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Abstract

Background: Asthma prevalence has increased world-wide especially in children; thus there is a need to develop new
therapies that are safe and effective especially for patients with severe/refractory asthma. CD4" T cells are thought to play
a central role in disease pathogenesis and associated symptoms. Recently, TRPV1 has been demonstrated to regulate the
activation and inflammatory properties of CD4" cells. The aim of these experiments was to demonstrate the importance
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of CD4™ T cells and the role of TRPV1 in an asthma model using a clinically ready TRPV1 inhibitor (XEN-D0501) and

Methods: Mice (wild type, CD4 = or TRPV1 ~7) and rats were sensitised with antigen (HDM or OVA) and subsequently
topically challenged with the same antigen. Key features associated with an allergic asthma type phenotype were
measured: lung function (airway hyperreactivity [AHR] and late asthmatic response [LARY]), allergic status (IgE levels) and

Results: CD4" T cells play a central role in both disease model systems with all the asthma-like features attenuated.
Targeting TRPV1 using either GM mice or a pharmacological inhibitor tended to decrease IgE levels, airway inflammation

Conclusion: Our data suggests the involvement of TRPV1 in allergic asthma and thus we feel this target merits further

Background

Asthma is an inflammatory airway disease characterised
by variable expiratory flow limitation and is associated
with respiratory symptoms, such as wheeze, shortness of
breath, chest tightness and cough [1]. Asthma preva-
lence has increased worldwide. It is estimated that it
affects approximately 300 million people and it is
believed that over 100 million more people will be af-
fected by 2025 [2]. Therefore, there is a need to develop
new therapies that are safe and effective, especially for
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patients with severe/refractory asthma. CD4" T cells are
thought to play a central role in the disease pathogenesis
and associated symptoms [3, 4]. Recently, it has been
shown that the ion channel, transient receptor potential
cation channel subfamily V memberl (TRPV1) is present
on T cells [5] and it regulates the activation and inflamma-
tory properties of CD4" cells [6, 7].

TRPV1 is a non-selective cation channel and is a
member of a large family of TRP ion channels. It can be
activated by a diverse range of endogenous and exogen-
ous chemical ligands, low pH and high temperatures [8].
In addition to the recent data demonstrating a role in
CD4" T cell function, previous reports have indicated an
association with asthma. For example, TRPV1 poly-
morphism has been associated with childhood asthma
[9] and a loss of function. The TRPV1 genetic variant
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has been shown to be associated with a lower risk of
childhood asthma or the presence of wheezing [10]. In
another study, TRPV1 gene expression and Th1/Th2 cy-
tokines were found to be increased compared to controls
and associated with childhood onset asthma [11]. Fur-
thermore, inflammatory stimuli have been reported to
increase the expression of TRPV1 [12] and other studies
have suggested an increase in TRPV1 expression in asth-
matic patients [13] and also in animal models of asthma
[14]. Based on this body of data, we, and others, have
hypothesised that TRPV1 plays a role in allergic asthma
[15-17]. The aim of this study was to determine the role
of TRPV1 in two distinct models of allergic asthma by
adopting two different approaches; incorporating the use
of genetically modified TRPV1~'~ animals and utilising a
selective, potent, clinically ready, small molecule TRPV1
inhibitor [18] to test the hypothesis.

Methods

Animals

Male and female C57BL/6 mice (16-20 g) were originally
obtained from Harlan UK Limited (Bicester, UK). Male
CD4~'~ mice were obtained via the Swiss Immunological
Mouse Repository. TRPV1~~ mice were purchased from
Jackson Labs. TRPA1~'~ mice were obtained from a gener-
ous donation from Prof. David Julius (University of
California) via Prof Peter Zygmunt (Lund University). All
of the genetically modified (GM) lines were on a C57BL/6
background and colonies of sufficient size, including the
wild type (WT) controls, were established in house. Age
matched male mice were used for the studies.Male Brown
Norway rats (175-225gm) were purchased from Charles
River, Germany, and housed for at least 5 days before be-
ginning treatments with food and water supplied ad libi-
tum. All protocols were approved by a local ethical review
process (Animal Welfare and Ethical Review Body) and
strictly adhered to the Animals (Scientific Procedures) Act
1986 UK Home Office guidelines. The in vivo work was
performed under a project licence (PPL70/7212) by staff
holding personal licences that were trained in the relevant
techniques and according to the ARRIVE guidelines [19].

Compounds and materials

XEN-D0501 was a gift from Dr J. Ford at ArioPharma Ltd
(Unit 3, Iconix Park, Pampisford, Cambs, CB22 3EG). He
also provided the pharmacokinetic data to guide dose se-
lection (along with internally generated pharmacodynamic
data [18]). Reagents were purchased from Sigma-Aldrich
(Poole, UK) unless otherwise described.

Confirmation of phenotype/genotype of the GM lines

While establishing the colony, the phenotype of the
CD4/“mice was confirmed by assessing cell types in the
lung. Wild type (WT) and CD4~~ male mice (18-22 gm)
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were culled with an overdose of pentobarbitone (200 mg/kg,
ip.). The blood was removed from the lung vessels by
perfusing with normal saline prior to harvesting. The tissue
was then cleaned, chopped and the cells collected via an
enzymatic digestion based on a method described previously
[20]. The numbers of CD4* cells, CD8" T cells, CD19*
cells (B cells), eosinophils, neutrophils and alveolar
macrophages were determined by flow cytometry. Lung
mast cell populations were determined by Toluidine
blue histological analysis (see below). The genetic status
of the TRP knockout lines was confirmed using a
standard genotyping procedure.

Flow cytometry

Single-cell suspensions were stained for surface markers
in PBS containing 0.1 % sodium azide and 1 % BSA for
30 min at 4 °C and fixed with 2 % paraformaldehyde.
Data was acquired on a BD FACS Fortessa machine (BD
Biosystems, UK). Forward scatter and side scatter gates
were used to exclude debris and dead cells were ex-
cluded using a fixable near IR dead cell stain kit for 633
or 635 nm excitation. Cell types were characterised by
their forward and side scatter profiles and by their
phenotypes (Table 1).

Mast cell enumeration

Mast cells were identified using a standard Toluidine
blue histological stain. Mice were culled via overdose
with Sodium Pentobarbitone and the systemic circula-
tion perfused with saline. The trachea was then can-
nulated and the lungs perfused with formalin before
being placed in formalin for 24 h. Following this, they
were transferred into 70 % ethanol until paraffin wax
embedding and slicing could take place. 4 pm sec-
tions were cut from the processed lung samples. The
sections were stained using a standard toluidine blue
staining protocol [21]. Briefly, the lung sections were
dewaxed using Histochoice clearing agent ° (Sigma,
UK) and rehydrated in a series of ethanol dilutions
(100 %, 90 %, 70 %). The slices were then washed in
deionised water and stained in 0.1 % Toluidine Blue
(Sigma, UK) for 5mins. Sections were then washed in
distilled water before the slices were dehydrated using
a series of ethanol dilutions (70 %, 90 %, 100 %). The
slices were left to dry at room temperature and
mounted onto glass slides. The stained sections were
analysed under light microscopy at x40 magnification,
the observer blinded to the specimen identities. The
numbers of mast cells per slide (3 slides per lung
sample) were counted.

House Dust Mite driven allergic asthma mouse model
Male mice were sensitised with HDM (0.5 pug/kg — from
Greer, USA, actual amounts of HDM) in saline (100 pl/



Baker et al. Respiratory Research (2016) 17:67

Table 1 Characterisation of immune cells by flow cytometry
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Cell Type Surface Marker Phenotype Monoclonal Antibody Conjugate Catalogue Number Dilution
B Cells CcD19" CD19-FITC (BD Biosciences) 557398 1/100
cD3™ CD3-PECy7 (eBioscience) 25-0031 1/200
Natural Killer (NK) Cells NKp46™ NKp46-PE (eBioscience) 12-3351 1/200
D3~ CD3-PECy7 (eBioscience) 25-0031 1/200
CD4" T Cells cD4* CD4-PerCP (BD Biosciences) 553052 1/200
CcD3" CD3-PECy7 (eBioscience) 25-0031 1/200
CD8" T Cells cps* CD8-APC (BD Biosciences) 553035 1/200
cD3* CD3-PECy7 (eBioscience) 25-0031 1/200
Neutrophils Ly-6GM" Ly6G-FITC (BD Biosciences) 551460 1/100
CD11b"" CD11b-PerCP (eBioscience) 45-0112 1/400
CD11cow CD11c-APC (BD Biosciences) 550261 1/200
Fa/80'°™ F4/80-PE (eBioscience) 12-4801 1/50
Alveolar Macrophages CD11plowint CD11b-PerCP (eBioscience) 45-0112 1/400
CD11cMan CD11¢-APC (BD Biosciences) 550261 1/200
F4/80"M9" F4/80-PE (eBioscience) 12-4801 1/50
Inflammatory monocytes/ macrophages CD11bMo" CD11b-PerCP (eBioscience) 45-0112 1/400
D11 CD11¢c-APC (BD Biosciences) 550261 1/200
F4/80M9" F4/80-PE (eBioscience) 12-4801 1/50
Eosinophils CD11pMah CD11b-PerCP (eBioscience) 45-0112 1/400
D11 CD11c-APC (BD Biosciences) 550261 1/200
SiglecFhan SiglecF-PE (BD Biosciences) 552126 1/200

mouse i.p.) on day 0 and 14. On days 24, 25 and 26
mice were challenged daily either with vehicle (saline,
intranasally) or 1.25 pg/kg HDM (in 50 pl dose volume,
intranasally) under light anaesthesia (inhaled isoflurane)
as described previously [22]. 72 h after the final HDM
challenge airway reactivity (AR) to inhaled 5-HT was
assessed using whole body plethysmography (WBP;
Penh). Previous work by our group, and others, have
highlighted the important role airway sensory nerves
play in respiratory disease [23], this is the reason lung
function measurements are performed in conscious an-
imals. One hour after AR assessment (to allow recovery
from the bronchospasm) the mice were culled with an
over dose of pentobarbitone (200 mg/kg, i.p.). Tissue
was collected for genotyping. Heparinised blood sam-
ples were collected via cardiac puncture for plasma
IgE levels. The lungs were lavaged via a tracheal can-
nula (3 times with 0.3 ml of RPMI, pooled) and total
white cell number and differential percentage in the
BAL fluid assessed (as described previously, [24]). The
remaining lavage samples were kept at —-80 °C. Total
IgE levels were measured using BD OPptEIATM set
for mouse immunoglobulin E (BD Biosciences,
Oxford, UK) in accordance with the manufacturer’s
instructions.

OVA-driven allergic asthma rat model

Male Brown-Norway rats (200-250 g) were sensitised on
day 0, 14 and 21 with vehicle (saline with Alum 50:50,
1 ml/rat, i.p.) or OVA (100 pg/rat) administered with
Alum (20 mg/rat aluminium hydroxide and 20 mg/rat
magnesium hydroxide). All rats were challenged with
OVA (1 % w/v, aerosolised for 30 min) on day 28 as previ-
ously described [23, 25]. Rats received vehicle (0.5 % MC
+02 % tween 80 in saline, 10 ml/kg, ip., 2 sites) or
TRPV1 inhibitor (XEN D0501, 10 mg/kg) 1 h before and
30 min after challenge. One hour after the antigen chal-
lenge the rats were placed in plethysmography chambers
and Penh levels monitored over night. Following this the
animals were given an overdose of pentobarbitone
(200 mg/kg, ip.) and a heparinised plasma sample col-
lected via cardiac puncture. Bronchoalveolar lavage (BAL)
was carried out (2 x 3 ml RPMI, 30 s each) and total/dif-
ferential leukocyte numbers assessed.

OVA specific IgE levels were measured using ELISA.
Briefly, 96 well plates were coated with OVA (20 ug/ml)
and then blocked. Samples were added and left over night
at room temperature. After washing Biotin anti-IgE was
added for an hour. After washing anti-IgE was detected
using horseradish peroxidase conjugated to streptavidin
and visualised with tetramethylbenzidine substrate.
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The level of airway inflammation was assessed on his-
tologically prepared lung samples from the rat and
mouse models using PAS (for mucus load) staining and
inflammatory scoring. The scoring was performed by a
trained technician blinded to the treatment groups. Full
methods have been described previously [22].

Data analysis and statistics

Data was expressed as mean + SEM of n observations.
A p value < 0.05 was taken as statistically significant and
the actual statistical test employed indicated in the figure
legends.

Results

Confirmation of phenotype/genotype of the GM lines

To confirm the phenotype of the CD4" T cell KO mice
and to investigate whether this impacted on other key
allergic effector cells in the lung, we performed FACS
analysis. Figure 1a shows an example FACS plot of lung
cells from a naive wild type mouse, the highlighted box
shows the presence of CD4" cells. The CD4" T cell KO
mice were devoid of CD4" cells (Fig. 1b). This did not im-
pact on the levels of other adaptive immune cell types
such as CD8" T cells and B cells (Fig. 1c-d) and tissue,
mast cells, eosinophil, neutrophil and alveolar macrophage
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numbers (Table 2). Genotyping data confirmed the status
of the TRPV1 and TRPA1~" lines (data not shown) and
the typical functional phenotype of these lines has been
demonstrated in previous publications [26].

Role of CD4" cells in the House Dust Mite driven allergic
asthma mouse model

Initially, to elucidate the role of CD4" T cells in our
murine model of allergic airway disease, WT and CD4~/~
mice were sensitised and challenged with HDM. HDM
challenge significantly increased serum total/specific IgE
(Figure2a and b), BAL eosinophilia (Fig. 2c) and airway
reactivity to inhaled 5-HT (Fig. 2d) relative to vehicle
challenged controls. CD4~“mice did not display such an
augmentation in these parameters, being indistinguish-
able from vehicle controls (Fig. 2); highlighting the crit-
ical function of this cell in the development of the
allergic asthma phenotype.

Role of TRPV1 in the House Dust Mite driven allergic
asthma mouse model

Subsequently, we addressed the role of key CD4" T cell
regulator, TRPV1, in our murine model of allergic airway
disease. As anticipated, HDM challenge significantly in-
creased serum IgE (Fig. 3a), BAL eosinophil (Fig. 3b),
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Fig. 1 Characterising the CD4" '~ mice. a Representative scatter plot of CD4"and CD8"cells in the lungs of naive mice and the mean data for
total CD4™ T cell numbers in wild type and CD4" KO mice (n =4, expressed at cells/mg of lung tissue) (b). ¢ & d) show the mean numbers of
CD8" and CD19" (B cells) cells, respectively. Data expressed as mean +/— s.e.m. *=p < 0.05 using students T-test (Mann-Whitney)
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Table 2 Characterisation of naive CD4™~ mouse line
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Wild type CcD4™~

Eosinophilia(cells/mg of lung tissue) (as % of total white cells)
Neutrophilia(cells/mg of lung tissue) (as % of total white cells)
Tissue mono/macs(cells/mg of lung tissue) (as % of total white cells)
Alveolar macs(cells/mg of lung tissue) (as % of total white cells)

Mast cells (cells/slide)

648+ 161 (4.3 %)
7361 £ 2260 (49.1 %)
686+ 179 (94 %)
241 +25 (1.6 %)
77 +£10

684+ 132 (6.3 %)
6443 £ 1048 (45.3 %)
639+ 132 (4.5 %)
292+48 (2.1 %)
66+12

lymphocytes (Fig. 3¢c) and airway reactivity to inhaled 5-
HT (Fig. 3d) in wild type mice. TRPV1,but not TRPAI,
KOs developed an attenuated allergic asthma phenotype
although these effects failed to reach statistical signifi-
cance (Fig. 3). There was no difference in cellular in-
flammation or airway reactivity in non-challenged
animals (WT vs TRPV1 or TRPA1 KO lines).

Role of TRPV1 channels in the allergic asthma rat model

Given the promising amelioration in pathological pheno-
type in the TRPV1™'~ mice, we investigated the thera-
peutic potential of manipulating this pathway in a
distinct pre-clinical animal model with a disparate aller-
gen. To determine the role of TRPV1 channels in the rat

model of allergic asthma we compare responses in ve-
hicle treated rats with those dosed with a selective
TRPV1 antagonist, XEN-D0501. The compound was
dosed after the animals were sensitised to focus the in-
vestigation on the allergic response rather than the de-
velopment of sensitisation. Antigen (OVA) sensitisation
caused a statistically significant increase in plasma OVA
specific IgE (Fig. 4a), BALF total cell numbers (Fig. 4b),
eosinophils (Fig. 4c), neutrophils (Fig. 4d) and lympho-
cytes (Fig. 4e) relative to vehicle control. Whilst OVA-
specific IgE levels were not impacted on by the TRPV1
inhibitor (Fig. 4a), blockade of the TRPV1 channel
resulted in a general reduction in the airway cellular
inflammation profile (Fig. 4), although as seen in the
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Fig. 2 Role of CD4™T cells in the House Dust Mite driven allergic asthma mouse model. a & b) Total and HDM specific IgE levels in the plasma,
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mouse model this failed to reach significance. These
changes were associated with a reduction in the LAR
signal (Fig. 5).

Histological assessment of the lung tissue from the
model systems are shown in Fig. 6. The levels of mucus
in the lung tissue were increased in the murine-HDM
model (panel A) but not in the rat-OVA model (data not
shown). The mice missing functional TRPV1 had re-
duced levels of mucus compared to the HDM challenged
wild type controls (Panel A). In both model systems we
measured an increase in the inflammatory score. This
was reduced by the TRPV1 inhibitor (Panel B).

Discussion

CD4" T cells are thought to play a prominent role in the
development of allergic asthma, thus targeting them is
considered to be a viable means to combat the disease. Re-
cently it has been shown that human and mouse CD4" T
cells express the ion channel TRPV1 [7]. Furthermore,
modulating TRPV1 can influence activation status, sur-
vival and, importantly, the release of mediators thought to
be important in the allergic phenotype [5, 6, 27]. Thus we
hypothesised that inhibiting the TRPV1 channel would re-
duce the activity of CD4" T cells thereby modulating the
allergic phenotype. To test this hypothesis we used
models of allergic asthma in which T cells are known to
play a prominent role. We have previously shown that
T cells play a dominant role in the OVA-driven Brown
Norway rat model which recapitulates an asthma-like
phenotype with regard the lung inflammatory response
and the LAR (a clinical endpoint that is often used to
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trial new asthma therapeutics) [20]. To parallel this
model system utilising an alternative antigen and a dif-
ferent species, we recently developed a HDM-driven
model in the mouse [22]. This model has a number of
advantages over the rat model including: the ability to
utilise a ‘disease-relevant antigen, the fact that Alum is
not required for the sensitising phase and because it ex-
hibits one of the cardinal characteristics of the clinical
asthma phenotype, AHR.

Before profiling the role of TRPV1 in these systems,
we confirmed a role for CD4" cells in the HDM-driven
model by utilising genetically GM mice that do not pos-
sess CD4" T cells. Using this model we compared the al-
lergic phenotype in wild type mice and in mice missing
functional TRPV1 (and TRPA1) channels. The data sug-
gests that TRPV1, but not TRPAI, plays a discrete role
in several of the functional endpoints assessed in this
model system including a reduction in plasma IgE levels,
airway cellular inflammation and AHR. In order to con-
firm a role for TRPV1 in the asthma phenotype we
employed an alternative model system/species config-
ured in the Brown Norway rat and in this case utilised a
clinically-ready pharmacological inhibitor, XEN-DO0501.
This enabled us to avoid any possible developmental is-
sues associated with using GM mice and study the effect
on the challenge phase, rather than both the sensitisa-
tion and challenge phase of the model (which is what is
studied in developmental KO mice). Interestingly, while
the impact on cellular inflammation is reminiscent of
the data in the mouse, the levels of IgE were not altered.
This may suggest that TRPV1 plays a role in both the
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B Vehicle
W XEN-D0501

b Area Under Curve Analysis
a 2000
201 ; 1500 P=00792
15 ] ' Vehicl Ant d
;% 10 SAL/OVA/Vehicle
T -8 OVA/OVA/Vehicle
o —4— OVA/OVA/XEN-D0501
5,
0 T T T |
0 100 200 300 400
Time after challenge (mins)
Fig. 5 Role of TRPV1 in the rat model. Effect of vehicle (0.5 % MC+ 0.2 % tween 80 in saline, 10 ml/kg, i.p, 2 sites; n=8) or TRPV1 blocker (XEN-
D0501, 10 mg/kg) 1 h before and 30 min after challenge in the rat allergic asthma model. The late asthmatic response (LAR) was monitored from
1 h after the end of challenge for 6 h. Panel (a) shows the raw LAR data and panel (b) depicts the mean Area Under the Curve. Data (n=8)
expressed as mean +/— se.m. *=p < 0.05 using students T-test (Mann-Whitney)
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Fig. 6 Role of TRPV1 in the mouse and rat model. Histological assessment of lungs from the mouse and rat models. Panel (a) represents the level
of mucus staining (PAS) in the mouse lungs after HDM challenge. Panel (b) shows the inflammatory score of the rat lungs after OVA challenge.

Data (n = 4-8) expressed as mean +/— s.e.m. # indicates statistical significance between vehicle challenged and antigen challenged (p < 0.05 using
students T-test, Mann-Whitney). * indicates statistical significance when TRPV1 is missing/inhibited, (p < 0.05 using students T-test, Mann-Whitney) )

OVA challenge

sensitisation and challenge phases; this would parallel
the concept of published data demonstrating a role for
TRPV1 on T cell function [6, 7]. The reduction in the
LAR signal was associated with reduced inflammatory
response. In summary, the data suggests that blockade
of TRPVI1 attenuates the allergic asthma phenotype
which is consistent with some previous studies [28-30].
Conversely, others have published that TRPV1 has no
role, or can protect against the development of allergic
inflammation in the airways [31, 32]. It is not clear why
there are these differences; potentially it could be due
the different allergens used to provoke the phenotype,
the species, whether validation utilised developmental
KOs or small molecule inhibitors (and which small mol-
ecule inhibitors) and the end-points recorded. However,
we have taken into account the differences in experi-
mental settings and have performed one of the most
comprehensive studies to date and have obtained a
broadly similar picture regardless of the parameters of
the model which all points to a discrete role for TRPV1
in the development of the asthma phenotype.

We have suggested a role for TRPV1 in modulation of
CD4" T cell function, but cannot rule out a role on other
cell types. Indeed, TRPV1 has been reported to be
expressed on many cell types in the airway including those
thought to play a key role in allergic asthma such as: mast
cells, macrophages, epithelial cells, smooth muscle cells,
leukocytes and dendritic cells [33-37]. Indeed Rehman et
al. have suggested TRPV1 inhibition could be beneficial in
attenuating airway epithelial injury and thus reduces
asthma features [27]. Furthermore, the TRPV1 receptor is
expressed on the peripheral terminals of airway specific,
vagal afferent nerves [38] and it has been suggested that
the LAR [23] and AHR [30, 39] are reflex events. In
addition, activation of this ion channel on sensory afferents
has been linked with the release of tachykinins/neuropep-
tideswhich could be involved in certain functional aspects
of the asthma phenotype such as inflammation and
bronchoconstriction [40]. It is not clear how the TRPV1
channel is being activated in the model systems. TRPV1 is
known to be activated by various pro-inflammatory media-
tors such as lipoxygenase metabolites which are reported
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to be increased in the asthmatic airway [8]. Furthermore,
the airway of asthmatic patients is thought to be at a lower
pH (from 5.2 to 7.1) and the pH is normalised with cor-
ticosteroid, treatment [41]. Thus this lower pH could be
an endogenous activator of TRPV1 in the diseased airway.

Conclusion

In conclusion, our data supports the view that targeting
TRPV1 could be of clinical benefit in patients with allergic
asthma, via a possible role in the modulation of CD4"
T cell function. This data, along with other recent publica-
tions, informs our thinking on the role of TRP channels in
the airways expanding their remit from the control of sen-
sory nerve function to a modulator of key cells involved in
adaptive immunity.
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