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Abstract

Background: Nowadays, there is a considerable gap in knowledge concerning the mechanism(s) by which long-acting
B,-agonists (LABAs) and long-acting muscarinic antagonists (LAMAS) interact to induce bronchodilation. This study
aimed to characterise the pharmacological interaction between glycopyrronium bromide and indacaterol fumarate and
to identify the mechanism(s) leading to the bronchorelaxant effect of this interaction.

Methods: The effects of glycopyrronium plus indacaterol on the contractile tone of medium and small human isolated
bronchi were evaluated, and acetylcholine and cAMP concentrations were quantified. The interaction was assessed by
Bliss Independence approach.

Results: Glycopyrronium plus indacaterol synergistically inhibited the bronchial tone (medium bronchi, +32.51 %
+7.86 %; small bronchi, +28.46 % + 5.35 %; P < 0.05 vs. additive effect). The maximal effect was reached 140 min
post-administration. A significant (P < 0.05) synergistic effect was observed during 9 h post-administration on the
cholinergic tone, but not on the histaminergic contractility. Co-administration of glycopyrronium and indacaterol
reduced the release of acetylcholine from the epithelium but not from bronchi, and enhanced cAMP levels in
bronchi and epithelial cells (P < 0.05 vs. control), an effect that was inhibited by the selective KCa™ channel blocker
iberiotoxin. The role of cCAMP-dependent pathway was confirmed by the synergistic effect elicited by the adenylate
cyclase activator forskolin on glycopyrronium (P < 0.05 vs. additive effect), but not on indacaterol (P> 0.05 vs. additive
effect), with regard of the bronchial relaxant response and cAMP increase.

Conclusions: Glycopyrronium/indacaterol co-administration leads to a synergistic improvement of bronchodilation by
increasing CAMP concentrations in both airway smooth muscle and bronchial epithelium, and by decreasing
acetylcholine release from the epithelium.
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Background

Treatment for patients suffering from chronic obstructive
pulmonary disease (COPD) not controlled by a single
bronchodilator requires the addition of a second broncho-
dilator characterised by a different mechanism of action
[1]. We strongly support this therapeutic approach be-
cause using multiple drugs in combination may allow
lower doses of individual agents, decrease adverse effects,
simplify medication regimens and improve compliance [2].

To date, there is solid clinical information for combining
[»-adrenoceptor agonists and anti-muscarinic agents [3-5],
and recently, the true nature of the pharmacological inter-
action between long-acting [3,-agonists (LABAs) and long-
acting anti-muscarinic antagonists (LAMAs) was eluci-
dated in both ex vivo studies performed in human isolated
airways and clinical trials in COPD patients [6—8]. Indeed,
it is now clear that combining low concentrations of a
LABA with a LAMA leads to synergistic relaxation of hu-
man airway smooth muscle (ASM), which, in turn, pro-
vides optimised effectiveness while reducing the risk of side
effects [9].

Although the synergistic interaction between the LAMA
aclidinium bromide and the LABA formoterol fumarate
has been deeply characterised from a pharmacological
point of view [6], we cannot exclude the possibility that
different LABA/LAMA combinations such as glycopyrro-
nium bromide (NVA237) plus indacaterol fumarate
(QAB149) may show a different pharmacological inter-
action [10].

Moreover, although several pathways have been pro-
posed to clarify the intracellular cross-talk elicited by com-
bining [,-adrenoceptor agonists and anti-muscarinic
agents in ASM cells and parasympathetic neurons [9, 11],
there is still a considerable gap in knowledge with regard
to the pharmacological mechanism(s) by which a LABA
and a LAMA interact when they induce bronchodilation.

Therefore, this study aimed to characterise the nature
(additive or synergistic) of the interaction between glyco-
pyrronium and indacaterol in human isolated bronchi and
bronchioles and to identify the mechanism(s) leading to a
bronchorelaxant effect due to such an interaction.

Methods

Ethical approval and informed consent

Ethical approval and informed consent were obtained
from the University of Rome ‘Tor Vergata’ (R.S. 107.14/
2014, Rome, Italy), and were consistent with the guide-
lines of the 2009 National Committee of Bioethics, the
recommendations of the National Committee of Bio-
safety, Biotechnology and Sciences (Italy) on the collec-
tion of biologic samples for research purposes, the 2010
Italian ethical and legal recommendations concerning
biobanks and research biorepositories (Istituto Nazionale
dei Tumori — Independent Ethics Committee, 2010) and
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the Comitato Nazionale per la Biosicurezza, le Biotec-
nologie e le Scienze per la Vita (Raccolta di campioni
biologici a fini di ricerca, consenso informato, 2009;
available at: http://www.governo.it/bioetica/gruppo_-
misto/Consenso_Informato_allegato_Petrini_2009.pdf).

Human bronchial tissues

Tissue preparation

Macroscopically normal airways were obtained from 23
patients (13 male and 10 female; aged 63.2+2.2 years)
undergoing surgery for lung cancer, without a history of
chronic airway disease. Detailed demographic characteris-
tics of patients, including smoking history, are reported in
Table 1. Samples were taken from areas as distant as pos-
sible from the malignancy. Tissues were placed in Krebs—
Henseleit (KH) buffer solution (NaCl, 119.0 mmol; KCl,
5.4 mmol; CaCl,, 2.5 mmol; KH,POy, 1.2 mmol; MgSOy,
1.2 mmol; NaHCO3, 25.0 mmol and glucose, 11.7 mmol;
pH 7.4) containing indomethacin (5 pM) and transported
to the laboratory. None of the patients received treatment
with xanthines, Py-adrenoceptor agonists, glucocorticos-
teroids or muscarinic antagonists. Preoperative lung func-
tion parameters were generally normal, and there were no
signs of respiratory infections [12, 13].

Isolated bronchi

Airways studied in an isolated organ bath system were cut
into rings (thickness: 1-2 mm; diameter: 4-6 mm) and
transferred into a 10-mL High Tech 8 Channels Manual
Compact Organ Bath system (Panlab Harvard Apparatus,
Spain) containing KH buffer (37 °C) and aerated with O,/
CO, (95 %:5 %). Tissues were allowed to equilibrate, and
the KH buffer was constantly changed [12, 13].

Epithelium removal
In some experiments, the bronchial epithelium was mech-

anically removed by using a cotton-tipped applicator gently

Table 1 Demographic characteristics of human subjects

Characteristics Value
Gender (male/female) 13/10
Age (years) 632+22
Smoking status:

Current 14

Former 9
Pack years 455+84
FEV; (L 254+0.14
FEV; (% predicted) 93.15+3.24
FEV, reversibility (%) 373+168
FVC (L) 338+0.17
FEV1/FVC (%) 7523 £2.06

Data are expressed as mean + SEM
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rubbed for 5 sec on the luminal surface. It has been previ-
ously demonstrated that this manipulation does not pene-
trate the basal membrane and that the lamina propria
remains almost intact [14].

Videomorphometry

Airways studied using videomorphometry were cut into
precision cut lung slices (PCLS) (thickness: <500 um,
diameter: 0.65 + 0.06 mm) by a Motorised Advance Vibro-
slice equipped with ceramic blades (Campden Instru-
ments, UK) and then mounted into a visual imaging and
patching chamber connected to a Proportional Integral
Derivative Temperature Controller with dual thermistor
feedback CI7800 (Campden Instruments, UK), containing
KH buffer (37 °C) aerated with O,/CO, (95 %:5 %). Tissues
were allowed to equilibrate, and the KH buffer was con-
stantly changed [6, 15].

Human bronchial epithelial cells

Primary human bronchial epithelial cells were harvested by
gently scraping the luminal airway surface with a convex
scalpel blade #10, a procedure that does not penetrate the
basal membrane. Collected epithelial cells were pooled in
phosphate-buffered saline (PBS) and centrifuged at 500 g
for 5 min at 4 °C. Bronchial epithelial cells were resus-
pended, cultured with 1:1 mixture of LHC-9 and RPMI
1640 medium in a volume of 10° cells/mL and maintained
at 37 °Cin a 5 % CO, humidified incubator [14, 16].

Contraction measurement

Preparation of isolated bronchi and tissue vitality
Bronchial rings were connected to isometric force trans-
ducers Fort25 (WPI, UK). The signal was amplified by
PowerLab 8/36 and Octal Bridge Amp system (ADIn-
struments, UK), recorded and analysed using the Lab-
Chart 7 interface software (ADInstruments, UK). Tissues
were mounted on hooks and attached with a thread to a
stationary rod and the other end was tied with a thread
to an isometric force displacement transducer. Airways
were allowed to equilibrate by flushing with fresh KH
buffer solution. Passive tension was determined by gentle
stretching of tissue (0.5-1.0 g) during equilibration. The
isometric change in tension was measured by the trans-
ducer. The tissue vitality and maximal contractile respon-
siveness was assessed by acetylcholine at a 100 puM
concentration and/or by transmural stimulation (also called
electrical field stimulation [EFS]) at 25 Hz. These proce-
dures allowed the bronchial rings to be correctly positioned
between the hooks. When the response reached a plat-
eau, the rings were washed thrice and allowed to fur-
ther equilibrate [12, 14, 17].
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Videomorphometry

Bronchial contractility was evaluated by a stereo micro-
scope Zenith SZR-10 and a digital Optikam-B5 managed
by OptikaView?7 software (Optika Microscopes, Italy). Small
airways were allowed to equilibrate and continuously
flushed with fresh KH buffer solution until the luminal area
was stable. The area in the lumen was measured by the
image processing and analysis software ImageJ [18].

Acetylcholine and cAMP quantification

Bath supernatant, cell culture medium and airway tissues
were collected to quantify the release of acetylcholine and
the concentrations of cyclic adenosine monophosphate
(cAMP) by using enzyme-linked immunosorbent assay
(ELISA) kits according to manufacturers’ instructions in
triplicate experiments (BioVision, CA, USA; Cells Biolabs,
CA, USA).

Briefly, acetylcholine was converted to choline by adding
acetylcholinesterase. After that, free choline was oxidised
to betaine via the intermediate betaine aldehyde. The reac-
tion generated products which reacted with the choline
probe to generate colour, and the absorbance was mea-
sured at 570 nm. Standard curves were prepared using
cAMP standard, and sample concentrations were then de-
termined. The detection range of this kit was 10 pM to 5
nM cAMP (http://www.biovision.com/manuals/K615.pdf).

For cAMP detection, an anti-rabbit immunoglobulin
G (IgGQ) polyclonal coating antibody was adsorbed onto
a microtitre plate, and cAMP competed with peroxidase
cAMP tracer for binding to the plate in the presence of
rabbit anti-cAMP polyclonal antibody. Following incuba-
tion and wash steps, any peroxidase cAMP tracer bound
to the plate was detected by addition of substrate solu-
tion. The coloured product formed was inversely pro-
portional to the amount of cAMP. The reaction was
terminated by addition of acid, and absorbance was mea-
sured at 450 nm. Standard curves were prepared using
cAMP standard, and sample concentrations were then
determined. The detection range of this kit was 1 to
1000 pM/mL cAMP (http://www.cellbiolabs.com/sites/
default/files/STA-500-camp-elisa-kit.pdf).

Study design

Study 1: Evaluation of the interaction between glycopyrronium
plus indacaterol on the relaxation of human isolated bronchi
pre-contracted with acetylcholine and histamine

Following equilibration of the tissues, bronchial rings/
slices were submaximally contracted using acetylcholine
(2 uM, inducing 70 % of maximal contraction [ECy]).
After a plateau was reached, semi-logarithmic concen-
tration response curves (CRCs) were constructed for gly-
copyrronium and/or indacaterol, alone or together, at
their isoeffective concentrations. Each CRC was obtained
by the cumulative addition of glycopyrronium and/or
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indacaterol at intervals of 5-15 min to reach a stable
level of relaxation before the next dose administration.
In the control groups, cumulative concentrations of ve-
hicle were administered and used as a time control. At
the end of the experiments, papaverine (100 pM) was
added to the bronchial rings to determine the maximal
relaxant response achievable for each isolated bronchus.
These experiments were conducted in both an isolated
organ bath system and a PCLS system in order to evalu-
ate the relaxation associated with the airway smooth
muscle strength and due to the increase in intra-luminal
bronchial area [6, 15, 19, 20].

Further experiments were carried out in order to assess
the pharmacological interaction between glycopyrronium
and indacaterol in human isolated bronchi submaximally
contracted using histamine (20 pM, [EC5(]).

Study 2: Evaluation of the long-lasting interaction between
glycopyrronium plus indacaterol in human isolated bronchi
contracted using transmural stimulation

Each isolated organ bath was fitted with two platinum
plate electrodes connected to a stimulator 3165 Multiplex-
ing Pulse Booster (Ugo Basile, VA — Italy) and placed
alongside the bronchial rings for EFS. Experiments were
performed using trains of 10 Hz EFS (biphasic pulse with
a constant current of 10 V, 0.5 ms, 10 s) one pulse every
5 min in order to simulate the vagus nerve firing [13, 21].
After the start of the EFS trains, bronchi were treated for
60 min with glycopyrronium and/or indacaterol, alone or
together, at EC,o. After this step, tissues were washed
thrice and the experiment progressed for 12 h. During this
time, the bronchial rings were flushed with KH buffer so-
lution at a rate of 30 mL/h. At the end of the experiments,
papaverine (100 uM) was added to the bronchial rings to
determine the maximal relaxant response achievable for
each isolated bronchus [6, 15].

Study 3: Influence of glycopyrronium and indacaterol on
the release of acetylcholine and cAMP in human isolated
bronchi and airway epithelial cells

Human isolated bronchi and airway epithelial cells were
submaximally stimulated with carbachol at EC,, and
treated for 30 min with glycopyrronium and/or indaca-
terol, alone or together, at EC3y (glycopyrronium: 2.0
nM, indacaterol: 5.8 nM). After that, the tissues and su-
pernatants were collected to measure the concentration
of acetylcholine and cAMP. The release of acetylcholine
has been quantified also in isolated airways treated with
histamine (20 pM), in the presence or absence of glycopyr-
ronium and/or indacaterol, alone or together, at EC3, (gly-
copyrronium: 2.02 pM, indacaterol: 4.30 uM). Experiments
were also repeated in epithelium-denuded bronchi. In some
experiments, human bronchi were pre-treated for 30 min
with iberiotoxin (IbTX, 100 nM) [22-25] and the tetanus
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toxin (TeTX, 10 nM) [26—29] in order to block the KCa™
channels and inhibit the synaptic vesicle exocytosis of
acetylcholine, respectively. In further experiments, primary
human bronchial epithelial cells were pre-treated for
30 min with the organic cation transporter (OCT) inhibitor
quinine (100 uM) in order to reduce the release of en-
dogenous acetylcholine from epithelial cells [14].

Study 4: Role of cAMP-dependent pathway in glycopyrro-
nium/indacaterol interaction

The role of the cAMP-dependent pathway in modulating
the glycopyrronium/indacaterol interaction has been
assessed by treating for 30 min human isolated airways,
previously submaximally contracted by carbachol at EC;q,
with glycopyrronium and/or indacaterol and/or the activa-
tor of the catalytic subunit of adenylate cyclase (AC) for-
skolin, alone or together in double and triple combinations
administered at ECy, (forskolin: 56.2 nM; glycopyrronium
and indacaterol: concentrations reported in study 3) [30].
Some experiments were carried out also in epithelium-
denuded bronchi. The relaxant response was recorded and
tissues collected to quantify the concentration of cAMP.
Papaverine (100 uM) was used to determine the maximal
relaxant response and identify the maximal production of
cAMP achievable in human isolated bronchi.

Analysis

Airways tone, acetylcholine release and cAMP
concentrations

The contractile relaxation of isolated bronchial rings/slices
is expressed as a percentage of the maximal relaxation
(Emax strength/luminal area) induced by papaverine
(100 pM) on the acetylcholine EC;, plateau. Appropriate
curve-fitting to a sigmoidal model was used to calculate
the effect (E), the maximal response (E,,.,) and the dose
inducing 50 % and 70 % maximal effect (EC5q and EC,,
respectively). The equation used was: response (variable
slope) expressed as Y =Bottom + (Top — Bottom)/{1 +
107 [(LogECso — X)*HillSlope]}, and the pECsy value
(pECso = -LogECs) was used for statistical analysis of the
potency [31].

The contractile response to EFS is expressed as a per-
centage of the effect induced by control EFS preceding the
treatment with glycopyrronium or indacaterol. Polynomial
curves were constructed by fitting models of biological
data using nonlinear regression. Maximal reduction of the
EFS contractile tension (E,,,, relaxation) and the onset of
action (t;/;, min, indicating the time to evoke a half of
maximal relaxation) were identified. For every seven bron-
chial rings mounted in the isolated organ bath system, one
was used as a time control [13, 31, 32].

The release of acetylcholine and the concentrations of
cAMP were normalised to the wet weight of the isolated
airways and expressed as a ratio of the control samples.
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Interaction analysis

The pharmacological interaction between glycopyrronium
and indacaterol in human isolated bronchi was assessed
using the Bliss Independence (BI) theory, one of the most
commonly used models to study combined effects of sub-
stances iz vivo and in vitro. The main assumption of the BI
theory is that two or more agents act independently of one
another. In particular, if the criterion is fulfilled, the mode,
and possibly also the site of action of the compounds in the
mixture, always differ. The BI theory for two and three
agents are expressed by the following equation, respectively:
E(xy) = Ex + Ey - (EX*Ey) and  E(xy,z) =Ex+Ey+Ez-
(Ex*Ey)-(Ex*Ez)-(Ey*Ez)-(Ex*Ey*Ez), where E is the fractional
effect, and x, y and z are the doses of the compounds in a
combination experiment. If the combination effect is higher
than the expected value from the above equations, the inter-
action is synergistic, while if this effect is lower, the inter-
action is antagonistic. Otherwise, the effect is additive and
there is no interaction [6, 7, 9, 15, 17, 33]. In this protocol,
the BI equation was characterised by x = glycopyrronium
and y = indacaterol in both studies 1 and 2, and z = forskolin
was included in study 4. The BI approach was used to estab-
lish the expected relaxant effect and the expected increase
of cAMP induced by the interaction between the investi-
gated drugs at their isoeffective concentrations.

Head-to-head comparison

Previous published data on further LABA/LAMA combin-
ation (aclidinium/formoterol combination) are currently
available [6]. Considering that those results [6] have been
produced by our research group by performing ex vivo as-
says undergoing experimental condition identical to that of
Study 2, as reported in the above described “Study design”
section, we have carried out a head-to-head comparison of
glycopyrronium/indacaterol vs. aclidinium/formoterol com-
binations administered at low concentrations inducing
EC,, with regard of the pharmacological interaction elicited
in course of EFS lasting 12 h. The extent of synergistic inter-
action expressed as area under the curve at different time
intervals (AUC,_,), onset of action, E, . at plateau and dur-
ation of synergistic interaction have been analyzed.

Statistical evaluation

Values are presented as mean + SEM of n =3 bronchi
from different subjects. The statistical significance was
assessed by the t-test and one-way analysis of variance
(ANOVA), and the level of statistical significance was
defined as P<0.05. All data analysis was performed
using computer software (GraphPad Prism 5, CA, USA)
installed on an iMac computer.

Drugs
The test compounds are highly hygroscopic and were
stored in a dry place. The solutions were prepared fresh
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every day. The products used in this study were
obtained from the following sources, and stock solu-
tions were prepared as indicated below: acetylcholine
(Sigma-Aldrich, Italy), carbachol (Sigma-Aldrich, Italy), his-
tamine (Sigma-Aldrich, Italy), IbTX (Sigma-Aldrich, Italy),
indomethacin  (Sigma-Aldrich, Italy), glycopyrronium
bromide (NVA237, Novartis), forskolin (Sigma-Aldrich,
Italy), papaverine (Sigma-Aldrich, Italy), indacaterol
fumarate (QAB149, Novartis), quinine (Sigma-Aldrich,
Italy) and TeTX (Sigma-Aldrich, Italy).

Acetylcholine, carbachol, histamine and papaverine were
dissolved in distilled water; glycopyrronium, indacaterol
and forskolin were dissolved in dimethylsulfoxide (DMSO);
indomethacin was dissolved in ethanol and then diluted in
KH buffer solution. The maximal amount of ethanol
(0.02 %) did not influence isolated tissue response
[7, 13-15, 17, 19, 33]. Compounds were stored in
small aliquots at —80 °C until their use.

Results
Study 1
Isolated segmental bronchi
Both glycopyrronium and indacaterol induced potent
concentration-dependent relaxation of human isolated
bronchi submaximally pre-contracted with acetylcholine
(-Log dose concentration inducing 50 % maximal effect
[PECso] glycopyrronium: 8.44 +0.02; pECs, indacaterol:
7.39 £ 0.29); however, glycopyrronium was more potent
than indacaterol (P < 0.05). Both drugs completely abol-
ished the contractile tone induced by acetylcholine EC5,
(maximal effect [Ep.,] glycopyrronium: 99.68 % + 0.32 %;
Eax indacaterol: 92.28 % + 0.26 %) (Fig. 1a). No significant
modification in bronchial tone was noted with the control
vehicle used in the experiments (P > 0.05).
Glycopyrronium plus indacaterol induced a synergistic
relaxant response in human isolated bronchi submaxi-
mally pre-contracted with acetylcholine compared to the
expected response predicted by the BI theory (Fig. 1b).
In particular, the interaction between glycopyrronium
and indacaterol was significantly synergistic (P < 0.05) at
low concentrations (glycopyrronium: 0.4-3.4 nM, indaca-
terol: 0.1-40.0 nM) and induced a higher relaxant re-
sponse of +32.51 % +7.86 % than the expected additive
effect predicted by the BI theory (Fig. 1c).
Glycopyrronium and indacaterol induced similar
concentration-dependent relaxation of human isolated
bronchi submaximally pre-contracted with histamine
(pECs0 glycopyrronium: 4.99 + 0.15; pECs, indacaterol:
4.52 +0.18), although both drugs did not completely
abolish the contractile tone induced by histamine ECq
(Emax glycopyrronium: 85.20 % +8.58 %; E,.. indaca-
terol: 70.76 % + 11.98 %) (Fig. 1d). Glycopyrronium plus
indacaterol elicited additive effect in human isolated
bronchi submaximally pre-contracted with histamine,
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Fig. 1 a Relaxant effect of glycopyrronium and indacaterol in human isolated bronchi submaximally contracted (EC;0) with acetylcholine (a) and
histamine (d). Expected and observed relaxant response induced by glycopyrronium and indacaterol in human isolated bronchi submaximally
pre-contracted (EC,o) with acetylcholine (b) and histamine (e), as predicted by the Bliss Independence theory for the whole range of EC (% Ey).
The isoeffective concentrations of glycopyrronium and indacaterol have been indicated below the X-axis. ¢ Delta effect between observed and
expected relaxant response induced by glycopyrronium and indacaterol in human isolated bronchi submaximally pre-contracted with acetylcholine
(EC50), as predicted by the Bliss Independence theory for the whole range of EC (% E,,,). The isoeffective concentrations of glycopyrronium
and indacaterol have been indicated below the X-axis. Data are expressed as mean + SEM from experiments performed using samples
from n=3 different subjects. *P < 0.05, **P < 0.01 and ***P < 0.001 vs. expected relaxant response (statistical significance assessed by t test
analysis). EC,,: dose inducing n% maximal effect; E . maximal effect; GLY: glycopyrronium bromide; IND: indacaterol fumarate

when compared with the expected response predicted by
the BI theory (Fig. le) (P>0.05 vs. expected relaxant
effect).

Small airways using PCLS

Both glycopyrronium and indacaterol induced potent
concentration-dependent relaxation of human PCLSs
submaximally pre-contracted with acetylcholine (pECsq
glycopyrronium: 8.45+ 0.23; pECs, indacaterol: 6.53 +
0.18); however, glycopyrronium was more potent than
indacaterol (P <0.01). Both drugs completely abolished
the bronchial contraction induced by acetylcholine ECyq
(Emax glycopyrronium: 103.01 % +1.59 %; E,,.x indaca-
terol: 94.85 % + 1.70 %; P < 0.05) (Fig. 2a). No significant
modification in bronchial tone was noted with the con-
trol vehicle used in the experiments (P > 0.05).

Glycopyrronium and indacaterol induced a synergistic
relaxant response in human PCLSs submaximally pre-
contracted with acetylcholine compared to the expected re-
sponse predicted by the BI theory (Fig. 2b). In particular,
the interaction between glycopyrronium and indacaterol
was significantly (P < 0.01) synergistic at low concentrations
(glycopyrronium: 0.2-1.5 nM, indacaterol: 0.03-0.13 pM)
and induced an increased relaxant response of +28.46 % +
5.35 % compared to the expected additive response pre-
dicted by the BI theory (Fig. 2c).

Study 2

Low concentrations of glycopyrronium and indacaterol
(0.3 and 30 nM, respectively) yielded an approximately
20 % relaxant response on the bronchial contractile tone
induced by EFS 10 Hz during the first hour of the ex-
periment (Fig. 3a and b). In the presence of study drugs
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in the bath, and before the wash time, both drugs ad-
ministered alone were unable to elicit a 50 % reduction
in the contractile response to EFS. On the contrary, the
isoeffective mixture (ECyo) of low concentrations of gly-
copyrronium and indacaterol produced a maximal relax-
ation of 58.82 % + 15.32 % in the presence of the drugs,
and this relaxant effect increased up to 71.95 % + 2.37 %
at 175 min of the experiment, as measured during the
wash time (in the absence of drugs). The onset of action
for the mixture of drugs was 18.30 £ 9.30 min, and the
relaxant effect remained stable for up to 12 h of the ex-
periment (51.76 % + 13.57 %). The observed relaxant ef-
fect, induced by the drug mixture, was considerably
higher when compared to the expected relaxant re-
sponse during the first 9 h of the experiment (Fig. 3c).

The BI interaction analysis shows that low concentra-
tions of glycopyrronium and indacaterol produced a sig-
nificant (P <0.001) synergistic relaxant effect on the
transmural stimulation of human isolated bronchi for
9 h after treatment. The maximal relaxant response was
+32.18 % +5.44 % higher compared to the expected
additive response predicted by the BI theory, and was
reached by 140 min of the study (Fig. 3d).

Study 3

Glycopyrronium and indacaterol, administered alone or in
combination at low concentrations, reduced the release of
acetylcholine from human isolated bronchi (glycopyrro-
nium: -50.38 % + 1.77 %, indacaterol: —32.81 % + 3.45 %;
P <0.001 vs. control; combination, —-16.82 % +2.32 %;

P<0.01 vs. control). Removal of the epithelium re-
sulted in inhibition of the effects of both glycopyrronium
and indacaterol (+38.95 % +2.81 % and +39.90 % + 4.15 %,
respectively; P < 0.01 vs. epithelium intact bronchi) but did
not lead to modification of the acetylcholine concentrations
in the supernatant when the drugs were administered in
combination (P > 0.05 vs. epithelium intact bronchi). Inhib-
ition of KCa™" channels by IbTx completely abolished the
effect of glycopyrronium and indacaterol, administered
alone or in combination, on the acetylcholine release
(P>0.05 vs. control). The blockade of synaptic vesicle
exocytosis by TeTX inhibited the release of acetylcholine
(-59.99 % + 1.19 %, P <0.001 vs. control), and both glyco-
pyrronium and indacaterol further enhanced this effect
(overall, -68.38 % +1.79 %, P<0.001 vs. control)
(Fig. 4a).

No modification of acetylcholine release from primary
human bronchial epithelial cells was observed at low con-
centrations of glycopyrronium and indacaterol (P > 0.05 vs.
control), whereas the glycopyrronium/indacaterol combin-
ation significantly reduced the acetylcholine concentra-
tions in the culture medium (-36.63 % *+4.69 %, P < 0.01
vs. control). While the OCT inhibitor quinine inhibited
the release of endogenous acetylcholine from epithelial
cells (-37.13 % +3.29 %, P <0.01 vs. control) in the pres-
ence of glycopyrronium and indacaterol (-38.28 % +
5.73 % and -24.33 % +5.65 %, respectively; P<0.05 vs.
control), it did not influence (P> 0.05) the effectiveness of
the glycopyrronium/indacaterol combination (-31.26 % +
5.24 %, P < 0.01 vs. control) (Fig. 4b).
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Histamine significantly increased the release of acetylcho-
line (+61.12 % +19.25 %, P<0.05 vs. untreated airways),
whereas neither glycopyrronium nor indacaterol adminis-
tered alone and in combination significantly reduced the
histamine-induced acetylcholine release (-4.99 % +15.33 %
vs. histamine-stimulated airways). Neither epithelium
nor TeTX significantly modified the release of acetyl-
choline mediated by histamine, also in the presence
of glycopyrronium and/or indacaterol (P > 0.05 vs. epi-
thelium intact airways and TeTX untreated airways)
(Fig. 4c).

Although the cAMP concentrations in the isolated bron-
chi were significantly enhanced with indacaterol
(+167.60 % + 2.33 %, P < 0.001 vs. control) but not with gly-
copyrronium (P> 0.05 vs. control), combining low concen-
trations of glycopyrronium plus indacaterol induced a

noteworthy increase in cAMP concentrations (+479.44 % +
62.40 %, P <0.01 vs. control). In epithelium-denuded bron-
chi, the modulation of cAMP by glycopyrronium and
indacaterol was not different compared with that ob-
served in epithelium intact bronchi (P> 0.05). Pre-
treatment with IbTX inhibited the effects of indaca-
terol and the glycopyrronium/indacaterol combination
on the increase of cAMP concentrations (P <0.01 vs.
IbTX untreated) (Fig. 4d).

Neither glycopyrronium nor indacaterol modified the
cAMP concentrations of primary human bronchial epi-
thelial cells (P> 0.05 vs. control), whereas the combin-
ation of low concentrations of glycopyrronium plus
indacaterol induced a significant increase in cAMP con-
centrations (+29.08 % + 7.05 %, P < 0.05) compared with
the control (Fig. 4e).
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Study 4

Low concentrations of glycopyrronium/indacaterol and gly-
copyrronium/forskolin combinations inducing alone ECsq
synergistically increased the relaxant response of isolated
airways submaximally pre-contracted with acetylcholine
(+27.32 % +2.83 % and +30.19 %% + 6.87 %, respect-
ively; P <0.05 vs. expected additive effect), whereas the
indacaterol/forskolin combination elicited only an addi-
tive effect when compared with the expected relaxation
predicted by the BI theory (Fig. 5a). Although the triple
combination glycopyrronium/indacaterol/forskolin pro-
duced a greater broncholitic effect than that expected by
the BI theory, (+22.29 % + 8.67 %), the extent of this effect
was not significant when compared with the additive ef-
fect as predicted by the BI theory (P > 0.05) (Fig. 5b).

The glycopyrronium/indacaterol and glycopyrro-
nium/forskolin combinations both synergistically in-
creased the concentrations of cAMP (overall, +17.98 % +
6.29 %, P<0.05 vs. expected additive effect), whereas the
indacaterol/indacaterol and triple glycopyrronium/indaca-
terol/forskolin combinations induced only additive effects,

when compared with the expected effect as predicted by
the BI theory (P >0.05). The presence of epithelium did
not modulate the interaction characteristics for all drugs
combinations (P> 0.05 vs. epithelium-denuded bronchi)
(Fig. 5¢).

The increase of cAMP elicited by the double and triple
drugs combinations was significantly correlated with the
extent of bronchial relaxant response (Pearson’s r 0.95,
R? 0.90; P<0.05) (Fig. 5d).

Head-to-head comparison

The head-to-head comparison of glycopyrronium/indaca-
terol vs. aclidinium/formoterol combinations indicated that
the overall extent of synergistic interaction (AUC,_;,) and
onset of action (Ty,) were similar for both these drugs
combinations (P> 0.05). Synergism AUC, 3 and AUC 4 in-
duced by aclidinium/formoterol combination was signifi-
cantly greater that that elicited by glycopyrronium/
indacaterol combination (+41.70 + 13.49, P <0.01), as con-
firmed by the difference in E,, at plateau (+17.01 % +
7.56 %, P<0.01). On the other hand, the analysis of the
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duration of synergism indicated significant superiority of
glycopyrronium/indacaterol combination vs. aclidinium/
formoterol combination (+3 h, P < 0.05). Detailed compari-
son results are reported in Table 2.

Discussion

The results of this study demonstrate that both glycopyr-
ronium and indacaterol have the ability to induce potent,
significant and long-lasting relaxation of both medium

and small human isolated bronchi pre-contracted with
acetylcholine. The co-administration of glycopyrronium
and indacaterol produces a synergistic inhibition of
ASM tone via modulating the cAMP-dependent path-
way, especially when these drugs are administered at low
concentrations. Intriguingly, when glycopyrronium and
indacateriol were administered at low concentrations in
our experimental setting, their ratio was consistent with
that of the currently approved fixed dose combinations
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Table 2 Comparison of the synergism elicited by glycopyrronium/
indacaterol vs. aclidinium/formoterol combinations in human
isolated bronchi stimulated by EFS at 10 Hz

Glycopyrronium/ Aclidinium/ P
indacaterol formoterol
AUC
0-1h 2022 +838 27394351 NS
0-3h 7265 +18.72 10825+ 10.12 **
0-6 h 127.26 + 28.81 175.07 £ 16.86 **
09h 164.64 +41.88 186.40 +29.87 NS
0-12 h 17543 £61.55 159.25+53.19 NS
Onset (T;/5, min) 1830+930 155435 NS
Emax (plateau, %) 2593 +941 4294 +7.56 Fex
Duration of 9:00£0:11 6:00£0:12 xxx
synergism (h)

AUC o area under the curve for specific time intervals; EFS: electrical field
stimulation; NS: not significant (P > 0.05). Data are expressed as mean + SEM
from experiments performed using samples from n = 3 different subjects. **P < 0.01
and ***P < 0.001 (statistical significance assessed by two-way ANOVA)

(FDCs), namely 15.6/27.5 pg in United States and 50/
110 pg in European Union [34, 35].

Overall, the functional data described in this study are
consistent with those concerning the pharmacological
characterisation of the interaction between aclidinium
bromide and formoterol fumarate in human isolated
bronchi [6]. Nevertheless, the glycopyrronium/indaca-
terol combination produced a greater synergistic inter-
action in both medium bronchi and bronchioles when
compared with that induced by the aclidinium bromide/
formoterol fumarate combination. In addition, we must
highlight that while formoterol fumarate administered
alone did not completely relax small airways, indacaterol
was able to abolish the contractile tone of PCLS prepa-
rations [6]. As expected, the duration of the synergistic
effect of glycopyrronium plus indacaterol was markedly
longer than that elicited by combining aclidinium brom-
ide with formoterol fumarate. In fact, a significant syner-
gism between glycopyrronium and indacaterol was
detectable for at least 9 h. On the contrary, combining
aclidinium bromide with formoterol fumarate induced a
greater post-administration bronchorelaxant peak,
though the synergism was significant for only 6 h after
the administration of the two drugs [6]. In any case, the
head-to-head comparison of glycopyrronium/indacaterol
vs. aclidinium/formoterol combinations indicated that
the overall extent of synergistic interaction and onset of
action were similar for both these LABA/LAMA combi-
nations, at least undergoing the experimental conditions
set up in our ex vivo model of human isolated bronchi.
In fact, we must consider that a recent synthesis of the
currently available clinical data suggested for a rank of
effectiveness among the approved doses of LAMA/
LABA FDCs, with glycopyrronium/indacaterol (15.6/

Page 11 of 15

27.5 mg and 50/110 mg) eliciting greater FEV; increase
than aclidinium/formoterol (400/12 mg) in COPD pa-
tients, when compared with the respective monocompo-
nents [36]. However, this discrepancy may be related
with the fact that glycopyrronium/indacaterol and aclidi-
nium/formoterol combinations, administered at the cur-
rently approved doses, may be not delivered into the
lung at isoeffective concentrations [36].

When one agent interacts with its specific G protein-
coupled receptor (GPCR), the effect of another agent on its
GPCR may change, leading to a possible pharmacological
interaction [37, 38]. Since our study has provided evidences
for a synergistic cross-talk between an anti-muscarinic
agent and a [3,-adrenoceptor agonist undergoing cholinergic
stimulation, we have investigated whether the inhibition of
muscarinic GPCRs may transmit the signal to {3,-adreno-
ceptor GPCR also in course of histamine-induced broncho-
constriction. The bronchial contractile tone induced by
histamine is mediated by both direct activation of histamin-
ergic receptors expressed on human ASM, and facilitator ef-
fect of the acetylcholine release from parasympathetic nerve
terminals [38—40]. The findings of our study represent a sig-
nificant step forward the study of Aizawa et al. [40], by pro-
viding the evidence that the increase in isometric tension
elicited by histamine is manly mediated by the resease of
acetylcholine via the direct action of histamine on the vagus
efferent nerve terminals, independently by neural conduc-
tion. In fact, neither TeTX nor epithelium altered the
histamine-induced increase of acetylcholine release. Fur-
thermore, neither glycopyrronium nor indacaterol were able
to reduce the release of acetylcholine at control levels, even
when these drugs were administered in combination.
Therefore, the lack of synergism between glycopyrronium
and indacaterol on the human ASM contractility histamine-
mediated may be explained by the lack of a direct influence
of either these drugs on the bronchial histaminergic path-
way. Our results confirm that both anti-muscarinic agents
and Py-adrenoceptor agonists are less potent and effective
in reducing the bronchial tone elicited by histamine when
compared with their impact on the cholinergic tone [19, 33,
41], and that no cross-talk exists between muscarinic
and to P,-adrenoceptor GPCRs in course of histaminergic
stimulation.

Nevertheless, it has been recently reported that the
bronchoprotection by a LABA may be synergistically en-
hanced by a LAMA, at least in vivo in guinea-pigs [42, 43].
Indeed, the results of these studies are in evident contrast
with our findings, and probably any discrepancy may be re-
lated with the considerable differences between our meth-
odological approach and that performed by Smit and
colleagues [42, 43]. However, we must highlight that the
data we have presented here may be of great interest, be-
cause the responses of autonomic nervous system and
ASM are specific for species and for tissues [40], and
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results obtained from human isolated tissues have certainly
a greater translational potential when compared with those
obtained from animal models [44].

In this study, we have also attempted to elucidate the
mechanism(s) underlying the bronchorelaxant inter-
action between LABAs and LAMAs.

We assumed that the activation of fy-adrenoceptors by
indacaterol would have no effect on the release of acetyl-
choline from parasympathetic nerves, as previously docu-
mented by using human isolated trachea stimulated with
the P,-adrenoceptor agonist isoprenaline [45]. On the
contrary, our data showed that indacaterol was able to re-
duce the release of acetylcholine, a phenomenon that was
dependent by the bronchial epithelium and reverted by
blocking the IbTX-sensitive KCa*" channels.

Since we have confirmed the neuronal origin of acetyl-
choline by inhibiting its release using TeTX, we can as-
sume that in human bronchi indacaterol has a protective
role against the neuronal release of acetylcholine. There is
experimental documentation in laboratory animals that
[2-adrenoceptor stimulation may elicit a paradoxical fa-
cilitation of acetylcholine release from isolated trachea via
the activation of a cAMP/cAMP-dependent protein kinase
cascade [45]. Our data indicate that this is not the case in
human bronchial tissue.

Surprisingly, contrary to our assumption that an anti-
muscarinic agent would facilitate neurogenic transmis-
sion due to inhibition of the pre-synaptic muscarinic M,
autoreceptor, glycopyrronium inhibited the parasympa-
thetic release of acetylcholine [9]. So far, it is well known
that anti-muscarinic agents are not specifically selective
for the post-synaptic muscarinic M3 receptor [46]. In
fact, LAMAs may bind to human muscarinic M;-Mj5 re-
ceptors in a concentration-dependent manner, although
they dissociate more slowly from the muscarinic M3 re-
ceptor than they do from the others [47]. In particular,
glycopyrronium showed no selectivity in its binding to
the muscarinic M;-Mj receptors [48]. However, a 3-5—
fold higher affinity was observed for the muscarinic M3
receptor compared to the muscarinic M; and M, recep-
tors, and the Schild plot analysis demonstrated that gly-
copyrronium has a higher affinity for muscarinic M; and
Mj; receptors compared to the muscarinic M, autoreceptor
[48]. Thus, at the level of post-ganglionic parasympathetic
neurons, glycopyrronium prevalently inhibits the muscar-
inic M; receptor expressed on the body cell compared with
the inhibition elicited on the muscarinic M, autoreceptor
localised on the post-ganglionic fibre [49]. Since the mus-
carinic M; receptor is facilitatory to nicotinic receptors
and is involved in setting the efficacy of ganglionic trans-
mission [49, 50], the overall inhibitory effect of glycopyrro-
nium leads to reduced parasympathetic transmission.

Analogous to indacaterol, modulation of the acetylcho-
line release by glycopyrronium was related with the
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integrity of the bronchial epithelium and the functionality
of IbTX-sensitive KCa"™" channels. Unfortunately, we did
not detect any synergistic effect on the inhibitory release
of parasympathetic acetylcholine when low concentrations
of indacaterol and glycopyrronium were administered in
combination.

The autonomic control of human ASM tone is primarily
mediated by the release of acetylcholine from parasympa-
thetic fibers [51]. However, a non-neuronal cholinergic
system exists at the level human airways [52]. The synthe-
sis, recycling, storage and release of non-neuronal acetyl-
choline is mediated by several mechanisms such as choline
acetyltransferase (ChAT), ChAT-like enzymes, carnitine
acetyltransferase (CarAT), high-affinity choline transporter
(CHT1), vesicular acetylcholine transporter (VAChT) and
OCT [53, 54]. Thus, in addition to the parasympathetic re-
lease of acetylcholine, this transmitter may have a crucial
local auto-/paracrine role in regulating several aspects on
the innate mucosal defense mechanisms, including muco-
ciliary clearance, regulation of macrophage function and
modulation of sensory nerves [55].

Since our findings showed that removal of the bronchial
epithelium may influence the release of acetylcholine from
human bronchi, we further investigated the role of indaca-
terol and glycopyrronium on the bronchial non-neuronal
cholinergic system [52, 55, 56]. Interestingly, although inda-
caterol and glycopyrronium alone did not modify the re-
lease of acetylcholine from primary human bronchial
epithelial cells, a combination of these drugs inhibited the
epithelial release of acetylcholine with the same extent to
the inhibitory effect induced by the OCT inhibitor quinine.

Taken together, these evidences allow us ruling out a dir-
ect influence of synaptic postganglionic nerve endings in
the synergistic interaction between glycopyrronium and
indacaterol. Nevertheless, epithelium may be at least par-
tially responsible for the synergistic effect of glycopyrro-
nium/indacaterol, since the drug combination was effective
in reducing endogenous and non-neurogenic release of
acetylcholine from bronchial epithelial cells compared with
either drug administered alone. This latter evidence may
explain, to some extent, the relevant synergistic interaction
between glycopyrronium and indacaterol in PCLS prepara-
tions, since at the level of human bronchioles the density
of vagal innervation is insignificant or even absent, thus
suggesting a role of the non-neuronal cholinergic system
[57, 58]. In fact, in peripheral airways, the muscarinic M3
receptor is expressed and may be activated by acetylcholine
released from epithelial cells that may express ChAT in re-
sponse to inflammatory stimuli [59].

In any case, the function of muscarinic receptors local-
ized on human bronchial epithelium is still speculative.
The activation of muscarinic M; may induce proliferation
of isolated tracheal epithelial cells, and bronchial epithelial
muscarinic M3 receptor seems to mediate the release of
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diffusible factors, modulating contractility of underlying
ASM [60]. Furthermore, the role of muscarinic M, receptor
remains unclear in bronchial epithelium [61]. Therefore, al-
though the nature of these factors remains unknown, we
cannot exclude that muscarinic antagonists may reverse the
Gi/KCa"" channel inhibitory linkage induced by the activa-
tion of muscarinic M, receptor at the level of airway epi-
thelial cells, concurring with the similar effect elicited by
[B>-adrenoceptor agonists through intracellular cAMP ele-
vation and reducing the release of acetylcholine [37].

Since we have demonstrated that the synergism be-
tween a LABA and a LAMA cannot be adequately ex-
plained by the modulation of acetylcholine release, we
investigated further mechanisms that might directly en-
gage the ASM. Our data suggest that cAMP elevation
induced in ASM by combining low doses of glycopyrro-
nium plus indacaterol seems to be the main cause that
explains the synergistic interaction between these bron-
chodilators. In fact, a noteworthy enhancement of cAMP
levels was detected in human isolated bronchi treated
with the glycopyrronium/indacaterol combination com-
pared with isolated airways treated with the monocom-
ponents. As expected, the concentrations of cAMP were
not modulated by glycopyrronium, whereas indacaterol
enhanced the cAMP levels by approximately three fold,
independent by the presence of epithelium. On the other
hand, the glycopyrronium/indacaterol combination elic-
ited a noteworthy increase in cAMP concentrations up
to approximately seven fold.

Furthermore, our results suggest that the activity of
IbTX-sensitive KCa*" channels is crucial for generating
this significant cCAMP elevation. Stimulation of the {3,-
adrenoceptor activates the KCa™ channels through both
cAMP-dependent and -independent mechanisms, lead-
ing to hyperpolarisation of cell membrane and, conse-
quently, to ASM relaxation [62, 63]. To the best of our
knowledge, we have demonstrated for the first time in
human ASM that not only cAMP may influence the ac-
tivity of KCa'™™ channels, but also that the IbTX-sensitive
KCa"™" channels themselves may modulate cAMP in-
crease following the concomitant activation of the [B,-
adrenoceptor and inhibition of muscarinic receptors.

Several pathways have been proposed to explain the
intracellular cross-talk between [,-adrenoceptors and
muscarinic receptors at the level of the human ASM
[9]. In our study, the role of IbTX-sensitive KCa™*
channels seems to be predominant, since these chan-
nels may induce a direct reduction of ASM tone and,
equally important, regulate the intracellular concentra-
tions of cAMP [64, 65]. Our data suggest that the func-
tionality of IbTX-sensitive KCa™" channels is crucial
for allowing the synergistic interaction between a
LABA and a LAMA, leading to a sustained and intense
bronchorelaxant effect via cCAMP elevation.
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Since the bronchial epithelium expresses both ,-adre-
noceptors and muscarinic receptors [59], we also investi-
gated whether a LABA/LAMA combination might have
a role in the synthesis of cCAMP in primary human bron-
chial epithelial cells as well. Intriguingly, glycopyrronium
and indacaterol administered alone at low concentra-
tions did not modify the basal level of cAMP, whereas
the combination of these drugs increased the cAMP
levels in bronchial epithelial cells. This finding suggests
that the bronchial epithelium may also contribute to the
modulation of cAMP levels in human bronchi following
the stimulation of ,-adrenoceptors and inhibition of mus-
carinic receptors, thus supporting the synergistic interaction
elicited by the glycopyrronium/indacaterol combination.

The findings of this study prove that the synergistic
interaction between glycopyrronium and indacaterol is
both directly and indirectly mediated downstream by the
stimulation of the cAMP-dependent pathway. In fact the
block of muscarinic receptors by glycopyrronium induced
synergism in the presence of cAMP stimulant agents, such
as indaceterol or forskolin. On the other hand, modulating
the same intracellular pathway, by combining indaca-
terol with forskolin, produced only an additive relax-
ant response.

Our effort to characterize the interaction between dif-
ferent bronchorelaxant agents has demonstrated that
synergism may be elicited only when the pharmaco-
logical interventions are focused on specific different
pathways that, unexpectedly, converge in a noteworthy
downstream modulation of intracellular messengers spe-
cific for only one of the involved pathways, namely the
cAMP increase induced by the activation of {3,-adreno-
ceptors. In effect, no synergistic interaction was pro-
duced by the direct activation of AC by forskolin and
the concomitant stimulation of P,-adrenoceptors, even
in the presence of an anti-muscarinic agent.

Finally, but not less important, these findings fully cor-
roborate the main assumption of the BI criterion, that if
two or more agents act independently of one another, nei-
ther one interferes with the other, but each contributes to
a common result leading to additive effect. In fact, al-
though p,-adrenoceptors agonists and anti-muscarinic
agents interact with different and independent smooth
muscle cell membrane receptors, they orchestrate
downstream intracellular signalling pathways that inter-
fere each other eliciting synergistic bronchorelaxant
interaction [9]. Therefore, the addition of a second
bronchodilator agent should be assessed considering the
interference on the signalling cross-talk between differ-
ent intracellular pathways.

Conclusions
In conclusion, the findings of this study suggest that co-
administation of glycopyrronium and indacaterol at low
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concentrations leads to synergistic improvement of
bronchodilation in both medium and small airways,
when compared with either drug administered alone,
due to a significant increase in cAMP concentrations at
the level of both ASM and bronchial epithelial cells and
a decrease in the release of acetylcholine from the
epithelium.
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