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Abstract

Background: There are few studies comparing diagnostic accuracy of different lung function parameters evaluating
dose–response characteristics of methacholine (MCH) challenge tests (MCT) as quantitative outcome of airway
hyperreactivity (AHR) in asthmatic patients. The aim of this retrospectively analysis of our database (Clinic
Barmelweid, Switzerland) was, to assess diagnostic accuracy of several lung function parameters quantitating AHR
by dose–response characteristics.

Methods: Changes in effective specific airway conductance (sGeff) as estimate of the degree of bronchial obstruction
were compared with concomitantly measured forced expiratory volume in 1 s (FEV1) and forced expiratory flows at
50% forced vital capacity (FEF50). According to the GINA Guidelines the patients (n = 484) were classified into asthmatic
patients (n = 337) and non-asthmatic subjects (n = 147). Whole-body plethysmography (CareFusion, Würzburg,
Germany) was performed using ATS-ERS criteria, and for the MCTs a standardised computer controlled protocol with 3
consecutive cumulative provocation doses (PD1: 0.2 mg; PD2: 1.0 mg; PD3: 2.2 mg) was used. Break off criterion for the
MCTs were when a decrease in FEV1 of 20% was reached or respiratory symptoms occurred.

Results: In the assessment of AHR, whole-body plethysmography offers in addition to spirometry indices of airways
conductance and thoracic lung volumes, which are incorporated in the parameter sGeff, derived from spontaneous
tidal breathing. The cumulative percent dose-responses at each provocation step were at the 1st level step (0.2 mg
MCH) 3.7 times, at the 2nd level step (1 mg MCH) 2.4 times, and at the 3rd level step (2.2 mg MCH) 2.0 times more
pronounced for sGeff, compared to FEV1. A much better diagnostic odds ratio of sGeff (7.855) over FEV1 (6.893) and
FEF50 (4.001) could be found. Moreover, the so-called dysanapsis, and changes of end-expiratory lung volume were
found to be important determinants of AHR.

Conclusions: Applying plethysmographic tidal breathing analysis in addition to spirometry in MCTs provides relevant
advantages. The absence of deep and maximal inhalations and forced expiratory manoeuvres improve the subject’s
cooperation and coordination, and provide sensitive and differentiated test results, improving diagnostic accuracy.
Moreover, by the combined assessment, pulmonary hyperinflation and dysanapsis can be respected in the
differentiation between “asthmatics” and “non-asthmatics”.

Keywords: (1) Airway hyperreactivity, (2) Bronchial asthma, (3) Methacholine challenge test, (4) Whole-body
plethysmography, (5) Effective, specific airway conductance, (6) Diagnostic accuracy, (7) Dysanapsis
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Background
Airway hyperreactivity (AHR) is a characteristic feature
of bronchial asthma, and methacholine challenge testing
(MCT) is well established to quantitate AHR in patients
with unexplained symptoms such as cough, chest tight-
ness and/or dyspnea, when the diagnosis of asthma is
uncertain [1–10]. Compared to control subjects the pro-
voked bronchial obstruction appears earlier and at lower
provocation doses, and is more intensive in patients with
asthma, a functional feature serving as rationale for the
underlying mechanisms of AHR [4, 11, 12]. Both the
European Respiratory Society (ERS) [1] and the Ameri-
can Thoracic Society (ATS) [4] recommend bronchial
provocation tests by inhalation of aerosolized methacho-
line (MCH), considering this approach to be a repro-
ducible and relatively easy to perform test in adults and
children.
Following MCT, the cumulative provocation dose (PD)

at which the forced expiratory volume in 1 s (FEV1),
measured with spirometry, decreases at least 20% com-
pared to baseline (PD−20FEV1), is currently the most
commonly used outcome of assessing AHR by detection
of flow limitation in consequence of airway narrowing
[9]. Alternatively, whole-body plethysmography can also
be used to determine AHR, measuring changes in airway
mechanics either by a 35% [2, 7], a 40% [4, 5], or a 50%
[5] reduction in specific airway conductance (sGaw) or
an increase of specific airway resistance (sRaw) of 100%
[8, 10] from baseline. To our knowledge, studies com-
paring reliability of spirometric parameters with those
obtained by whole-body plethysmography, or even a
combination of both are rare, and the so-called effective
specific airway conductance (sGeff ) has never been eval-
uated as a target parameter.
Therefore, the purpose of the present study was to

compare diagnostic value of the response characteristics
to MCH assessed by FEV1 and forced expiratory flow at
50% of vital capacity (FEF50), in relation to sGeff differen-
tiating different diagnostic and functional groups and to
encounter possible differences of AHR in relation to
pulmonary hyperinflation and/or the phenomenon of
dysanapsis [13–17].

Methods
Study population and ethics
The study was conducted in the Division of Pulmonary
Medicine, Clinic Barmelweid, CH-5017 Barmelweid,
Switzerland, recruiting patients referred to the pulmon-
ary function laboratory for baseline pulmonary function
and MCT in patients with symptoms suggestive for
asthma, such as cough, shortness of breath, wheezing or
chest tightness. According to the classical definition of
the GINA dissemination committee report [18], and
based on the characteristics of the case histories and

clinical findings, two experienced pulmonary physicians
(Co-authors MF and TS) have classified the cases previ-
ously into a group of patients with proven bronchial
asthma (n = 337; 69.8%), and a group of non-asthmatic
subjects (n = 147; 30.4%). Bronchial asthma was diag-
nosed when subjects presented with a medical history of
atopy (allergic rhinitis, hay fever, exercise-induced, partly
also an eosinophilic inflammation, infection-induced, oc-
cupational or intrinsic), and documented with a positive
MCT (PD−20FEV1). The groups of non-asthmatic sub-
jects was composed of 4 subgroups according to the po-
tential origin of pulmonary symptoms differentiating
either between (i) an “upper airway syndrome” (UACS),
previously also termed as post-nasal-drip-syndrome [19]
(n = 55; 37.4%), (ii) a gastroesophageal reflux disease
(GERD, n = 40; 27.2%), (iii) “persistent chronic cough”
lasting more than 8 weeks [20] (n = 30; 20.4%), and
patients with (iv) a “symptom complex” such as un-
explained dyspnoea, chest tightness, hyperventilation, or
somatisation (n = 22; 15.0%), which could not be attrib-
uted to a clear diagnosis. There were no patients with
chronic obstructive pulmonary disease (COPD), bron-
chiectasis, cystic fibrosis, obstructive sleep apnoea syn-
drome (OSAS), or interstitial lung disease. Short-acting
ß2-agonists were withdrawn for 8 h, long-acting beta-
agonists for 48 h, and leukotriene receptor antagonists
for 24 h prior to the lung function testing. Inhaled corti-
costeroids were withdrawn 7 days before MCT.
We conducted this study retrospectively as a case con-

trolled study in order to compare diagnostic accuracy of
the MCT assessed by different target parameters between
the diagnosed asthmatic patients and non-asthmatic sub-
jects. Inclusion criteria were reproducible base-line mea-
surements, at least 5 plethysmographic tidal breath efforts
as well as at least 3 reproducible forced expiratory ma-
noeuvres at each provocation level. The study was planned
according to the Federal Law of Human Research, concep-
tualized according to the Swiss Ethics Committee on Re-
search involving humans, and approved by the
Governmental Ethics Committee of the State of Berne.
Master-files haven been stored and secured in the
REDCap-system of the Clinical Trial Unit, Medical Fac-
ulty, University of Berne, Switzerland.

Pulmonary function procedures
Spirometry and plethysmographic measurements were
performed using standard techniques according to ATS-
ERS recommendations [21, 22] previously established and
subsequently extended (http://www.atsjournals.org/doi/
suppl/10.1164/rccm.200407-948OC/suppl_file/online_
methods.pdf ) [23]; http://www.atsjournals.org/doi/suppl/
10.1164/rccm.200603-423OC/suppl_file/onlinesup200603-
423ocr2.pdf ) [24]; http://www.biomedcentral.com/content/
supplementary/1465- 9921-10-106-S1.doc) [25].
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Using a Jaeger MasterLab whole-body plethysmograph
(CareFusion, Würzburg, Germany), measurements of
airway mechanics, slow spirometry and hence assess-
ment of static lung volumes were carried out first and
only afterwards forced flow-volume loops were per-
formed according to the ATS-ERS recommendations
(best value of the 3 trials). The sReff, and its reciprocal
value the sGeff resp., were assessed while the subject
breathed tidally, in an upright position, through filter
and measuring head in the body plethysmograph [26],
without requiring any special breathing manoeuvres or
efforts against a closed shutter. Both measurement tech-
niques (whole-body plethysmography and spirometry)
were performed with the subjects in sitting position
within the whole-body plethysmograph cabin.

Assessment of airway mechanics
In order to obtain a parallel synoptical presentation of
the MCT, we routinely present the reaction of FEV1 and
FEF50 together with sGeff. sGeff is computed as the ratio
between the integral of the area of the tidal flow-volume
loop as numerator (∮V′dVT) and the integral of the
area enclosed by the specific resistive work of breathing
(sWOB =∮ΔVboxdVT) [27] according the equation:

sGeff ¼ 1
Pamb−PH2O

� ∮V ′dVT

∮ΔVboxdVT
¼ 1

sReff

where Pamb is the barometric pressure, PH2O the satu-
rated vapour water pressure at body temperature. The
mathematical background to obtain sGeff as the recipro-
cal value of the effective specific resistance (sReff ), has
been given previously [23–25, 28], and is presented
synoptically in Fig. 1. An Additional file 1 furthermore
provides details regarding the paradigm shift in the
assessment of airway mechanics. During quiet breathing
at end-expiratory lung volume (EELV) measurements of
sGeff were measured in a first phase of testing. In a
second phase of testing functional residual capacity
(FRCpleth) was assessed by normal resting breathing
against the closed shutter (no panting). In a third phase
a slow maximal vital capacity manoeuvre, carefully
linked with the shutter-measurement was performed to
get the static lung volumes, functional residual capacity
(FRCpleth), residual volume (RV) and total lung capacity
(TLC). However, only in a forth phase of testing 3 con-
secutive forced flow-volume-loops were recorded. The
median of at least 5 consecutive single measurements of
sGeff and 3 measurements of FRCpleth were computed,
and from the triplet of forced expiratory manoeuvres the
best effort was analysed. The pulmonary function test
data were expressed as a percentage of predicted normal
values, and z-transformed accordingly [21, 29, 30].

The assessment of the dose–response characteristics
to MCH, observed not only by forced spirometry, but
additionally by whole-body plethysmography, was cho-
sen because a certain paradigm shift at least in the tech-
nical approach of the assessment of airway mechanics is
established since several years, albeit the combined
assessment of AHR by MCH by spirometry and whole-
body plethysmography is not yet well validated and
established in its clinical use. However, improved reli-
ability of test results can be expected by assessing the
bronchial reaction to sGeff, which is computed real-time
by an integral, multi-dimensional approach. Details are
given in the Additional file 1. Our anticipated advan-
tages, therefore, were to elaborate, whether or not in
comparison to the spirometric approach, the new ple-
thysmographic technology could provide (i) better diag-
nostic accuracy, (ii) leading by independency of deep
inspirations and hence changes in the volume-history
[10, 31–36] to less “a priori” modulation of the airway
calibre, moreover, (iii) by independency from the sub-
ject’s cooperation (need of forced breathing manoeuvres)
circumvention of inadvertent change of the airway re-
sponsiveness during test procedure [34, 37, 38].

The aerosol provocation system (APS)
MCT was performed according to a protocol routinely
used in several pulmonary function laboratories in
Europe, applying a modified dose oriented, single con-
centration sequence [39] with the Aerosol Provocation
System (APS) using the SideStream nebulizer of Philips/
Respironics previously described [38, 40]. Technical de-
tails and advantages of the APS are given in the Additional
file 2, presenting the similar physical characteristics like-
wise they were recently outlined by Kannan et al. [41]. In
their novel efforts they defined high fidelity computational
simulations, performed over several breathing cycles, to
get information regarding regional deposition for different
particle sizes and an algorithm accounting for the re-entry
of particles during the exhalation phase.

Methacholine challenge test (MCT)
After baseline measurements, MCH (5%) was adminis-
tered in 3 steps of increasing dose. However, in contrast
to a previously proposed 4-step procedure [39], a one-
concentration-3-step protocol with increasing single
doses of MCH (0.2 mg, 0.8 mg, 1.2 mg) was performed,
consisting of 3 consecutive levels of cumulative doses
defined as CD1: 0.2 mg; CD2: 1.0 mg; CD3: 2.2 mg. The
measurements of whole-body plethysmography and spir-
ometry were performed two minutes after each MCH-
inhalation. On the basis of the inhalation time and the
nebulizer output provided by the APS and the known
concentration of the MCH, the applied doses of MCH
was individually computed at each provocation level.
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Response to MCH was assessed by linear regression
against the logarithmic doses of MCH giving the individual
PD causing either a 20% decrease of FEV1 (PD−20FEV1), a
40%, 45% or 50% decrease of sGeff (PD−40sGeff, PD−45sGeff,
PD−50sGeff, resp.), or a 20% decrease of FEF50 (PD−20FEF50).
A synopsis of the assessment of AHR by this technique is
presented in the Additional file 3. Break off criterion were
when a decrease in FEV1 > 20% was reached or symptoms
occurred. After having defined PD−40sGeffas the most dis-
criminating factor and in order to distinguish the degree of
AHR to MCH, patients were classified into 4 functional se-
verity groups: (1) non-reactive if PD−40sGeff ≥ 2.0 mg, (2)
low-reactive if PD−40sGeff ≥ 1.0 mg but < 2.0 mg, (3)
medium-reactive if PD−40sGeff ≥ 0.2 mg but < 1.0 mg, or (4)
severe AHR, if PD−40sGeff < 0.2 mg. Each provocation test
was terminated with 2 puffs of salbutamol inhaled from
spacer device.

Data analysis and statistical methods
The discriminative power of each lung function parameter
was evaluated by measures of diagnostic accuracy such as

sensitivity, specificity, positive predictive values (PPV),
negative predicting values (NPV), likelihood ratios (LR+;
LR-), the area under receiver operating curves (ROC), the
Youden’s index (J) and diagnostic odds ratios (DOR). Stat-
istical comparisons were performed applying McNemar
testing. Using these different statistical procedures several
aspects of diagnostic accuracy, such as predictive ability
and/or discriminative property of the MCT, could be eval-
uated [42]. The Additional file 4 (Statistical Approach) pro-
vides details of all the statistic methods applied. Diagnostic
accuracy was tested in a first step by cross-tabulation com-
paring the proportions of positive and negative reaction to
the MCH challenge for each parameter (sGeff, FEV1 and
FEF50) using Chi-squared tests. Statistical analysis was per-
formed with the IBM SPSS version 24.0 (SPSS Inc., Chi-
cago, IL). The limit of significance was a p-value of 0.05.

Results
Patient characteristics
A total of 484 patients (199 males, 51.1%; 285 females,
58.9%; age-range 9.11–87.1 years) were eligible for

Fig. 1 Print-screen, originally depicted from the Jaeger infant whole-body plethysmograph showing breath-by-breath tracings from which effective
specific resistance (sReff), and its reciprocal value, the effective, specific airway conductance (sGeff) are computed using the integral of the tidal
flow-volume area (upper tracing) and the integral of the plethysmographic shift-volume versus tidal volume area, the latter representing the specific
resistive work of breathing (middle tracing). The crossbar clearly demonstrates that the zero-flow points are perfectly in phase
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inclusion in the study stratifying patients into a group of
asthmatic patients (n = 337; 69.6%) and non-asthmatic
subjects (n = 147; 30.4%) previously diagnosed. Table 1
shows that in the gender distribution, more females than
males were found, especially in the group of asthmatics.
Non-asthmatic subjects were slightly older than asth-
matics. The distribution within age-classes (not shown)
revealed that the younger the collective, the more
asthmatics, and the older the collective, the more non-
asthmatic subjects were found. The stratification into
different functional groups assessed at baseline prior to
MCT shows for plethysmographic measurements normal
lung function in 83.1% of asthmatic patients and 80.3%
of non-asthmatic subjects. Interestingly, a considerable
percentage of patients presented with a pulmonary hyper-
inflation (FRCpleth > +1.645 SD), without or in combin-
ation with bronchial obstruction (sGeff < −1.645 SD).
Regarding spirometry, normal flow-volume curve indices
were found in 90.5% of asthmatic patients and 93.9% of
non-asthmatic subjects. Only a very minor percentage of
asthmatic patients (7.7%) presented with flow limitation
(FEV1 < −1.645 SD) at baseline.

Dose–response curves obtained by using different lung
function parameters
In Fig. 2 the dose-responses to MCH at each provoca-
tion level, expressed as percent changes from baseline
(BL set to zero) for each lung function parameter are
synoptically presented, comparing response in asthmatic
patients with non-asthmatic subjects. It can be shown
that the response assessed by sGeff was much quicker
and much more pronounced than the response assessed
by FEV1 or FEF50. The cumulative percent-responses at
each cumulative dose- (CD)-level demonstrate com-
pletely different response characteristics regarding the 3
target parameters. In asthmatic patients the cumulative
percent-response of sGeff was at the 1st PD-level (0.2 mg
MCH) 3.7 times more pronounced than with FEV1, 1.6
times than with FEF50 resp. At the 2nd CD-level (1 mg
MCH) the percent-response of sGeff was 2.4 times more
pronounced than with FEV1, 1.4 times more than with
FEF50 resp., and at the 3rd CD-level (2.2 mg MCH) the
percent-response of sGeff was 2.0 times more pro-
nounced than with FEV1, 1.3 times more than with
FEF50 resp. By nature the percent-response in non-
asthmatic subjects was 1.5 to 2.9 times lower than in
asthmatic patients, but the differences in percent-
responses between the lung function parameters were
even more pronounced.

Diagnostic accuracy of assessing AHR by using different
lung function parameters
All indices contributing to the assessment of diagnostic
accuracy (Additional file 4: Statistical Approach) are

summarized in Table 2, differentiating between asth-
matic patients and non-asthmatic subjects. Since the
cut-off level for sGeff is not yet clearly defined, we
first compared the 3 potentially valuable thresholds
PD−40sGeff, PD−45sGeff, and PD−50sGeff. Optimal deter-
mination as represented by the highest sensitivity, highest
negative predictive values, highest diagnostic odds ratios
(DOR) [43], lowest negative likelihood ratios, and highest
diagnostic effectiveness was found for PD−40sGeff, indicating
that PD−40sGeff is the most appropriate threshold for evalu-
ating AHR by sGeff. Whereas the PD−40sGeff level was
reached in all subjects by sGeff, the PD−20FEV1 was
not reached by FEV1 in 9.1% of subjects and in 6.4%
PD−20FEF50 by FEF50 respectively. Therefore, PD−40sGeff

measures AHR in comparison with PD−20FEV1 and
PD−20FEF50 with better properties of diagnostic
accuracy.

Test-duration and MCH-doses to achieve PD-levels
We found it of clinical relevance to compare the test dur-
ation and MCH-doses to achieve PD-levels by the different
target lung function parameters. Table 3 shows that the
test duration was significantly shorter for PD−40sGeff com-
pared to PD−20FEV1, or PD−20FEF50 (14:45 ± 5:54 min.
versus 17:46 ± 5:16 min; 16:17 ± 5:36 min respectively).
Consequently, the provocation doses to which subjects are
exposed to MCH were significantly lower for PD−40sGeff

compared to PD−20FEV1, or PD−20FEF50 (0.495 ± 0.491 mg
versus 0.739 ± 0.615 mg; 0.625 ± 0.588, respectively).

Influence of pulmonary hyperinflation prior to or during
MCT
Changes of end-expiratory lung volume (EELV) during
MCT cannot be assessed by spirometry, especially not a
shift of the flow-volume curve towards total lung cap-
acity in consequence of dynamic hyperinflation, which
results in an elevated residual volume and a decrease of
inspiratory capacity and vital capacity as well. However,
a shift of EELV toward total lung capacity may have an
influence on the magnitude of FEV1. In 63 of 337 asth-
matic patients (18.7%) pulmonary hyperinflation was ob-
served prior to testing, or was developed during MCT.
In Fig. 3 response to MCH is compared in all subjects
differentiating those with pulmonary hyperinflation
which those without pulmonary hyperinflation. There
was a much more pronounced AHR in patients with
pulmonary hyperinflation (mean diff in PD−40sGeff:
7.5%, n.s.; PD−20FEV1: 5.8% p < 0.001; PD−20FEF50:
7.6%, n.s.). Noteworthy to realise that pulmonary
hyperinflation influenced AHR measured by PD−20FEV1

significantly. Moreover interestingly, differences were not
significant for PD−40sGeff. This may be a formal proof, that
the assessment of AHR using the integral method of sGeff,
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Table 1 Subject’s characteristics (N = 484; 199 males (41.1%, 285 females (58.9%), age-range (9.1–87.1 years

Asthmatic patients
n = 337

Non-asthmatic subjects
n = 147

Upper airway Cough
syndrome (UACS)

Gastrooesophageal
reflux disease (GERD)

Chronic Cough (smoking,
post-infection, unknown)

Symptom complex (dyspnea,
chest tightness, hyperventilation,
somatisation)

All non-asthmatic subjects

n (% distribution) 337 (69.6) 55 (37.4) 40 (27.2) 30 (20.4) 22 (15.0) 147 (30.4)

Gender male/female (% distribution) 129/208 (38.3/61.7) 26/29 (47.3/52.7) 18/22 (45.0/55.0) 18/12 (60.0/40.0) 8/14 (36.4/63.6) 70/77 (47.6/52.4)

Age in years (mean ± SD) (age-range) 41.3 ± 18.9 (9.1-87.1) 47.0 ± 17.0 (10.6-80.5) 55.0 ± 15.3 (26.3-83.1) 55.2 ± 17.3 (15.9-82.8) 40.4 ± 18.4 (13.9-72.9) 49.9 ± 17.5 (10.6-82.8)

Functional Characteristics of plethysmographic measurements assessed by z-scores n (% within group)

Normal LF 280 (83.1) 42 (76.4) 31 (77.5) 26 (86.7) 19 (86.4) 118 (80.3)

Pulmonary hyperinflation (PHI) 28 (8.3) 12 (21.8) 7 (17.5) 2 (6.7) 3 (13.6) 24 (16.3)

Bronchial obstruction (O) 26 (7.7) 1 (1.8) 2 (5.0) 0 0 3 (2.0)

PHI and O 3 (0.9) 0 0 2 (6.7) 0 2 (1.4)

Functional Characteristics of spirometric measurements assessed by z-scores by plethysmography n (%)

Normal F-V curve 305 (90.5) 50 (36.9) 40 (100) 29 (96.7) 19 (86.4) 138 (93.9)

Flow limitation (FL) 26 (7.7) 5 (9.1) 0 1 (3.3) 3 (13.6) 9 (6.1)

SAD 1 (0.3) 0 0 0 0 0 (0)

FL & SAD 5 (1.53) 0 0 0 0 0

LF lung function, PHI pulmonary hyperinflation (FRCpleth > 1.645 SD), O airway obstruction (sGeff < 1.645 SD), F-V flow-volume, FL flow-limitation (FEV1 < −1.645 SD), SAD small airway dysfunction (FEF50 < − 1.645 SD)
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evaluates changes of airway mechanics concomitantly with
changes of EELV during MCT.

Receiver operating characteristics
Receiver operating curves (ROC) describing the relation-
ship between sensitivity and specificity of percent
changes during MCT of the 3 lung function parameters
are given in Fig. 4. The area under the curve (AUC)
for absolute change of sGeff yielded the greatest value
for PD−40sGeff (.859; 95% CI: .857-.897) compared to
PD−45sGeff and PD−50sGeff on one hand, and

compared to PD−20FEV1 (.749; 95% CI: .705-.793) and
PD−20FEF50 (.729;) 5% CI: .680-.778) on the other hand.
Considerable differences are also found regarding the
Youden J-index and the likelihood ratios, both estimates
of diagnostic test performance.

Discussion
Key findings
The principal goal of our study was to demonstrate that
the performance of MCTs using the plethysmographic
technique in addition to the spirometric approach offers

Fig. 2 Dose–response curves of methacholine at each consecutive provocation levels (PD1: 0.2 mg; PD2: 1.0 mg; PD3: 2.2 mg methacholine
and reversibility to a ß2-agonist) referred for effective specific conductance (sGeff), forced expiratory volume in one second (FEV1) and forced
expiratory flow at 50% vital capacity (FEF50) in relation to the PD-level −20% (PD-20) for FEV1 and FEF50, PD-level −40% (PD-40) for sGeff resp.,
regarding asthmatic patients (A = in comparison with non-asthmatic subjects (non-A)
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some fundamental benefits, such as independence from
deep inspiration, and hence, modulation of the airway
calibre [10, 31–36], avoidance of forced expiratory
manoeuvres, and hence the subject’s cooperation and co-
ordination, which is known to change the airway respon-
siveness during the test procedure [34, 37, 38]. There are
two important denouements, which are achieved, if the
spirometric assessment of AHR is combined with whole-
body plethysmography. First, MCTs based on a ple-
thysmographic approach offers improved diagnostic ac-
curacy. Second, the broncho-provocating process by
MCH in relation to the development of pulmonary
hyperinflation and/or the phenomenon of dysanapsis,
the ratio FEF25–75/FVC thought to be a surrogate meas-
ure of airway size relative to lung size significantly asso-
ciated with AHR [44]. The present study positively
confirms the findings of Nensa et al. [10] reinforcing
sReff, and its reciprocal value sGeff respectively, as the
most useful target parameters in the detection of AHR.
Due to our observations of much higher percent-
response to MCH by PD−40sGeff than by PD−20FEV1, we
suggest, that some false negative PD−20FEV1 tests re-
sulted in an underestimation of the severity of AHR, and
hence potentially missed the diagnosis of asthma. In the
following discussion we would like to focus on some im-
portant aspects of MCT performed by whole-body
plethysmography, if combined with the spirometric as-
sessment. Furthermore, we evaluate the physiological

aspects of the so-called dysanapsis [13, 14], which was
found to be an important determinant of AHR to MCH,
and hence airway narrowing during MCT by different
author-groups [15–17, 45].

Diagnostic accuracy
There is an increasing interest to define proximity of
measurement results comparing different test proce-
dures. Recently Porpodis et al. [46] compared the diag-
nostic validity of MCH with mannitol. Based on their
spirometric PD−20FEV1-results they found that both
challenge tests were equivalent in diagnosing asthma. In
the present study, however, we first look at the accuracy
of different target lung function parameters, which could
be discriminative between “asthma” and “non-asthma”.
The most remarkable finding of the present study is that

the sGeff with a provocation level of PD−40presented the
highest diagnostic accuracy (sensitivity, specificity likelihood
ratio, diagnostic odds ratios, ROC curves) for the diagnosis
of asthma. In comparison with PD−20FEV1 and PD−20FEF50
the response-pattern to MCH evaluated by PD−40sGeff was
consistently different. Identical agreement regarding sever-
ity of AHR was only found in 159 (32.9%) cases (44 severe
AHR, 50 moderate AHR, 19 low AHR, 46 no AHR). In
comparison to PD−40sGeff, AHR-responses of PD−20FEV1

were observed in 83 (24.9%) cases only one PD-level later,
in another 73 (21.9%) cases only two PD-levels later, and in
20 (6.0%) cases even only three PD-levels later.

Table 2 Measures of MCH-challenge procedures computed for response characteristics of sGeff, FEV1 and FEF50
PD-40sGeff PD-45sGeff PD-50sGeff PD-20FEV1 PD-20FEF50

N 484 484 484 484 484

PD-level not reached (%) 0 (0) 6 (1.2) 16 (3.3) 44 (9.1) 31 (6.4)

Diagnostic accuracy differentiating AHR from non-AHR in all patients but excluding patients not having reached PD-level

n (%) 484 (100) 478 (98.8) 468 (96.7) 440 (90.9) 453 (93.6)

Prevalence 69.6% 69.6% 69.6% 69.6% 69.6%

Sensitivity 93.2% 89.3% 82.8% 54.9% 71.5%

Specificity 35.4% 44.2% 52.4% 85.0% 55.1%

PPV 76.8% 78.6% 79.9% 89.4% 78.5%

NPV 69.3% 64.4% 57.0% 45.1% 45.8%

Diag. Odds Ratio (DOR) [33] 7.473 6.628 5.291 6.915 3.081

95% CI of DOR 4.347–12.847 4.123–10.655 3.443–8.133 4.189–11.417 2.061–4.605

pos. LR 1.443 1.600 1.739 3.660 1.592

neg. LR 0.192 0.242 0.328 0.531 0.517

Diagnostic effectiveness 0.756 0.756 0.736 0.641 0.665

Cumulative percent-response in all patients (asthmatics and non-asthmatic subjects) at each provocation level n/n (%)

1st PD level (%) 161/484 (42.4) 126/484 (26.0) 94/484 (19.4) 94/484 (9.7) 99/484 (20.5)

2nd PD level (%) 362/484 (74.8) 326/484 (67.4) 296/484 (61.2) 217/484 (44.8) 280/484 (57.9)

3rd PD level (%) 415/484 (85.7) 395/484 (81.6) 376/484 (77.7) 270/484 (55.8) 344/484 (71.1)

No AHR detected 104/484 (21.5) 132/484 (27.3) 164/484 (33.9) 302/484 (62.4) 206/484 (42.6)

PD provocation dose, PPV positive predictive value, NPV negative predictive value, LR likelihood ratio, DOR diagnostic odds ratio [33]
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Furthermore, in contrast to PD−40sGeff, the level of PD
−20FEV1was not reached in 65 cases (13.5%). It follows
that in 67.1% of asthmatic patients, a disagreement regard-
ing MCH-response between PD−40sGeff and PD−20FEV1

was found. Since the diagnosis of asthma was primarily
based on the results of AHR evaluated by PD−20FEV1 the
question remains open whether or not some asthmatics
are hidden in the collective of patients diagnosed as
chronic cough disease. This question, however, can only be
answered by a properly planned prospective study.

Deep inspiration during MCT
It has well been recognised that deep inspirations play a
major role in modulating airway calibre and airway re-
sponsiveness. In healthy subjects, deep inspirations re-
duce the level of pharmacologically induced airway
obstruction by bronchodilation [45], whereas prohibition
of taking deep breaths enhances the reaction to a
broncho-constrictor agent [33]. Moreover, it has been
recognised that inhalations to total lung capacity are
broncho-protective, particularly in subjects with border-
line AHR and non-asthmatics [34]. However, it has also
been shown, that in asthmatics with mild AHR, deep in-
halations do not produce a significantly lower response
to MCH [37, 47] than tidal breathing [40].

Site of action and interrelationship with dysanapsis
For many years it has been recognised that one factor deter-
mining the presence of AHR to broncho-provocative agents
such as MCH is airway size. It varies from one individual to
another, and some of this variability cannot be explained by
differences in lung size between individuals [15, 16]. The
term “dysanapsis” was initially proposed by Green et al. [13]
to describe this disproportionate, but physiologically normal
and gender-specific growth between airways and lung par-
enchyma. The wide variation in maximal expiratory flow
rates between individuals with similar lung size was inter-
preted to mean that there is no consistent association be-
tween lung and airway size. Mead [14] determined the
association between airway size and lung size in adult
women and men. He found that healthy adult men have air-
ways that are larger in diameter than the airways of women.
Moreover, it was concluded that women and boys have air-
ways that are smaller relative to lung size compared to men,
and therefore, the apparent gender-based differences occur
late in the growth period. These findings were confirmed by
Shell et al. [48], demonstrating evidence for gender-specific
dysanapsis as shown by computer tomography (CT) im-
aging. There are significant male–female differences in the
luminal areas of the larger and central airways, which are
not accounted for by differences in lung size.

Table 3 Test-duration and provocation-doses of methacholine (mg) needed to achieve the different provocation-dose levels

Comparison of average test-duration until different PD-levels reached

Number Mean SD Lower 95%CL Upper 95%CL

PD40 sGeff 484 14:45 05:54 14:15 15:14

PD20 FEV1 484 17:46 05:16 17:18 18:14

PD20 FEF50 484 16:17 05.36 15:47 16:47

Test-duration: sGeff < FEV1; sGeff < FEF50; FEF50 < FEV1 (p<0.001)

Provocation-doses of methacholine (mg) needed to reach the different PD levels

PD40 sGeff

AHR 409 .495 .491 .447 .543

No AHR 75 2.185 .059 2.17 2.197

PD20 FEV1

AHR 176 .739 .615 .647 .830

No AHR 243 2.189 .044 2.183 2.194

PD-level not reached 65 .873 .450 .761 .985

PD20 FEF50

AHR 307 .625 .588 .559 .691

No AHR 146 2.188 .046 2.180 2.195

PD-level not reached 31 .936 .496 .754 1.117

Comparison between the 3 test procedures assessed by summary independent sample t-test

mean diff. SE t Significance

PD40 sGeff versus PD20 FEV1 .244 .048 5.088 p<.000

PD40 sGeff versus PD20 FEF50 .130 .040 3.223 p=.001

PD20 FEV1 versus PD20 FEF50 .114 .056 2.011 p=.045
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Forced expiratory flow between 25 and 75% of vital
capacity (FEF25–75) is considered as the most effort-
independent part of the flow volume curve. This fraction
is very sensitive regarding flow-limitation in peripheral
airways, when chronic airflow obstruction is present
[13]. Since direct measures of airway mechanics and
lung size are often not available concomitantly, and
FEF25–75 and forced vital capacity (FVC) are measured
routinely during forced breathing manoeuvres, the ratio
between FEF25–75 and FVC has been taken as a surro-
gate measure of dysanapsis [7, 13, 14, 17, 44]. Parker et
al. [17] showed that when subjects were classified into
four groups according to their FEF25–75/FVC ratio, sub-
jects with lowest ratio also had the lowest PD−20FEV1,
supporting the notion that subjects who are more

sensitive to MCH have smaller airway calibres in relation
to their lung size. They concluded that baseline FEF25–75/
FVC ratio could be a determinant of AHR to MCH.
Moreover, Mirsadraee et al. [7] showed that the diagnostic
accuracy of PC−20FEF25–75/FVC and PD−20FEF50 were
similar to PD−35sGaw and superior to PD−20FEV1.
The analysis in a subgroup of our asthmatic patients

(n = 363) regarding dysanapsis expressing the FEF25–75/
FVC ratio as age- and gender-specific quartiles showed
significant association to the severity of AHR assessed
by PD−40sGeff, PD−20FEV1, and PD−20FEF50. However,
within these quartiles of dysanapsis the response-pattern
of the 3 lung function parameters were completely dif-
ferent. The differences between severe and medium
AHR can be much better presented by PD−40sGeff

Fig. 3 Response to methacholine in asthmatic patients comparing those with initial or developed pulmonary hyperinflation (n = 78;16.1%) with
those without pulmonary hyperinflation (n = 404;83.9%), assessed by forced expiratory volume in one second (FEV1) and forced expiratory flow at
50% vital capacity (FEF50) and the effective specific conductance sGeff
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(36.7%, 46.7%, resp.) than by PD−20FEV1 (8.2% 23.3%,
resp.), or by PD−20FEF50 (23.2%, 34.9%, resp.), if related
to the phenomenon of “airway narrowing” by FEF25–75/
FVC ratios < 25%ile, 25 to 50%ile. These associations
existed for both male and female asthmatics, indicating
that as opposed to Gaw and sGaw, AHR assessed by
sGeff represents a much wider range of central and per-
ipheral airways within the bronchial tree. In line with
Parker et al. [17] we therefore conclude that AHR assessed
by PD−40sGeff is in strong association with dysanapsis, and
may well provide a new conceptual approach, and hence
better understanding of mechanisms that predispose an in-
dividual to asthma. Within the group of non-asthmatic
subjects (n = 148) 14 (9.5%) (8 males, 6 females) presented
with a PD−40sGeff to be labelled as “severe”, within the sub-
group of dysanapsis with a ratio of FEF25–75/FVC < 25%ile,
and the question remains open whether in these patients
the diagnosis “asthma” was missed, because the diagnosis

“asthma” was only expressed when PD−20FEV1 demon-
strated AHR.

Limitations of method
The present study has some limitations. Firstly, because this
was a retrospective study, there is a potential risk that some
asthmatic patients might have been under-diagnosed. As
standard for the diagnosis “asthma” PD−20FEV1was taken
and it could well be that a certain number of patients with
cough-related diseases should be attributed to the groups of
“asthmatics”, if in fact PD−40sGeffindicated a moderate or
high AHR, and the subject presented with a low FEF25–75/
FVC ratio. Secondly, the database from which the evaluation
was performed offered only a small number of really healthy
subjects. It is not totally excluded that some “potential false
positive” responses in the non-asthmatic group might have
been more prevalent compared to healthy controls, and the
differences between the asthmatics and false positive

Fig. 4 Receiver operating curves (ROC) describing the relationship between sensitivity and specificity of percent changes obtained at the corresponding
provocation dose levels, PD-40sGeff for a 40% fall in effective specific conductance, PD-20FEV1 for a 20% fall in forced expiratory volume in one second,
and PD-20FEF50 for a 20% fall in forced expiratory flow at 50% vital capacity during methacholine challenge represented by methacholine
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responders might be smaller than with healthy subjects.
Thirdly, usually a retrospective study looks backwards and
examines exposures to suspected risks or protection factors
in relation to an outcome that is established at the start of
the study. In our case–control study, however, we evaluated
individual lung functions within 2 diagnostic groups, and for
each parameter the chance to obtain a comprehensive result
regarding AHR was the same. Great care was taken to avoid
biases for one or the other parameter and confounding fac-
tors such as the development of pulmonary hyperinflation
or dysanapsis were carefully addressed.

Conclusion
Important findings in regard to the performance of MCT
as a hallmark in the diagnosis of bronchial asthma could
be discovered, if the spirometric approach is combined
with the assessment by whole-body plethysmography.
Where diagnostic accuracy is required, there are striking
differences regarding the choice of target parameters.
Although the spirometric assessment based on changes in
FEV1 is regarded as the gold standard for evaluation of
MCT, this study shows some important physiological inad-
equacies, to be considered as prerequisites, which could
well be important for diagnosing “asthma”. Deep inspir-
ation in the set-up of test-sequences should be carefully
monitored, as it is inevitably linked to forced breathing ma-
noeuvres. Using the APS technology within the Jaeger
MasterLab plethysmograph, MCTs are by default based on
plethysmographic tidal breathing analysis, applying breath-
ing loops with an implementation of real-time multi-level
integral computation of all data points throughout the
whole breathing cycle. In this light the study demonstrates
that the plethysmographic sGeff features a highly sensitive
and reproducible target parameter for the assessment of
AHR by MCTs. Furthermore, the combined assessment of
AHR by spirometry and whole-body plethysmography of-
fers the possibility to include changes of EELV at FRCpleth

(and hence pulmonary hyperinflation), as well as the
phenomenon of dysanapsis to be included into the differ-
entiation between “asthmatic” and “non-asthmatics”.
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