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17B-estradiol suppresses lipopolysaccharide-
induced acute lung injury through PI3K/Akt/SGKT
mediated up-requlation of epithelial sodium
channel (ENaC) in vivo and in vitro
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Abstract

inhibitor wortmannin in vivo and in vitro.

Background: 17(3-estradiol can suppress acute lung injury (ALl) and regulate alveolar epithelial sodium channel
(ENaQ). However the relationship between these two functions remains unclear. This study is conducted to assess
the role of ENaC and the PI3K/Akt/SGK1 signaling pathway in 173-estradiol therapy in attenuating LPS-induced ALI.

Methods: ALl was induced in C57BL/J male mice by intratracheal administration of lipopolysaccharide (LPS).
Concurrent with LPS administration, 173-estradiol or sterile saline was administered to ALl model with or without
the phosphoinositide 3-kinase (PI3K) inhibitor wortmannin. The lung histological changes, inflammatory mediators
in bronchoalveolar lavage fluid (BALF), wet/dry weight ratio (W/D) and alveolar fluid clearance (AFC) were measured
4 hours after LPS challenge in vivo. For in vitro studies, LPS-challenged MLE-12 cells were pre-incubated with or without
wortmannin for 30 minutes prior to 17p-estradiol treatment. Expression of ENaC subunits was assessed by reverse
transcriptase PCR, western blot, cell surface biotinylation, and immunohistochemistry. The levels of phosphorylated
Akt and SGK1 in lung tissue and lung cell lines were investigated by western blot.

Results: 17(3-estradiol suppressed LPS-mediated ALl in mice by diminishing inflammatory mediators and enhancing
AFC. 17B-estradiol promoted the expression and surface abundance of a-ENaC, and increased the levels of
phosphorylated-Akt and phosphorylated-SGK1 following LPS challenge. This induction was abolished by the PI3K

Conclusion: 17(3-estradiol attenuates LPS-induced ALl not only by repressing inflammation, but also by reducing
pulmonary edema via elevation of a-ENaC expression and membrane abundance. These effects were mediated,
at least partially, via activation of the PI3K/Akt/SGK1 signaling pathway.

Keyword: Acute lung injury (ALl), 17B-estradiol, Epithelial sodium channel (ENaC), Phosphoinositide 3-kinase
(PI3K), Akt, Serum and glucocorticoid-induced kinanse-1 (SGKT1)

Introduction

Acute Respiratory Distress Syndrome (ARDS), the severe
stage of Acute Lung Injury (ALI), is a devastating condi-
tion with a 30-60% mortality rate [1-3]. Several clinical
studies have indicated that females are more resistant to
ARDS, with lower morbidity and improved outcomes
compared to male patients [3-8]. Moreover, experimental
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studies in animal models suggest that 17p-estradiol,
the primary circulating estrogen in humans and ani-
mals, can have therapeutic effects on ALI through a
variety of mechanisms, including modulation the in-
flammatory response [9-14].

In addition to inflammation, ALI/ARDS induces ex-
tensive capillary damage, leading to non-cardiogenic pul-
monary edema. Therefore, the rate of alveolar fluid
clearance (AFC) is a crucial prognostic factor for ALI/
ARDS patients. Specifically, a reduced AFC rate is asso-
ciated with higher mortality in ARDS patients [15,16].
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AFC is mediated by ion transporters, including the al-
veolar epithelial sodium channel (ENaC). ENaC is a het-
eromultimeric protein composed of «, [} and y subunits.
This transporter is essential for the transepithelial absorp-
tion of sodium and fluid from alveolar spaces [17,18].
Recent studies have suggested a role for female sex
hormones (estrogen and progesterone) in the physiology
of alveolar ENaC. A recent single center study indicates
that women with ALI/ARDS-associated lung edema have
significantly higher rates of AFC compared to men [19].
Furthermore, ENaC mRNA levels are higher in female
rats compared to males [20]. In female rats, membrane
a-ENaC abundance is highest during the proestrus stage
of the estrus cycle, coinciding with maximal 17p-estradiol
levels [21]. Pharmacological prenatal deprivation of 17f-
estradiol and progesterone decreases amiloride-sensitive
AFC in newborn piglets, suggesting a role for ENaC in
controlling AFC [22]. Moreover, co-administration of 17p-
estradiol and progesterone can increase sodium transport
in alveolar epithelial cells by enhancing the expression and
activity of ENaC [23]. Taken together, these studies sug-
gest that female sex hormones can promote ion transport
and increase AFC by regulating alveolar ENaC.
17pB-estradiol exerts many of its biological functions
through regulation of gene transcription. However, 173-
estradiol can also act through non-genomic mechanisms
to rapidly activate signaling pathways and modulate pro-
tein expression, function and distribution [24,25]. For
example, 173-estradiol regulates phosphoinositide-3 kin-
ase (PI3K) and its direct downstream target protein kinase
B (PKB) (also known as Akt) to control inflammation,
proliferation and immunity [26-29]. This pathway pro-
vides a negative feedback mechanism for sepsis, inflamma-
tion and ischemia/reperfusion injury [30-32]. Moreover,
the PI3K/Akt signaling pathway can activate serum and
glucocorticoid-induced kinanse-1 (SGK1), a kinase that
can promote ENaC expression and activity [33-35]. This
could provide a potential mechanism by which PI3K could
regulate sepsis, inflammation, and ischemia/reperfusion
injury, however this has yet to be demonstrated conclusively.
Consistent with these findings, activation of the PI3K/
Akt by growth factors, hormones, or cytokines exerts
protective effects in animal models of ALI [36-39]. Fur-
thermore, estrogen is known to activate the PI3K/Akt
signaling pathway, contributing to the attenuation of
lung injury induced by trauma-hemorrhage and acute
pancreatitis [40,41]. Taken together, these findings suggest
that PI3K-dependent activation of ENaC by 17p-estradiol
may contribute to the gender dimorphism observed in
ALI/ARDS patients. However, this hypothesis has not
been adequately tested in experimental models.
Our present study aimed to confirm the effects of
17B-estradiol on LPS-induced ALI a classical model of
Gram-negative bacteria induced ALI. We specifically
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investigated the effects of 17B-estradiol on ALI-associated
pulmonary edema, ENaC expression, and the role of the
PI3K/Akt/SGK1 signaling pathway in these effects.

Materials and methods

Drugs and regants

Lipopolysaccharide (E. coli LPS serotype 0111: B4), 17f-
estradiol, wortmannin (PI3K inhibitor), Evans blue, and
sodium pentobarbital were purchased from Sigma (St Louis,
MO, USA). Rabbit anti-a-ENaC, B-ENaC, y-ENaC, p-actin,
pan-cadherin, rabbit anti- phospho-Akt (Ser308, Ser473) and
anti-total Akt antibodies were obtained from Abcam
(Cambridge, MA, USA). Rabbit anti-phospho-SGK1 (Ser422,
Thr256) and anti-total SGK1 antibodies were purchased
from Santa Cruz Biotechnology (Santa Cruz, CA, USA).
RNAiso plus, the PrimeScript RT Reagent Kit, and Premix
Taq version 2.0 were purchased from TaKaRa Biotechnology
(Dalian, China).

Animal preparation

All animal experiments were carried out on ten-week-old
male BALB/c mice (19-25 g) of SPF grade (Department of
Laboratory Animal Center, Chongqging Medical University)
following a minimum facility acclimatization period of 7 days.
All animals were housed in an air-conditioned room under a
12 hour (h) dark/light cycle and were granted free access to
water and food. All experimental protocols involving animals
were approved by the Ethics Committee of the Second
Affiliated Hospital of Chongqing Medical University
and implemented in accordance with the instructions
of National Institutes of Health Guild for the Care and
Use of Laboratory Animals.

LPS-induced ALl model in mice

Forty healthy male BALB/c mice were randomly divided
into four groups (n =10): control group, LPS group,
LPS + 17pB-estradiol group (E, group), LPS + 17B-estradiol +
wortmannin group (wortmannin group). Mice in each group
were anesthetized by intraperitoneal administration of
sodium pentobarbital (50 mg/kg). Mice were intratra-
cheally instilled with 5 mg/kg LPS in 50 pL sterile saline,
or sterile saline alone (control group) with an indwelling
vein needle. At the time of LPS exposure, 1 mg/kg
17pB-estradiol in 100% ethanol was administered intra-
venously to mice in the E, and wortmannin groups,
while the control and LPS groups received an equal
volume of sterile saline. Mice in the wortmannin group
received 16 pg/kg wortmannin intravenously 30 minutes
prior to LPS injection, while other groups were given ster-
ile saline. Four hours after LPS injection, the mice were
sacrificed and bronchoalveolar lavage fluid (BALF) and
lung tissues were collected.
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Cell counts, protein levels, TNF-q, IL-6, myeloperoxidase
(MOP) assay in BALF

Mice were anesthetized with pentobarbitone (50 mg/kg L.P.)
and tracheal intubations were performed. Then 1 mL
preheated sterile saline was administered into the lung
and extracted three times via a tracheal catheter. BALF
was collected and kept on ice and centrifuged at 1200 x g
for 10 min at 4°C to remove cell debris. The pellets were
resuspended in 50 pL PBS and stained with Wright-
Geimsa (KeyGen Biotech Co., Nanjing, China). Total cells
and neutrophils were counted with hemocytometer in a
double-blind manner. Protein levels in the BALF superna-
tants were determined using bicinchoninic acid protein
assay (BCA) kit (KeyGen Biotech Co., Nanjing, China).
An aliquot of BALF supernatant were used to assay the
TNEF-a, [L-6 levels using the respective ELISA kits (R&D,
Minneapolis, MN, USA). MPO activity was measured with
MPO assay kit (Nanjing Jiancheng Bioengineering Insti-
tute, Nanjing, China). All assays were conducted under
the manufacturer’s instructions.

Lung wet/dry weight ratio

The lungs wet to dry weight ratio (W/D ratio) was mea-
sured to evaluate pulmonary edema. After being weighed,
the right lower lungs were dehydrated in an oven at 80°C
for 24 hours. Then the dry weight was measured again to
calculate W/D ratio.

Alveolar fluid clearance (AFC)

The AFC rate was estimated by determining the alveolar
Evans Blue-labeled albumin concentrations. One mL of
warm sterile saline (5 ml/kg) containing Evans Blue-dyed
5% bovine albumin (0.15 mg/ml) was injected into the lung
with 2 ml oxygen to facilitate distribution. Lungs were ven-
tilated with 100% oxygen at an airway pressure of 7 cm
H>O in a humidified incubator at 37°C for 1 h. Alveolar
fluid was aspirated and labeled albumin was measured by a
spectrophotometer at 620 nm. AFC was calculated as fol-
lowing formula:

AFC = [(Vi-VI)/Vi)] x 100% Vf = (Vi x Ei)/Ef

V represents the volume of injected albumin solution
(i) and final alveolar fluid (f), and E represents the injected
(i) and final (f) concentrations of Evans Blue-labeled 5%
albumin solution

H&E staining and lung histology evaluation

For lung histological studies, the isolated left lung in
each group was fixed in 4% paraformaldehyde, embed-
ded in paraffin wax, cut into 5 mm sections, and stained
with hematoxylin and eosin (H&E). The lung injury score
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was calculated by assessing the degree of inflammatory cell
infiltration, hemorrhage, interstitial and alveolar edema,
and the thickness of alveolar septum in five random fields
in a blind manner using light microscopy. A score of 0 rep-
resented no damage; | represented mild damage; 2 repre-
sented moderate damage; 3 represented severe damage
and 4 represented very severe histological damage.

Cell culture and treatments

MLE-12 cells [American Type Culture Collection (ATCC),
CRL-2110], a cell line derived from murine alveolar
epithelial cells, were seeded on culture dishes in a 5%
CO,, 95% air atmosphere in Hites medium containing
10% FBS, 0.1 mg/ml streptomycin, and 100 U/ml penicil-
lin. The culture medium was changed every day. Once
the cell reached 80% confluence, they were divided
into 4 groups and serum-starved overnight. Following
starvation, cells were treated as follows: (1) control
group with sterile PBS, (2) LPS group with 100 ng/ml
LPS, (3) 17p-estradiol group with 100 ng/ml LPS and
10nM 17pB-estradiol (at the same time of LPS treat-
ment), and (4) wortmannin group with 100 ng/ml LPS,
10nM 17B-estradiol and 30nM wortmannin (applied
30 minutes prior to 17B-estradiol treatment). Cells were
incubated for 20 minutes prior to RNA and protein
harvesting.

RNA extraction and reverse transcription polymerase
reaction (RT-PCR)

Total RNA was isolated from left lung or MLE-12 cells
with an RNA extraction kit and was quantified by a spectro-
photometer. The primer sequences used for polymerase
chain reaction (PCR) amplification were as follows: a-ENaC,
5-TACAACTCTTCCTACACTCGCCA-3'(forward), 5'-CT
GGTTGAAACGACAGGTAAAGAT-3(reverse). B-ENaC:
5'-CAATGACACCCAGTATAAGATGACC-3'(forward),
5'-CAATGAGGCACAGCACCGA-3'(reverse). y-ENaC:
5-CAATGAGAACGAGAAGGGAAAG-3'(forward), 5-AA
GAAGCAGGTCACCAGCAGT-3/(reverse). p-actin: 5-CG
AGCGGGCTACAGCTTC-3(forward), 5-GTCACGCACG
ATTCCCTCT-3'(reverse).

Complementary DNA was prepared using PrimeScript
RT Reagent Kit. The reverse transcription reaction con-
ditions were 37°C for 15 min and 85°C for 5 s. Polymerase
chain reaction conditions were pre-denaturation at 94°C
for 5 min, 35 cycles of denaturation at 94°C for 30 s, an-
nealing at 57.8°C («, B-ENaC), 57.0°C (y-ENaC) for 30s,
and 57.4°C (B-actin) for 40 s, and polymerization at 72°C
for 60 s under the Premix Taq version 2.0 instructions.
Amplified products were separated by electrophoresis on
a 2.5% agarose gel containing gold view. RT-PCR prod-
ucts were visualized with Gel Imaging System (Bio-Rad,
Hercules, Calif., USA) and analyzed with Quantity One
software (Bio-Rad).
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Total protein isolation

RIPA buffer (KeyGEN Bio TECH Co., Nanjing, China)
was used to extract total protein of MLE-12 cells and
the left lung tissues of mice in each treatment group, fol-
lowing manufacture’s instructions. Briefly, 50 mg homoge-
nized left lung tissues or cultured MLE-12 cells were lysed
with 1000 puL RIPA buffer supplemented with protease and
phosphatase inhibitors, incubated on ice for 10 minutes
with mixing, and centrifuged at 15000 x g for 15 min at
4°C. The supernatant, containing the total soluble pro-
tein, was collected for further analysis.

Membrane protein isolation

Mem-PER Plus Membrane Protein Extraction Kit (Thermo
scientific, Weltham MA, USA) was used to extract mem-
brane proteins of MLE-12 cells and the left lung tissues of
mice in each treatment group, following manufacture’s
instructions. Briefly, 50 mg left lung tissue was washed
by cell wash solution, cut to pieces and homogenized
in permeabilization buffer to an even suspension. Cells
were scraped off, resuspended in Hites medium and
centrifuged at 300 x g for 5 minutes. Cell pellet was
washed with 3 mL of cell wash solution and centrifuge
at 300 x g for 5 min. After complete removal of super-
natant containing cytosolic extract, cells were resuspended
in wash solution and centrifuged at 300 x g for 5 min.
Again, supernatant was discarded and permeabilization
buffer was added to cell pellet. Then the homogeneous
tissue and cell suspension in permeabilization buffer
was obtained and incubated at 4°C with mixing for
20 min. Again, pellet was centrifuged at 16,000 x g for
15 minutes and supernatant was discarded. The pellet
was resuspended in solution buffer and incubated at 4°C
with mixing for 40 min. Then suspension was centrifuged
at 16,000 x g for 15 minutes at 4°C. Finally, membrane
protein contained in supernatant was obtained and further
analyzed by western blot.

Western blot

An aliquot of supernatant was used to determine the
protein concentration with BCA kit and mixed with 4x
sodium dodecyl sulfate sample buffer. Equivalent amounts
of sample were loaded into each well and separated by
SDS-PAGE and electro-transferred onto Nitrocellulose
membranes, blocked for 1 h with 5% dry milk/BSA and
immuno-blotted with anti-a-, anti-B-, anti-y-ENaC, anti-
pan-cadherin (all 1: 1,000 dilution), p-actin (1: 8,000
dilution), anti-Akt, anti-SGK1 (all 1: 2,000 dilution),
anti-phospho Akt and anti-phospho SGK1 (all 1: 1,000 di-
lution) primary antibodies, respectively, overnight at 4°C.
Later, the membranes were washed with PBST or TBST 3
times (10 min each time) and incubated with horseradish
peroxidase-conjugated anti-goat or anti-rabbit secondary
antibody (1: 8,000 dilution) at 37°C for 1 h and washed
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3 times again to detect bands using enhanced chemi-
luminescence by UVP gel imaging system (Upland,
Calif., USA). The relative abundance of protein was
quantified using Quantity One Software (Bio-Rad, Hercules,
CA, USA).

Immunohistochemistry

Slices of mouse left lung of each group were deparaffi-
nized with xylene, rehydrated with a gradient of ethanol,
and blocked by incubating 3% H,O, at 37°C for 15 min.
Then the slices were rinsed in PBS 3 times (10 minutes
each time). Antigen retrieval was performed by immers-
ing the slices in citric acid buffer in a microwave at 96°C
for 20 min. Tissues were blocked by serum albumin in
an incubator at 37°C for 30 min and the slices were in-
cubated with primary antibodies at 4°C overnight. Tissue
were washed with PBS 3 times (10 minutes each time),
incubated with biotin-labeled secondary antibody at 37°C
for 30 min, and then stained with DBA. Samples were
counterstained with hematoxylin, dehydrated with gradi-
ent ethanol, vitrified with xylene and sealed with neutral
resins. Serum was used as the primary antibody for nega-
tive control group. The number of positive cells was cal-
culated from the average of 5 random high-power fields in
a blind manner.

Statistical analysis

Data are presented as mean * standard error of the mean
(S.E.M.). Statistical analyses performed by one-way ana-
lysis of variance (ANOVA) using SPSS 19.0 software
(SPS Inc., Chicago, 111, USA). Post-hoc tests (SNK and
LSD) were performed to detect significant differences
between particular groups. Paired t-test was used for
comparisons before and after treatment in the same
group. P <0.05 was set as the threshold value for statis-
tical significance.

Results

17B-estradiol attenuated LPS-induced lung histopathological
alterations in vivo

LPS-induced lung damage was assessed by H&E stain-
ing. LPS-treated mice exhibited the typical pathological
changes of ALI including intra-alveolar and interstitial
edema, hemorrhage, thickened alveolar septum, and in-
flammatory cell infiltration. However, all of these patho-
logical changes were attenuated by administration of
17B-estradiol, resulting in a reduced lung injury score.
In contrast, pre-treatment with wortmannin blocked
the effects of 17B-estradiol (Figure 1).

17B-estradiol reduced IL-6, TNF-a, protein level, MPO
activity and neutrophil infiltration in BALF

To evaluate the effects of 173-estradiol on LPS-induced
inflammation, we analyzed TNF-a, IL-6, protein level,
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Figure 1 Effects of 17B-estradiol (E;) on LPS-induced lung histological alterations (a) and lung injury score (b) 4 hours after LPS challenge
(H&E stain, magnification x 200). Lung injury scores are presented as means + SEM (*p < 0.05 compared with the control group, #p < 0.05
compared with the LPS group, Ap < 0.05 compared with the 17(3-estradiol group).
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MPO activity and neutrophil infiltration in the BALF of
treated mice. LPS significantly increased the levels of
TNF-a and IL-6, and increased MPO activity and neu-
trophil counts. These effects were inhibited by 17f3-
estradiol in a PI3K dependent manner, as evidenced by
the effects of wortmannin pre-treatment (Figure 2).

173-estradiol ameliorated pulmonary edema and
accelerated alveolar fluid clearance in vivo

To assess pulmonary edema and the alveolar fluid re-
moval efficiency in LPS treated mice, we calculated the
lung W/D ratios and AFC rates of the mice. LPS signifi-
cantly increased the W/D ratio, while the AFC rate was
reduced by LPS, indicating induction of edema. How-
ever, edema was significantly reduced by 17p-estradiol
treatment in a PI3K dependent manner. Pre-treatment

of wortmannin also resulted in edema in the presence of
17pB-estradiol, suggesting that 17(3-estradiol acts through
PI3K to prevent LPS-induced edema (Figure 3).

17B-estradiol did not affect mRNA transcription of a-, 8-,
y-ENaC in vivo and in vitro

To determine if 17B-estradiol affected the transcription of
ENaC following LPS exposure, we measured ENaC
mRNA levels in the lungs of treated mice and in LPS
treated MLE-12 cells by reverse transcriptase PCR
analysis. LPS exposure significantly reduced mRNA
levels of the a-, B-, and y- ENaC subunits. However,
administration of 17p-estradiol did not affect the LPS-
induced reduction of ENaC mRNA (Figure 4). These
results suggest that 173-estradiol does not affect ENaC
transcription.



Qi et al. Respiratory Research (2014) 15:159

Page 6 of 12

200+

1504

1004

BALF IL-6 level(pg/ml)

BALF protein level(g/L)

S
& é\o
c ¢ &
£ 6,
‘D_ * A
g
= 4
o #
£
€
S 21
=
=
o
"
g
> ) A &
O
& > * &
<f &
e o

Figure 2 Effects of 17B-estradiol (E;) on the levels of IL-6 (a), TNF-a(b), protein levels (c), MPO activity (d), the total cell count(e), and
the neutrophil count (f) in mouse BALF 4 hours after LPS treatment. Data are presented as means = SEM (*p < 0.05 compared with the
control group, #p < 0.05 compared with the LPS group, Ap < 0.05 compared with the 17(3-estradiol group).
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17B-estradiol up-regulated a-ENaC total protein expression
in vivo and in vitro

To determine if 17B-estradiol regulates the protein levels
of ENaC, western blot analysis was employed to measure
ENaC total protein levels in mouse lung tissues and
MLE-12 cells, furthermore, immunohistochemistry ana-
lysis was employed to assess a-ENaC total protein levels
in mouse lung tissues. Consistent with our mRNA ana-
lysis, we found that a-, f-, y-ENaC total protein levels
were down-regulated in LPS-treated lungs and cells.
However, a-ENaC protein levels were significantly higher
in 17p-estradiol treated mice and cells, but not in those
pretreated with wortmannin (Figures 5 and 6). No signifi-
cant differences were observed between the protein levels

of B- ENaC and y-ENaC. These results suggest that 17p3-
estradiol can stabilize a-ENaC protein levels through a
PI3K-dependent mechanism.

17B-estradiol up-regulated a-ENaC membrane abundance
in vivo and in vitro

In the next experiment, we further examined the mem-
brane abundance of a-ENaC protein in the lung tissues
and MLE-12 cells by western blot analysis. The mem-
brane abundance of a-ENaC was reduced by LPS treatment,
while this reduction was blocked by administration of 17[3-
estradiol in vivo and in vitro. Pre-treatment with wortman-
nin prevented the 17p-estradiol-induced up-regulation of
a-ENaC (Figure 7). These results suggest that 173-estradiol
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Figure 3 Effects of 17B-estradiol (E;) on W/D ratio (a) and alveolar fluid clearance (b) in mouse lungs 4 hours after LPS challenge.
Data are presented as means + S.EM (*p < 0.05 compared with the control group, #p < 0.05 compared with the LPS group, Ap < 0.05

201

15 4

104

Alveolar fluid clearance (%)

can promote a-ENaC membrane abundance in a PI3K-
dependent manner.

17B-estradiol activated PI3K/Akt /SGK1 pathway in vivo
and in vitro

As the therapeutic effects of 17p-estradiol on ALI appeared
to be PI3K-dependent, we assessed the PI3K signaling
pathway by western blot analysis. Compared to the lungs
of control mice, phosphorylated Akt and SGK1 levels were

significantly reduced in LPS treated mouse lungs. However,
this reduction was blocked by administration of 17p-
estradiol. Pre-treatment with wortmannin prevented
the effects of 17B-estradiol. Similar results were ob-
served in LPS-treated MLE-12 cells (Figure 8).

Discussion
Our data suggest that 17B-estradiol plays a protective role
in LPS-induced ALIL These data would be consistent with
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Figure 4 Effects of 17B-estradiol (E;) on the mRNA transcription levels of alveolar epithelial sodium channel (ENaC) in mouse lungs (a)
and MLE-12 cells (b) after LPS treatment. mRNA level was normalized to B-actin. Data are presented as means +SEM (p < 0.05 compared with
the control group. #p < 0.05 compared with the LPS group, Ap < 0.05 compared with the 17(3-estradiol group).
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the reduced severity of ARDS/ALI commonly observed in
female patients [3-8]. In our mouse model of LPS-induced
ALL 17B-estradiol attenuated lung histopathhologic dam-
age, inflammatory response, and neutrophil infiltration in
LPS-exposed lungs. Moreover, 173-estradiol also reduced
pulmonary edema and increased AFC rates following LPS
exposure. As pre-treatment of mice with the PI3K inhibi-
tor wortmannin prevented the protective effect of 17f-
estradiol, it appears to act through PI3K to suppress ALL
Studies have demonstrated the sexual dimorphism on
ENaC regulation in several tissues, including the lung tis-
sue [20-23,42-45]. Consistent with these findings, we ob-
served that 17p-estradiol stabilized total and surface levels
of a-ENaC in LPS-treated lungs and MLE-12 cells in a
PI3K-dependent manner. It is likely that the elevation of
a-ENaC protein expression and membrane abundance
contributes to the reduced edema and elevated AFC rates,
thereby attenuating ALI following LPS exposure. Further-
more, our data indicate that 17(-estradiol reverses the
LPS-induced reduction in Akt and SGK1 phosphorylation,
which were abolished by the wortmannin, further suggest-
ing that 17B-estradiol exerts its effects through PI3K. Col-
lectively, our findings indicate that 17B-estradiol exerts
beneficial effects at the early stage of ALI by repressing
inflammatory responses and elevating a-ENaC protein

expression and membrane abundance, at least partially
through PI3K/Akt/SGKI1 signaling pathway.

In most clinical research, female subjects have lower mor-
bidity and mortality from trauma, ischemia/reperfusion,
shock, and sepsis, which are the common risk factors of
ARDS [3-8]. Moreover, animal models suggest that high
17p-estradiol levels, due to endogenous or exogenous ad-
ministration, exert protective effects on attenuation of
lung injury in a variety of settings [9-14].

ARDS/ALI usually develops in patients with a systemic
inflammatory response, such as sepsis, major trauma, as-
piration pneumonia and acute pancreatitis, among which
severe sepsis is the most common risk factor for ARDS/
ALI [2,46]. Clinical studies have found lower rates of
sepsis and multi-organ failure following trauma haemor-
rhage in female subjects compare to males [47,48]. More-
over, postpubertal males exhibit higher sepsis mortality
and greater severity of illness on PICU admission [49]. As
a component of Gram-negative bacteria cellular walls,
LPS exposure can induce sepsis and is a commonly used
experimental model for ALI/ARDS [50,51]. Although ex-
perimental studies demonstrated a more severe LPS-
induced ALI in male and ovariectomized female mice than
intact female mice due to an anti-inflammatory effect of
estrogen, other mechanisms underlying its protective
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Figure 6 Effects of 17B-estradiol (E;) on the total protein expression levels of alveolar a-ENaC in mouse lungs after LPS treatment
(immunohistochemistry stain, magnification x 400). Data are presented as mean + SEM (*p < 0.05 compared with the control group, #p < 0.05
compared with the LPS group, Ap < 0.05 compared with the 17{3-estradiol group).

effects are still under investigated [14,52]. Our data in-
dicate that, consistent with other studies, 17p-estradiol
has an anti-inflammatory effect in cases of LPS-associated
ALIL Moreover this effect appears to occur through a
PI3K-dependent mechanism. These results are consistent
with previous studies demonstrating that PI3K/Akt signal-
ing pathway plays a crucial role in the attenuation of
inflammation as part of a negative feedback loop in
response to injury [30,31].

Besides an inflammatory response, ARDS/ALI is char-
acterized by proteinaceous pulmonary edema that floods
the airspace and impedes gas exchange. Efficient alveolar
fluid clearance (AFC), a process in which superfluous
edema is removed by ion transporter, is associated with
a positive outcome of ALI/ARDS [15,16], and alveolar
epithelial sodium channel (ENaC) plays a rate-limiting

role in the maintenance of AFC [17,18]. We observed
that the beneficial effects of 17p-estradiol were associated
with the up-regulation of a-ENaC protein and membrane
abundance. These results are consistent with previous
studies demonstrating higher AFC rates in females com-
pared to males [19] and pro-absorptive functions of es-
trogen and progesterone in bronchial epithelium by
regulating airway ENaC [20-23].

In addition, as another important regulator for sodium
trans-epithelial absorption, Na/K-ATPases plays a syner-
gistic role in AFC [53]. However, little is known about
the effects of female hormones on this ion transporter.
The combination of estradiol and progesterone can in-
crease the ouabain-sensitive current and the mRNA ex-
pression of Na,K-ATPases B1 subunit, but does not alter
the protein expression of Na,K-ATPases subunits [23].
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Nevertheless, we focus on ENaC regulation for AFC in
our present study. Much is yet to be investigated for
the regulation and mechanism of ion channels by 17p-
estradiol in pulmonary epithelium.

In our model, 17p-estradiol stabilized a-ENaC protein
expression and membrane localization, but did not affect
mRNA levels of it, suggesting that 17f3-estradiol regu-
lates a-ENaC through a non-genomic mechanism. In-
deed, 17f-estradiol can regulate proteins expression and
trafficking through both genomic and non-genomic mech-
anism [24,25]. 17p-estradiol was initially thought to exert
its effects through a genomic mechanism to regulate pro-
tein synthesis, a process which takes hours to days. Recent
research has highlighted the role of the non-genomic func-
tions of 17p-estradiol, which includes the rapid activation
of signaling pathways such as PI3K, ERK, and MAPK to
modulate the expression, function, and distribution of
proteins [12,24,25].

In particular, the PI3K pathway can activate serum and
glucocorticoid-induced kinanse-1 (SGK1), a portent regu-
lator of ENaC, by phosphorylation of PDK1 and mTORC2
[33-35]. SGK1 can up-regulate ENaC through phosphoryl-
ation of Nedd4-2, an E3 ubiquitin protein ligase, to inhibit
a-ENaC degradation and subsequently increase o-ENaC
membrane abundance and activity [54]. Recent findings
indicate that SGK1 can promote ENaC trafficking to
the cell membrane via phosphorylation of Rab11b [55],
thereby increasing ENaC membrane abundance. Our
results indicate that 17(-estradiol stabilizes a-ENaC
protein expression and membrane abundance following
LPS treatment. This likely occurs through increased mem-
brane trafficking of ENaC as well as decreased degradation
of ENaC via a SGK1-mediated mechanism. Furthermore,
it is known that 17B-estradiol can activate the PI3K/Akt
pathway to attenuate lung injury induced by trauma-
hemorrhage and acute pancreatitis through non-genomic
mechanisms [40,41]. However, the role of this signaling
axis in LPS-induced ALI remains poorly defined. Our re-
sults suggest that PI3K-dependent activation of SGK1 can
promote both the total expression and membrane abun-
dance of a-ENaC, and contribute to a protective effect in
cases of LPS-induced ALL

In conclusion, our study demonstrates that 173-estradiol
can have a protective effect at the early stage of LPS-
induced ALI by suppressing inflammation and pulmonary
edema. These protective effects occur, at least in part, via
the rapid non-genomic mechanism involving the activation
of PI3K/Akt/SGK1 signaling pathway, ultimately resulting
in stabilization of a-ENaC and the reduction of edema.
Our results provide new insight into the mechanisms that
underlie sexual dimorphism in ARDS, and may suggest
novel therapeutic interventions for these patients. Further
studies are necessary to define the signaling pathways that
mediate the protective effects of 17B-estradiol and the
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specific and overlapping effects of 17(3-estradiol-mediated
genomic and non-genomic molecular actions.
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