, 23]
and reduce lung damage in direct ARDS in rats [8],
as well as other species [9, 24—27]. Additionally, controls
with it. saline instillation were included to allow identifica-
tion of possible effects that might be specific to the pneumo-
nia model and to exclude the possibility of contamination
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Fig. 2 Representative light microscopy images. a SAL-VCV: rats administered intratracheal saline and ventilated with volume-controlled ventilation.
b SAL-W = rats administered intratracheal saline and ventilated with variable ventilation. ¢ PA-VCV =rats administered intratracheal Pseudomonas
aeruginosa and ventilated with volume-controlled ventilation. d PA-W =rats administered intratracheal Pseudomonas aeruginosa and ventilated
with variable ventilation. Original magnification: x400. Scale bar is 100 ym

due to manipulation of the peripheral blood samples. To the
best of our knowledge, this was the first study to evaluate
variable ventilation in experimental pneumonia.

Our observation that VV improved oxygenation in both
PA and SAL, as compared to VCV, can be explained by dif-
ferent factors. First, VV has been shown to promote effective

Table 2 Lung damage score

recruitment of atelectatic lungs [10, 28, 29], which seems to
be accompanied by redistribution of perfusion to recruited
areas [27], improving ventilation/perfusion matching in both
SAL and PA. Second, variable V- is able to increase the re-
lease of surfactant [30, 31], which could reduce surface

SAL PA
Features \av W \av v
Light microscopy
Perivascular edema [0-16] 1.5 [1.0-2.0] 1.0 [0.0-2.0] 6.0 [4.5-6.01* 2.5 [20-3754%,
Septal neutrophils [0-16] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 5.0 [3.3-6.01* 20 [1.0-4.004, +
Necrotizing vasculitis [0-16] 1.5 [0.0-2.0] 1.0 [1.0-1.0] 6.0 [6.0-6.0] 3.0 [20-550#,
Total lung damage score [0-48] 2.5 [2.0-3.8] 2.0 [1.0-3.0] 16 [15-18]* 80 [5.5-11.3]4 %
Transmission electron microscopy
Type 2 epithelial cell damage [0-16] 3[2-3] 2 [1-2] 6 [4-9] 5 [5-6]
Alveolar capillary membrane damage [0-16] 2 [2-3] 101-2] 9 [4-12]* 5 [5-5]
Organelle injury [0-16] 2 [2-3] 101-2] 6 [6-9]** 6 [4-6]
Total ultrastructural damage score [0-48] 7 [6-9] 5 [3-5] 24 [14-27]%%* 16 [14-171##, £

Values are median and interquartile range [25-75%)] of 8 animals in each group

Abbreviations: SAL-VCV rats administered intratracheal saline and ventilated with volume-controlled ventilation, SAL-VV rats administered intratracheal saline and
ventilated with variable ventilation, PA-VCV rats administered intratracheal Pseudomonas aeruginosa and ventilated with volume-controlled ventilation, PA-VV rats
administered intratracheal Pseudomonas aeruginosa and ventilated with variable ventilation

Comparisons were performed by two-way ANOVA followed by the Holm-Sidak multiple comparison test (p < 0.05). *p < 0.05, **p < 0.01, ***p < 0.001 significantly
different from SAL-VCV. #p < 0.05, ##p < 0.01 significantly different from SAL-VV. $p < 0.05 significantly different from PA-VCV
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tension and further stabilize the lungs, thus improving gas
exchange in SAL.

The hypothesis that VV would recruit lungs compared to
VCV is supported by the decrease in E;. The improvement
in E; could partly explain the finding that, in PA, VV led to
less perivascular edema, septum neutrophils, and necrotiz-
ing vasculitis, which are hallmarks not only of pneumonia
[18], but also of VILI [32]. When recruitment occurs, V is
distributed across a larger lung surface area, resulting in de-
creased regional stress and strain, with less mechanotrans-
duction and biotrauma [33].

This interpretation is supported by the fact that VCV,
but not VV, increased the expression of amphiregulin, a
marker of pulmonary stretch [34]; IL-6 and CINC-1,
which are inflammatory mediators of VILI [35]; and
Ang-2, a marker of endothelial integrity [36].

In SAL, VV increased SP-D expression compared to
VCYV, suggesting that surfactant production was triggered.
SP-D plays a central role in pulmonary host defense [37]
and migration of peripheral monocyte/macrophages into
the lungs [38]. This might explain the reduction in IL-6
with increased SP-D expression in SAL groups (r=-0.81,
p=0.007). In PA, however, SP-D expression did not differ
significantly between VV and VCV. A possible explanation
for this difference is that the increased inflammatory re-
sponse of type 2 epithelial cells due to infection by Pseudo-
monas aeruginosa [39] impaired surfactant production.

We observed that i.t. instillation of Pseudomonas aerugi-
nosa increased blood CFU counts in PA compared to
SAL. However, among PA animals, CFU blood counts
were comparable between VV and VCV. There are differ-
ent possible explanations for the lack of bacterial trans-
location during VV in PA. First, the mechanical stress of
isolated respiratory cycles may not have exceeded the
plasto-elasticity limit of the lung tissue [40], thus preserv-
ing the integrity of the alveolar-capillary membrane [41].
Second, lung recruitment likely occurred, reducing volu-
trauma and atelectrauma, which are intrinsically involved
in bacterial translocation during pneumonia [13]. Similar
findings have been observed in which PEEP might reduce
the risk of ventilation-induced dissemination of bacteria
and inflammatory mediators during pneumonia [42, 43].

Possible clinical implications of study findings

The present study expands the notion that VV is associ-
ated with beneficial effects on gas exchange and lung
protection in respiratory failure. Since pneumonia is one
of the major risk factors for ARDS development [2] and
these patients frequently require mechanical ventilation,
VV might represent a valuable strategy to improve pul-
monary function and reduce lung damage without pro-
moting further injury or bacterial translocation to the
blood stream. Furthermore, in patients without lung in-
jury, VV might be useful to prevent deterioration of lung
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function and increases in inflammatory markers, which
could lead to further pulmonary complications. These is-
sues warrant investigation in future experimental and
clinical studies.

Limitations

Some limitations of this study must be noted. First,
pneumonia was induced by i.t. instillation of Pseudomonas
aeruginosa, and our results cannot be extrapolated to
other types of pulmonary infection. Nevertheless, in a 10-
year retrospective study [21], 45.8% of patients had
nosocomial-acquired pneumonia caused by Pseudomonas
aeruginosa. Furthermore, lungs infected by other patho-
gens might also benefit from VV-induced responses, e.g.,
increased production of surfactant. Second, the data pre-
sented herein refer to the application of variable ventila-
tion during controlled mechanical ventilation, not assisted
ventilation, which might have yielded different results.
Third, unlike in clinical settings, PEEP, respiratory rate,
and FiO, were kept constant. However, as the main ob-
jective was to evaluate VV, confounding factors resulting
from changes in ventilator settings were excluded. In this
line, the level of PEEP used in the current study, while
often used in rats, may not be directly extrapolated to the
clinical setting. Nevertheless, it has been estimated that
values of PEEP in rats should be multiplied by a factor of
2 to 2.5 [44], when comparing with humans. In our study,
this corresponds to 10 to 12.5 cmH,O0, i.e., a moderate to
high PEEP value in humans. Fourth, the observation time
was relatively short (2 h of mechanical ventilation), pre-
cluding extrapolation of the findings to longer periods of
ventilation. Finally, protein levels of biomarkers of VILI
were not determined. Instead, we chose to assess expres-
sion of biomarker mRNA, because an experimental period
of 2 h might not be sufficient to detect differences in pro-
tein levels [45-48].

Conclusions

In the rat model of Pseudomonas aeruginosa pneumonia
used herein, VV improved pulmonary function and re-
duced lung damage, without increasing bacterial trans-
location, compared to VCV.
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