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Abstract

Background: In chronic obstructive pulmonary disease (COPD), two major pathological changes that occur are the
loss of alveolar structure and airspace enlargement. To treat COPD, it is crucial to repair damaged lung tissue and
regenerate the lost alveoli. Type Il alveolar epithelial cells (AECII) play a vital role in maintaining lung tissue repair,
and amniotic fluid-derived mesenchymal stromal cells (AFMSCs) possess the characteristics of regular mesenchymal
stromal cells. However, it remains untested whether transplantation of rat AFMSCs (rAFMSCs) might alleviate lung injury
caused by emphysema by increasing the expression of surfactant protein (SP)A and SPC and inhibiting AECII apoptosis.

Methods: We analyzed the phenotypic characteristics, differentiation potential, and karyotype of rAFMSCs, which were
isolated from pregnant Sprague-Dawley rats. Moreover, we examined the lung morphology and the expression
levels of SPA and SPC in rats with emphysema after cigarette-smoke exposure and intratracheal lipopolysaccharide
instillation and rAFMSC transplantation. The ability of rAFMSCs to differentiate was measured, and the apoptosis of
AECII was evaluated.

Results: In rAFMSCs, the surface antigens CD29, CD44, CD73, CD90, CD105, and CD166 were expressed, but CD14,
CD19, CD34, and CD45 were not detected; rAFMSCs also strongly expressed the mRNA of octamer-binding
transcription factor 4, and the cells could be induced to differentiate into adipocytes and osteocytes. Furthermore,
rAFMSC treatment up-regulated the levels of SPA, SPC, and thyroid transcription factor 1 and inhibited AECII
apoptosis, and rAFMSCs appeared to be capable of differentiating into AEClI-like cells. Lung injury caused by
emphysema was alleviated after rAFMSC treatment.

Conclusions: rAFMSCs might differentiate into AECII-like cells or induce local regeneration of the lung alveolar
epithelium in vivo after transplantation and thus could be used in COPD treatment and lung regenerative therapy.

Keywords: Mesenchymal stromal cells, Amniotic fluid, Pneumocytes, Chronic obstructive pulmonary disease,
Pulmonary emphysema

Introduction the perpetual loss of alveolar structure, which causes

Chronic obstructive pulmonary disease (COPD), which
is considered to become the third-leading cause of death
worldwide by 2020, is currently recognized as a major
global public health challenge. In COPD, the major
mechanisms underlying chronic airflow limitation are
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airspace enlargement, and the destruction of the lung
parenchyma and the loss of elastic recoil [1]. The loss of
alveolar structure and airspace enlargement are key patho-
logical changes in COPD [2], as a result of the development
and progression of pulmonary airflow limitation. In the
progression of COPD, a critical role is played by the apop-
tosis of lung epithelial cells, which results in the destruction
of the alveolar structure and in emphysema [3]. However,
no effective treatment is available for preventing the decline
of pulmonary function in patients with COPD. Therefore,
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the key to treating COPD is to repair damaged lung tissue
and regenerate the lost alveoli.

In mammals, the alveolar epithelium is composed of
type I alveolar epithelial cells (AECI) and type II alveolar
epithelial cells (AECII). AECII are multifunctional
secretory cells that are characterized by the presence
of morphological lamellar bodies containing pulmon-
ary surfactant proteins (SPs) and lipids. AECII can dif-
ferentiate into AECI in the alveoli and proliferate to
maintain their own number through mitosis [4]. As
progenitors of AECI, AECII play vital roles in synthesizing
and secreting lung surfactants, which include SPA, SPB,
SPC, and SPD, reducing the surface tension of the alveoli,
maintaining normal alveolar homeostasis and gas exchange,
and improving lung tissue repair [4,5].

Stem cell therapy has attracted considerable attention
because of its potential for application in the treatment
of COPD, pulmonary fibrosis, cystic fibrosis, and other
respiratory diseases [6-8]. By serving as the source of new
epithelial cell populations, the resident lung progenitor cells
can repair the injured lung epithelium iz vivo [9]. However,
the regenerative capacity of the lung is widely recognized to
decline with aging and as a result of extensive damage such
as that in COPD; this extensive lung damage might not
be repaired appropriately by the endogenous stem
niches [10]. Moreover, no evidence is available to suggest
that endogenous stem cells can function in alleviating
chronic lung disease. However, over the past decade,
major breakthroughs in the research on exogenous
stem cells have brought new hope for the treatment of
COPD. Currently, the exogenous stem cells used mainly in-
clude embryonic stem cells (ESCs), bone marrow-derived
mesenchymal stromal cells (BMMSCs), and amniotic fluid-
derived stromal cells (AFSCs). ESCs are pluripotent stem
cells that can be induced to differentiate into various types
of cells and ESCs exhibit substantial capacity to proliferate
indefinitely [11,12]. For example, ESCs can be induced to
differentiate into AECII both in vitro and in vivo [13,14].
Similarly, BMMSC:s alleviate the destruction of lung tissues
by also differentiating into AECII in vivo [15,16]. However,
the challenges involved in acquiring large numbers of
BMMSCs from the bone marrow and the low efficiency
of their differentiation have restricted research on the
use of BMMSC:s in regenerative medicine.

Another potential source of cells for lung regeneration
in vivo are mesenchymal stromal cells (MSCs), which in-
clude BMMSCs, amniotic fluid-derived MSCs (AFMSCs),
adipose-derived MSCs, and cord blood-derived MSCs; this
is because MSCs exhibit the capacity to differentiate into
alveolar epithelial cells [17-19]. MSCs have previously
been shown to exert beneficial effects on various animal
models of respiratory diseases because the cells possess
immunomodulatory and anti-inflammatory abilities; the
effects of MSCs have been demonstrated in diseases such
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as COPD [20,21] and asthma [22,23] and in lung fibrosis
caused by interstitial lung disease [24] and lung injury
caused by acute respiratory distress syndrome [25].
Huh et al. [21] reported that MSC-based cell therapy
repaired cigarette smoke-induced emphysema in rats after
the injection of cells for 2 months. Recently, a placebo-
controlled, randomized trial of MSC treatment in patients
with moderate-to-severe COPD was published; after the
infusion of allogeneic MSCs in COPD patients, no deaths,
toxicity, or serious adverse reactions related to the MSC
therapy occurred, but the circulating levels of C-reactive
protein in the patients were markedly decreased [26].

De Coppi et al. [27] reported for the first time that
AFSCs can be obtained from discarded amniocentesis
specimens and that these cells possess the potential to
differentiate widely into neural cells, adipocytes, osteocytes,
endotheliocytes, hepatocytes, and cardiomyocytes [28-30].
Thus, AFSCs are recognized as new multipotent stem cells
that can be used in regenerative medicine without raising
concerns regarding ethical problems or tumorigenesis
[31,32]. Furthermore, Carraro et al. [33] showed that
AFSCs integrated into the embryonic lung tissues of mice,
differentiated into lung epithelial cells, and expressed thy-
roid transcription factor 1 (TTF1) after lung injury in vivo.
AFMSCs exhibit the characteristics of MSCs in vitro,
by expressing molecules such as CD73, CD90, CD105,
and CD166 [34,35]. AFMSCs were previously shown to
be capable of differentiating into AECII-like cells in vitro,
which indicated that AFMSCs can potentially be used
in lung-tissue regenerative therapy [35]. Moreover, rat
AFMSCs (rAFMSCs) were shown to secrete neurotrophic
factors and thereby promote the regeneration of the injured
sciatic nerve [36] and to over-express the interleukin-1
receptor antagonist and thus improve hepatic function
in vivo in rats with fulminant hepatic failure [37]. However,
whether rAFMSCs can exert therapeutic effects on lung
injury caused by emphysema is unknown. In this study, we
transplanted rAFMSCs into rats with emphysema and then
investigated whether the rAFMSCs integrated into lung
tissue, expressed AECII-specific markers, inhibited AECII
apoptosis, and alleviated lung injury caused by emphysema.

Materials and methods

Animals

We purchased 15 pregnant Sprague—Dawley rats (body
weight, 300 ~ 350 g, at 12—14 days of pregnancy) and 60
female Sprague—Dawley rats (body weight, 180—200 g) from
Shanghai SLAC Laboratory Animal Co., Ltd (Shanghai,
China). All animal protocols were approved by the Ethics
Committee of Zhejiang Provincial People’s Hospital.

Isolation and culture of rAFMSCs
We isolated rAFMSCs from pregnant Sprague—Dawley
rats as described by Pan et al. [36]. The rats were deeply
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anesthetized using 10.0% chloral hydrate, and then 15
independent amniotic fluid samples (2 mL each) were
harvested from fetal male rats by using 22-gauge needles.
Each sample was filtered through a 200-mesh filter and
centrifuged for 10 min at 1,500 rpm. The cells were resus-
pended in low-glucose Dulbecco’s modified Eagle’s medium
(DMEM; Gibco, Carlsbad, CA, USA) supplemented with
20% fetal bovine serum (FBS; HyClone, Logan, UT, USA)
and 4 ng/mL basic fibroblast growth factor (bFGF; Sigma,
St. Louis, MO, USA), and then maintained in 6-well plates
and grown in a humidified incubator at 37°C with 5% CO..
To remove non-adherent cells, the supernatants were
replaced for the first time after 5 days of culture. The
adherent cell clones that exhibited spindle-shaped growth
were detached using cell scrapers and transferred to new
6-well plates. When the cells reached 70%-80% confluence,
they were detached using 0.25% trypsin (Sigma) and culti-
vated in 25-cm” culture flasks (Corning Inc.-Life Science,
Oneonta, NY, USA) and labeled as P1 (passage 1). We used
P3 cells to conduct the experiments described next. To
measure the expression of octamer-binding transcription
factor 4 (Oct-4) mRNA, we used reverse-transcription
polymerase chain reaction (RT-PCR). Rat lung fibroblasts
(RFL-6; ATCC, Manassas, VA, USA) were used as the
negative control.

Flow cytometry analysis

We used flow cytometry in order to detect the specific sur-
face antigens of rAFMSCs (P3). Cells in suspension were in-
cubated with fluorescein isothiocyanate (FITC)-conjugated
antibodies against CD14, CD19, CD34, CD44, CD45, and
CD90, and phycoerythrin (PE)-conjugated antibodies against
CD29, CD73, CD105, and CD166 (BD Biosciences, San
Diego, CA, USA) at 4°C for 1.5 h. Thereafter, the cells
were analyzed using a flow cytometer (Guava EasyCyte;
Millipore, Billerica, MA, USA); the related isotype controls
were used as the negative control.

Differentiation potential of rAFMSCs

To induce rAFMSCs to differentiate into adipogenic
and osteogenic cell lineages, cells were cultured for
3 weeks in either an adipogenic medium [a-modified
minimum essential medium (a-MEM; Gibco) containing
10% FBS and 1 pumol/L dexamethasone, 5 pg/mL insulin,
0.5 mmol/L isobutylmethylxanthine, and 60 pmol/L
indomethacin (all 4 reagents from Sigma)], or an
osteogenic medium (a-MEM containing 10% FBS and
0.1 pmol/L dexamethasone, 10 mmol/L [-glycerol
phosphate, and 50 pmol/L ascorbate; Sigma). In the
case of adipogenic differentiation, intracellular accu-
mulation of lipid droplets was examined by means of
Oil Red O staining, whereas in the case of osteogenic
differentiation, alizarin red staining was used to ob-
serve calcium mineralization.
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Chromosomal analysis

We prepared P3 and P15 rAFMSCs for the purpose of
chromosomal analysis, as previously described [38]. The
rAFMSCs were treated with 0.1 mg/mL colchicine (Sigma)
at 37°C for 3 h and then incubated with 0.06 mol/L KCl
at 37°C for 30 min. Next, metaphase chromosomes were
analyzed using G banding and Giemsa staining; we exam-
ined a minimum of 20 metaphases in each sample by using
an 80i microscope (Nikon, Tokyo, Japan) and then analyzed
them by using Genikon software (Nikon).

Animal model and rAFMSC transplantation

We maintained 60 female Sprague—Dawley rats at
21°C-25°C and 40%-60% relative humidity in a 12-h
light/dark cycle and provided them with water and food
ad libitum. After 1 week of conditioning, the rats were ran-
domly sorted into 4 groups (15 rats/group), control (group I),
emphysema (group II), emphysema + rAFMSC transplant-
ation for 20 days (group III), and emphysema + rAFMSC
transplantation for 40 days (group IV).

A custom-designed cigarette-smoke chamber [39] and
lipopolysaccharide (LPS; Sigma) stimuli were used for
generating the rat model of emphysema [40]. In this study,
we used commercially available cigarettes (XiongShi; China
Tobacco Zhejiang Industrial. Co., LTD, China) that con-
tained 0.7 mg of nicotine and 8 mg of tar per cigarette.
We performed the cigarette-smoke exposure and intra-
tracheal LPS instillation as follows, rats in groups II, III,
and IV were placed in the cigarette-smoke chamber
(60 cm x 50 cm x 40 c¢cm), and after the rats had settled,
the smoke of 5 cigarettes was successively delivered in
12 min. After an interval of 10 min, the smoke of 5 new
cigarettes was delivered into the chamber. The rats were
exposed to 20 cigarettes over 90 min once a day for each
smoke exposure and for 7 days per week for 12 weeks.
During the exposure, the concentration of carbon mon-
oxide was maintained almost constant, after 30, 60, and
90 min exposures, the concentrations were 402 + 19,
399 + 12, and 408 + 14 ppm, respectively, as measured using
a carbon monoxide detector (CTB-999; INDUSTRIAL
SCIENTIFIC. Co., LTD, Shanghai, China). On the last
day of the 4™ and 8™ weeks, each rat in groups II, III,
and IV was temporarily anesthetized with 5.0% isoflurane,
after which the rats were intratracheally instilled with
200 pL of 1 pg/uL LPS in sterile phosphate-buffered solu-
tion (PBS). The rats in group I received clean air through-
out the experimental period.

Y-chromosome-positive rAFMSCs were transplanted
into the rats of the emphysema groups. Each rat in
groups III and IV was intratracheally instilled with rAFMSCs
(4% 10° in 200 pL of PBS), and after transplantation for
20 days and 40 days, the rats were sacrificed by intraperi-
toneal injection of 10.0% chloral hydrate. The left lungs
were removed and fixed in 4% paraformaldehyde for use
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in histological examinations and immunohistochemical and
immunofluorescence staining. The right lungs were stored
at —80°C for use in PCR and western blotting analyses.

Histological examinations

The left lungs were perfused intratracheally with 4%
paraformaldehyde at a constant pressure of 25 cm H,O for
1 h, and then immersed in paraformaldehyde for 24 h to fix
them completely. After fixation, the left-lung blocks were
embedded in paraffin and cut into 4-pm-thick sections.
Three discontinuous paraffin-embedded sections of each
lung-tissue sample were stained with hematoxylin and
eosin (H&E) in order to assess the morphological changes
in the lungs. We examined 5 fields of view in each of the 3
sections from each lung sample by using a light microscope
(Olympus, Tokyo, Japan), and we avoided selecting fields
containing bronchi and large blood vessels. We obtained the
mean linear intercept (MLI), which indicates the average
distance between opposing walls of a single alveolus and is a
measure of pulmonary airspace enlargement [41]. Moreover,
we obtained the mean alveolar airspace (MAA), which is
also a measure of pulmonary airspace enlargement [39].

Quantitative real-time PCR

Total RNA was extracted from each right-lung sample
by using TRIzol reagent (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s protocols. The final
RNA purity and concentrations were determined using a
spectrophotometer. Next, cDNA was synthesized from
the total RNA by using the PrimeScript’™™ RT reagent
Kit with gDNA Eraser (TaKaRa, Otsu, Japan) according to
the manufacturer’s instructions. Quantitative real-time PCR
analysis was performed using previously described parame-
ters [35] and real-time PCR amplification equipment
(MX3000P; Agilent Technologies, Inc., Santa Clara, CA,
USA). The following primers were used (Invitrogen), SPA
(GenBank, NM_001270647.1), 5-"TCGGTGTCCCAGGA
TTTAG-3' (forward) and 5'-CAGGGTGGCTGCTGTT
AGT-3' (reverse); SPC (GenBank, NM_017342.2), 5'-
CAGACACCATCGCTACCTT-3' (forward) and 5-TAGC
CAAAGCCTCAAGACT-3' (reverse); TTFI (GenBank,
XM_006233882.1), 5-CATCAGATTCTGCAAACAATGG-
3' (forward) and 5-AGGAGTCTGGCCTTCAATCA-3'
(reverse); GAPDH (GenBank, NM_017008.4), 5-GTTCA
ACGGCACAGTCAAG-3' (forward) and 5-GCCAGTAG
ACTCCACGACAT-3' (reverse). All analyses were per-
formed in triplicate. Glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH) was used as a reference gene.
The relative expression of SPA, SPC, and TTF1 mRNAs
was calculated using the 272" method.

Immunohistochemistry
We performed immunohistochemical staining in order
to examine the expression of SPA and SPC proteins in
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formalin-fixed, paraffin-embedded sections of each left-
lung sample. Sections were deparaffinized and rehydrated
using a graded series of ethanol, and this was followed by
a high-pressure antigen-retrieval step. Endogenous perox-
idase activity was blocked by incubating sections with 3%
hydrogen peroxide for 15 min. The sections were next
blocked with 10% goat serum (ZSGB-BIO, Beijing, China)
for 1 h, incubated (overnight, 4°C) with rabbit anti-rat
SPA or SPC primary antibodies (1:500; Santa Cruz
Biotechnology Inc., Santa Cruz, CA, USA), and then
stained with an anti-rabbit IgG secondary antibody
(SP-9000 kit; ZSGB-BIO) and 3,3'-diaminobenzidine
(DAB; ZSGB-BIO). Hematoxylin was used for counterstain-
ing. To calculate the percentages of SPA- and SPC-positive
cells, we used a light microscope and counted the SPA- and
SPC-positive cells present among a total of 400 cells in 10
different lung samples, and we used 10 randomly selected
alveolus fields in the case of each lung sample.

Western blotting

Proteins were extracted from each right-lung sample
by homogenizing the samples in ice-cold lysis buffer
(50 mmol/L Tris, pH 7.4, 150 mmol/L NaCl, 0.1% sodium
dodecyl sulfate, 1 mmol/L EDTA, 1% sodium deoxycholate,
and 1% Triton X-100; Invitrogen) containing a protease-
inhibitor cocktail (1 mmol/L phenylmethylsulfonyl fluor-
ide, 1 mg/L leupeptin, and 1 mg/L aprotinin; Beyotime,
Nantong, China). The homogenates were centrifuged
for 15 min at 12,000 rpm and the supernatants were
collected. The protein concentration in samples was
determined by using a micro BCA protein assay kit
(Pierce, Rockford, IL, USA) according to the manufacturer’s
protocol. Next, equal amounts of protein (20 pg) from each
sample were heated at 100°C for 5 min and then separated
by electrophoresing them on 8% sodium dodecyl sulfate-
polyacrylamide gels. The separated proteins were electro-
transferred to nitrocellulose membranes and blocked with
Tris-buffered saline containing Tween-20 (TBS-T) and 5%
bovine serum albumin (BSA) for 2 h at room temperature.
The membranes were then incubated with primary anti-
bodies against SPA and SPC (1:200 in TBS-T; Santa Cruz)
and B-actin (1:1000; Abcam, Cambridge, MA, USA)
overnight at 4°C on an orbital shaker. After washing 3
times for 10 min each in TBS-T, the membranes were
incubated with horseradish peroxidase-conjugated goat
anti-rabbit IgG (H + L) (Pierce) for 1 h at room temperature
on an orbital shaker. After washing 5 times with TBS-T,
immunoreactive bands on the membrane were de-
tected using an enhanced chemiluminescence solution
(Amersham Pharmacia Biotech, Buckinghamshire, UK),
visualized by means of X-ray-film exposure, and analyzed
using an UVP-GDS8000 gel-analysis system (Ultra-Violet
Products Ltd., Cambridge, UK). Protein expression levels
were analyzed by performing densitometry and the values
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were normalized relative to those measured for B-actin,
which was used as the loading control.

Reverse-transcription PCR

Total RNA was extracted from each right-lung sample
as described above and PCR was performed using previ-
ously described parameters [42] and PCR amplification
equipment (MJ-PTC200; Bio-Rad, Hercules, CA, USA).
The following primers were used, Oct-4 (GenBank,
NM_001009178.2), 5-GAAGGATGTGGTCCGAGTGT-3'
(forward) and 5-GTGAAGTGAGGGCTCCCATA-3'
(reverse); Sex determining region Y (Sry) (GenBank,
NM_012772.1), 5-GCAATGGGACAACAACCTAC-3'
(forward) and 5-TGTTTCTGCTGTAGTGGGTATC-3'
(reverse); GAPDH (GenBank, NM_017008.4), 5'-GTTCA
ACGGCACAGTCAAG-3' (forward) and 5-GCCAGTAG
ACTCCACGACAT-3' (reverse). GAPDH was amplified
for the purpose of normalizing the target genes in each
group. The Oct-4, Sry, and GAPDH PCR products were
183, 138, and 136 bp long, respectively. The amplified
PCR products were electrophoretically separated on 1.5%
agarose gels, and the band densities were determined using
the UVP-GDS8000 gel-analysis system.

TUNEL/SPC immunofluorescence staining

AECII apoptosis in each group was detected using ter-
minal deoxynucleotidyl transferase dUTP-mediated
nick-end labeling (TUNEL; Beyotime)/SPC double-
staining as described [43]. Paraffin-embedded left-lung
sections were deparaffinized and rehydrated and then
subjected to the high-pressure antigen-retrieval step
and proteinase K (20 pug/mL) treatment for 20 min.
The sections were next incubated with the rabbit anti-rat
SPC primary antibody (1:300; Santa Cruz) overnight at 4°C
and then with the FITC-conjugated anti-rabbit IgG second-
ary antibody (1:500; Santa Cruz) for 1 h at 37°C, and this
was followed by incubation with 50 pL of the TUNEL
reaction mixture at 37°C for 1 h in a humidified chamber.
Lastly, the sections were counterstained with 4',6-diamino-
2-phenylindole (DAPI; Sigma) and examined using a fluor-
escence microscope (Axio vert; Carl Zeiss, Jena, Germany).
We randomly selected 100 images from 10 different lung
samples, and then chose 10 discontinuous areas of each
lung sample for the analysis. The percentage of AECII
apoptosis was determined by dividing the number of apop-
totic AECII, which were positive for both TUNEL and SPC,
by the total number of DAPI-positive cells.

In situ hybridization and immunofluorescence

Fluorescence in situ hybridization (FISH) for Y chromosome
(Y-FISH) was performed as described [33] by using the
Sry mRNA in situ hybridization detection kit (BOSTER,
Wuhan, China) according to the manufacturer’s protocols.
Paraffin-embedded left-lung sections were deparaffinized
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and rehydrated, blocked with 3% hydrogen peroxide
for 10 min, and digested with proteases (diluted using
3% citric acid) for 15 min at room temperature. The
sections were rinsed 3 times in PBS, and then 20 pL of
the prehybridization solution was incubated with each
section for 4 h at 42°C in a humidified chamber; to per-
form hybridization, we incubated 20 pL of Sry oligo-
nucleotide probes with the sections overnight at 42°C,
with the samples being sealed with coverslips (BOSTER).
After removing the coverslips, the sections were immersed
sequentially in 2x standard saline citrate (SSC; BOSTER)
for 10 min, 0.5x SSC for 15 min, 0.2x SSC for 30 min
(all at 37°C), and then incubated with cy3-conjugated
rat IgG streptavidin-biotin complex (SABC-cy3; Eton
Bioscience Inc., San Diego, CA, USA) for 45 min at 37°C.
Lastly, the sections were counterstained with DAPI and ex-
amined using an IX71 fluorescence microscope (Olympus).
To combine this hybridization with immunostaining for
SPC, sections were incubated with the anti-rat SPC primary
antibody (1:500; Santa Cruz) overnight at 4°C and then with
the FITC-conjugated anti-rabbit IgG secondary antibody
(1:500; Santa Cruz) for 1 h at room temperature. We
randomly selected 100 images from 10 different lung
samples and analyzed 10 discontinuous areas in each
lung sample. The percentage of differentiation was de-
termined by counting the cells that were positive for
both Y-FISH and SPC and dividing this number by the
total number of DAPI-positive cells.

Statistical analysis

Data are expressed as means + SEM and were analyzed
for statistical significance by means of one-way analysis
of variance (ANOVA) and independent-sample ¢-tests.
Multiple comparisons in ANOVA were performed using
the Student-Newman-Keuls test. P < 0.05 was considered
statistically significant.

Results

Culturing rAFMSCs

Colonies of rAFMSCs began to appear after the cells had
been cultured for 5 days in DMEM medium containing
20% FBS and 4 ng/mL bFGF (Figure 1A). When the cells
reached 80%-90% confluence, spindle-shaped cells (P3)
became dominant and they grew spirally after 2 weeks of
culture (Figure 1B).

Phenotypic characterization of rAFMSCs

The surface antigenic characteristics of rAFMSCs at P3
were analyzed using flow cytometry. The results revealed
that the cells were positive for these surface antigens, CD29
(99.4% + 0.4%), CD44 (99.3% + 0.4%), CD73 (76.7% * 4.5%),
CD90 (97.5% + 1.6%), CD105 (74.5% + 4.7%), and CD166
(89.3% + 3.1%); by contrast, they were negative (0%) for
CD14, CD19, CD34, and CD45 (Figure 2A). Moreover,
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Figure 1 Culture of rAFMSCs. (A) Morphological characterization
of rAFMSCs. After rAFMSCs were cultured 5 days, colonies began to
appear. (B) Morphology of rAFMSCs. After 2 weeks of culture, the
cells (P3) were spindle shaped and exhibited spiral growth. Scale
bars, 200 pm.

RT-PCR results showed that the Oct-4 mRNA was strongly
expressed by the rAFMSCs (Figure 2B).

Differentiation potential of rAFMSCs

To evaluate the differentiation potential of rAFMSCs,
cells at P3 were induced to differentiate into adipocytes
and osteocytes. After rAFMSCs were cultured in an adipo-
genic medium for 3 weeks, Oil Red O-positive intracellular
lipid droplets were observed (Figure 3A). Similarly, after
rAFMSCs were cultured in an osteogenic medium for
3 weeks, most of the differentiated cells appeared cu-
bical and exhibited a dull-red alizarin-red staining that
indicated calcium mineralization (Figure 3B).

Chromosomal analysis

To identify the karyotype and to confirm chromosomal
stability, we performed karyotype analysis on P3 and P15
rAFMSCs. The results revealed that rAFMSCs contained
a normal diploid number of chromosomes (2n = 42) and

Figure 3 Differentiation potential of rAFMSCs. (A) Adipogenic
differentiation, cells positive for Oil Red O staining. (B) Osteogenic
differentiation, cells positive for alizarin red staining. Scale bars,

50 um (A) and 200 um (B).

maintained a normal karyotype (Y-chromosome-positive)
at these distinct passages (data not shown).

Histopathological changes

After 12 weeks of cigarette-smoke exposure and 2 intratra-
cheal LPS instillations, the airspace was enlarged markedly
and the number of alveoli was decreased in the lung
samples of the rats of the emphysema group (group II)
(Figure 4B). When compared with the samples from
group I (Figure 4A), the samples from group II exhibited
numerous merged alveoli and the formation of a few bullae,
which was consistent with the pathological characteristics
of emphysema. However, both of the emphysema character-
istics were partly alleviated after rAFMSC transplantation, as
shown in Figure 4C and especially in Figure 4D. Quantita-
tive analyses of lung histomorphology revealed that the MLI
and MAA of group II were significantly higher than
those of the control group (95% confidence intervals, MLI,
5142 ~ 64.82; MAA, 8219.06 ~ 9136.90; P < 0.01). However,
the MLI and MAA of groups III and IV were significantly

-

A FITC Control

FITC CD14 FITC CDI9 - FITC CD34 FITC CD44 FITC CD45 FITC CD90
3 —_— L — 38 2 —t 2]
| ; = 7 —

25

13

1060 101 1062 1063  10ed 10eD 0t 1062  10e3  10ed

Green Fluorescence (GRN-HLog) Green Fluorescence (GRN-HLog) Green Fluorescence (GRN-HLog)

o
1060 061 T0ez 1063  f0ed 10a0 0s1  i0e2 1063  10s4 1060 10e1 10s2 1063 104 10e0 0et 0z 1083  10s4
Green Fluorescence (GRN-HLog) (GRN-HLog)

o

10e1 1062 10e3 10ed
n Fluorescence (GRN-HLog)

1
Gree

(GRN-HLog)

PE Control PE CD29 PE CD73 PE CD105 PE CD166 B
1 z
2] b——t 2] —t 2 — 15] —
183 bp Ocr4
184 154 1 104
— —
Y ] 5]
o ol o
1060 10e1  10e2  10e3  10ed4 1 10e1  10e2  10e3 104 1l 10e3 1084 1060 10e1 10e2 1063  10ed 1060 10e1 10e2  10e3  10ed

e0 00 10ef 10e2
Red Fluorescence (RED-HLog) Red Fluorescence (RED-HLog) Red Fluorescence (RED-HLog)

Red Fluorescence (RED-HLog)

Red Fluorescence (RED-HLog)

Figure 2 Phenotypes and Oct-4 mRNA expression of rAFMSCs. (A) The rAFMSCs were phenotypically characterized by means of flow
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were expressed in P3 rAFMSCs, but CD14, CD19, CD34, and CD45 were not. (B) Oct-4 mRNA expression in rAFMSCs was analyzed by performing
RT-PCR. Lane 1, rAFMSCs; Lane 2, negative control (rat lung fibroblasts).
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Figure 4 Histopathologic changes of lung tissues in rats of various groups. (A) Control group (group ). (B) Emphysema group (group II).
Airspace was markedly enlarged and the amount of alveoli was decreased after cigarette-smoke exposure and intratracheal LPS instillation. (C)
Emphysema + rAFMSC transplantation for 20 days (group ll). The features of emphysema were partly diminished after rAFMSC transplantation for
20 days. (D) Emphysema + rAFMSC transplantation for 40 days (group IV). The features of emphysema were decreased substantially after rAFMSC

transplantation for 40 days. Scale bars, 200 um.

lower than those of group II (95% confidence intervals,
group III, MLI, -3547 ~ -22.07; MAA, -3900.76 ~ —2982.92;
group IV, MLI, —4842 ~ -35.02; MAA, -5648.48 ~ —4730.65;
P <0.01), especially in group IV (95% confidence inter-
vals, MLI, -19.93 ~ -5.94; MAA, -2227.04 ~ —1268.39;
P <0.01; Table 1).

Expression of SPA, SPC, and TTF1 mRNAs

High levels of SPA, SPC, and TTF1I mRNAs were
expressed in samples from group I (control group),
but these levels were markedly lower by comparison
in the emphysema group (group II) (95% confidence
intervals, SPA, -0.23~-0.17; SPC, -0.30~ -0.28;
TTF1, -0.32 ~ -0.28; P<0.05). After rAFMSC trans-
plantation (groups III and 1V), the expression levels of

Table 1 Quantitative analyses of lung histomorphology

Group MLI (um) MAA (pm?)

[ 56.53 43235 487228 + 19447

I 11466 + 12.22* 1355027 +619.55%
Il 85.88+ 6.07** 1010842 +691.21%
\Y 7294+ 460 ** 8360.70 + 44585**"

Measurement of the parameters MLI and MAA revealed that rAFMSCs could
alleviate lung injury in rats with emphysema after being transplanted for 20 and
40 days. Group |, control. Group I, emphysema. Group lll, emphysema + rAFMSC
transplantation for 20 days. Group IV, emphysema + rAFMSC transplantation for
40 days. Values are presented as means + SEM (n = 10). *P < 0.01 versus group |,
**P < 0.01 versus group I, *P < 0.01 versus group lll. MLI = Mean linear intercept;
MAA = mean alveolar airspace.

SPA, SPC, and TTF1 mRNAs were significantly higher than
those measured in the case of group II (95% confidence in-
tervals, group III, SPA, 0.03 ~ 0.09; SPC, 0.02 ~ 0.07; TTF1,
0.06 ~0.12; group 1V, SPA, 0.06 ~0.12; SPC, 0.11 ~ 0.15;
TTF1, 0.12~0.17; P<0.05). Compared with rAFMSC
transplantation for 20 days (group III), the transplant-
ation for 40 days (group IV) significantly increased the
expression of SPA, SPC, and TTF1 mRNAs (95% confi-
dence intervals, SPA, 0.01 ~ 0.07; SPC, 0.07 ~ 0.14; TTF1,
0.01 ~ 0.06; P < 0.05) (Figure 5).

e N

1.2+
g E&E Groupl
% 1.0+ o = Group Il
CREl E= E Grouplll
o = D Group IV
2 067 =
3 —
£ 0.4 —
< =
% 0.2 =

0.0- —

SPA SPC TTFI

Figure 5 SPA, SPC, and TTF1 mRNA expression in lung tissues.
SPA, SPC, and TTF1 mRNA expression levels in lung tissues were
determined using quantitative real-time PCR. The relative expression of
SPA, SPC, and TTFT mRNAs was calculated using the 272 mathod.
Values are presented as average expression levels of the mRNAs
(means + SEM, n = 12); *P < 0.05 versus group |, **P < 0.05 versus group
II, P < 0.05 versus group |II.
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Immunohistochemical analysis of SPA and SPC expression
After immunohistochemical staining, SPA- and SPC-
positive cells exhibited a yellowish-brown color in the
cytoplasm, and these cells were mainly located in the
alveolar corner of AECII (Figure 6A-D). The expres-
sion of SPA and SPC was weaker in group II (Figure 6B)
than in group I (Figure 6A). However, after rAFMSC
transplantation (groups III and IV), the expression of
SPA and SPC increased significantly compared with
that in the emphysema group (group II), especially in
the case of group IV. Similarly, the percentages of
SPA- and SPC-positive cells were markedly lower in
group II (7.0% + 0.8% and 4.4% + 1.1%) than in group I
(12.2% + 1.2% and 8.5% * 1.4%) (95% confidence intervals,
SPA, -6.11% ~ -4.28%; SPC, -5.17% ~ -3.07%; P < 0.05;
Figure 6E,F). However, the percentages of SPA- and
SPC-positive cells were significantly higher in group III
(8.1% £ 1.0% and 5.8% + 0.9%) and group IV (9.2% + 0.8%
and 7.1% + 1.0%) than in group II (95% confidence inter-
vals, group III, SPA, 0.18% ~ 2.01%; SPC, 0.35% ~ 2.44%;
group IV, SPA, 1.33% ~ 3.16%; SPC, 1.62% ~ 3.72%; P < 0.05),
especially in group IV (95% confidence intervals, SPA,
0.23% ~ 2.06%; SPC, 0.22% ~ 2.32%; P < 0.05). These re-
sults indicate that after transplantation, rAFMSCs
might have differentiated into AECII-like cells in the
lung tissues of rats of groups III and IV, and expressed
SPA and SPC.

Quantification of SPA and SPC expression

SPA and SPC expression was quantified by performing
western blotting analysis. The results in Figure 7 show
that the expression of SPA and SPC was lower in the
emphysema group (66.96% + 3.54% and 60.58% + 3.96%)
than in the control group (95% confidence intervals,
SPA, -36.98% ~ —29.10%; SPC, —46.84% ~ —32.00%; P < 0.05).
Conversely, rAFMSC treatment increased the expres-
sion levels of SPA and SPC (group III, 77.16% + 3.59%
and 76.03% + 4.86%; group IV, 88.15% +3.00% and
87.90% + 4.74%) as compared with the expression in
group II (95% confidence intervals, group III, SPA,
6.26% ~ 14.14%; SPC, 9.03% ~ 23.87%; group IV, SPA,
17.25% ~ 25.13%; SPC, 20.89% ~ 35.74%; P < 0.05), es-
pecially in group IV (95% confidence intervals, SPA,
7.05% ~ 14.93%; SPC, 4.44% ~ 19.29%; P < 0.05).

Sry mRNA expression

To determine whether rAFMSCs integrated into lung tissues
after transplantation, we used RT-PCR to analyze the expres-
sion of Sry mRNA (Figure 8). When rAFMSCs were trans-
planted for 20 days (group III), the expression of Sry mRNA
could be detected, and the expression level was increased
significantly in group IV (¢=-5.768; P < 0.01). However, Sry
mRNA was not expressed in groups I and II, but it was
strongly expressed in a positive-control group (male rats).
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Apoptosis of type Il alveolar epithelial cells

AECII apoptosis was measured using TUNEL and SPC
double-immunofluorescence staining. Apoptotic AECII ex-
hibited red fluorescence in the cell nuclei (TUNEL-positive)
and green fluorescence in the cytoplasm (SPC-positive)
(Figure 9A-D). The percentage of AECII apoptosis in group
IT was significantly higher than that in group I (95% confi-
dence intervals, 12.96% ~ 16.44%; P < 0.01; Figure 9E). After
rAFMSC transplantation (groups III and IV), the apoptosis
percentages were markedly lower than that in group II
(95% confidence intervals, group III, -9.94% ~ —6.46%;
group IV, -13.74% ~ -10.26; P < 0.01), especially in group
IV (95% confidence intervals, —5.54% ~ —2.06%; P < 0.01).
These results indicated that AECII apoptosis decreased in
rats after rAFMSC transplantation.

Differentiation of rAFMSCs in lung tissues

To further determine how the lung injury caused by
emphysema can be repaired by transplanted rAFMSCs
after integration, we analyzed Y-FISH and SPC double-
immunofluorescence staining in lung sections. The inte-
gration of rAFMSCs (Y-chromosome-positive cells) into
lung tissues of rats was detected by means of Y-FISH
analysis (Figure 10). The results revealed that Y-FISH-
positive cells were abundant in the lung sections of male
rats (positive-control group; Figure 10E), but the cells were
not detected in the sections from the rats of groups I and II
(Figure 10A,B). After rAFMSCs were transplanted for
20 days (group III) or 40 days (group IV), the expression
of Y-FISH-positive cells was significantly higher than
that observed in groups I and II (group III, ¢ =-8.327;
group IV, t = -8.209; P < 0.01; Figure 10C,D). Furthermore,
the percentage of Y-FISH-positive cells in group IV was sig-
nificantly higher than that in group III (¢ = -2.675; P < 0.05;
Figure 10F), which agrees with the Sry mRNA-expression
results. These results revealed that the rAFMSCs had
integrated into the lung tissues of the female rats in
groups III and IV after being transplanted for 20 and
40 days, respectively.

To determine whether the rAFMSCs differentiated into
AECII-like cells after transplantation, we examined the
expression of SPC in Y-FISH-positive cells by performing
double-immunofluorescence staining (Figure 10). After
rAFMSCs were transplanted into lung tissues for 20 days
(group III), Y-FISH and SPC double-positive cells were de-
tected under the fluorescence microscope, and the percent-
age of these double-positive cells in the sections of the rats
of group IV was higher than that measured in the case of
group III (t = -3.266; P < 0.05; Figure 10G).

Discussion

No drugs are currently available for reversing the progres-
sion of COPD and the chronic airflow limitation and em-
physema associated with it. Therefore, novel techniques
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(See figure on previous page.)

Figure 6 Expression of SPA and SPC proteins examined by means of immunohistochemical staining. (A) Control group (group I). SPA and
SPC staining was strongly positive. (B) Emphysema group (group II). SPA and SPC were expressed at lower levels than in group . (C)
Emphysema + rAFMSC transplantation for 20 days (group Ill). SPA and SPC expression was increased after rAFMSC transplantation for

20 days. (D) Emphysema + rAFMSC transplantation for 40 days (group IV). SPA and SPC expression was increased substantially after rAFMSC
transplantation for 40 days. (E) Percentages of SPA-positive cells in the 4 groups. The percentage of SPA-positive cells was significantly lower in group
Il than in group | (P < 0.05), but the percentage was markedly increased after rAFMSC transplantation for 20 and 40 days (P < 0.05). (F) Percentages of
SPC-positive cells in the 4 groups. The percentage of SPC-positive cells was significantly lower in group Il than in group | (P < 0.05), but the
percentage was markedly increased after rAFMSC transplantation for 20 and 40 days (P < 0.05). Values are presented as average percentages of SPA- and
SPC-positive cells (means + SEM, n = 10); *P < 0.05 versus group |, **¥P < 0.05 versus group I, P <005 versus group lll. Scale bars, 50 um.

that can be used for effectively treating COPD must be
explored. Cigarette smoking is the primary risk factor for
COPD, which is related to the inflammatory reactions of
lung tissues [44]. LPS, which is a structural component of
the outer membrane of gram-negative bacteria, plays key
roles in injuring the epithelium and activating inflammatory
cells to secrete inflammatory factors and proteases, which
contribute to the pathogenesis of chronic bronchitis and
emphysema [45]. In this study, emphysema was induced in
rats by exposure to cigarette smoke and LPS.

Over the past few decades, stem cells have been used
in regenerative medicine [27,33,36,46]. Previously, AFSCs
were shown to differentiate into lung epithelial cells after
implantation into lung tissue in vivo [33]. AFMSCs, which
can be readily isolated from amniotic fluid, are multipo-
tent stem cells that exhibit the characteristics of MSCs
[35,36]. In this study, we isolated and identified rAFMSCs,
which were derived from fetal male rats, and we showed
that after transplantation, rAFMSCs could alleviate the
lung injury caused by emphysema.

Group I Group II Group III Group IV
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Figure 7 Quantification of SPA and SPC protein expression by
means of western blotting analysis. The loading control used was
B-actin. The expression of SPA and SPC proteins was analyzed by
performing densitometry and normalizing the values relative to that
of B-actin. All analyses were performed in triplicate. Values are
presented as means + SEM (n = 10). *P < 0.05 versus group |,

*P < 0,05 versus group I, *P < 0.05 versus group Il.

We isolated and purified rAFMSCs and analyzed their
phenotypic characteristics, and the results revealed that
the rAFMSCs did not express the surface antigens CD14,
CD19, CD34, and CD45, but strongly expressed CD29,
CD44, CD73, CD90, CD105, and CD166; this agrees with
the results of Pan et al. [36]. Oct-4, a POU transcription
factor, is a marker of pluripotent stem cells [47] that
disappears quickly after cells differentiate [48]. Oct-4 has
been reported to be expressed in embryonal carcinoma
cells, ESCs, embryonic germ cells, and amniotic fluid stem
cells, and to play a vital role in determining the fate of
stem cells [49-51]. Here, Oct-4 mRNA was expressed in
rAFMSCs at considerably higher levels than in rat lung
fibroblasts, which revealed that rAFMSCs exhibit the
stem cells” characteristics for differentiation. The iso-
lated rAFMSCs could be induced to differentiate into
adipocytes and osteocytes, which demonstrated that
the differentiation potential of rAFMSCs was similar to
that of AFSCs [28,29].

We transplanted rAFMSCs into rats for 20 and 40 days
by means of intratracheal instillation and then examined
the morphological changes in lung tissue. The results re-
vealed that the MLI and MAA measured in lung tissues
were markedly improved in groups III and IV when
compared with group II (emphysema group). Thus, we
hypothesize that rAFMSC transplantation can be used
for repairing the lung injury caused by emphysema,
and that this transplantation stimulates the expression
of pulmonary SPs in rats with emphysema.

SPs include SPA, SPB, SPC, and SPD and are synthesized
and secreted by AECII in lung tissue. SPA and SPC, which
are secreted specifically by AECII [52,53], play critical roles
in reducing the surface tension of alveoli. In this study, lung
tissues expressed both SPA and SPC mRNAs and proteins
after rAFMSC transplantation (groups III and IV) at
levels markedly higher than those in the emphysema
group (group II), which agreed with the morphological
changes observed. TTF1 is vital for the induction of re-
spiratory cells, including AECII, and it is expressed in
lung tissues after AFSC transplantation [33,54]. Here,
the TTFI mRNA level in groups III and IV was consider-
ably higher than that in group IL

Sry is the Y-chromosome-specific gene that determines
the sex of animals [33]. Our results showed that Sry
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Figure 8 Sry mRNA expression. M, DNA ladder marker; Lane 1, positive-control group (male rats); Lane 2, control group (female rats); Lane 3,
emphysema + rAFMSC transplantation for 20 days (group Il); Lane 4, emphysema + rAFMSC transplantation for 40 days (group IV). The expression
of Sry mRNA was analyzed by normalizing the values relative to that of GAPDH. Values are presented as average expression levels of Sry mRNA
(means + SEM, n=10); *P < 0.01 versus positive-control group, P <001 versus group .
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Figure 9 Apoptosis of AECII in lung tissues. (A) Control group (group I). TUNEL (red) and SPC (green) double-positive cells (apoptotic AECI) were
detected infrequently. (B) Emphysema group (group Il). Numerous apoptotic AECII were detected. (C) Emphysema + rAFMSC transplantation for

20 days (group Ill). The number of apoptotic AECII was decreased after rAFMSC transplantation for 20 days. (D) Emphysema + rAFMSC transplantation
for 40 days (group IV). The number of apoptotic AECIl was decreased substantially. Cells were counterstained with DAPI. (E) The number of apoptotic
AECIlin each group. Values are presented as the average apoptotic-AECI numbers (means + SEM, n=10); *P < 0.01 versus group |, **P < 0.01 versus
group Il, *P < 0.01 versus group lll. Scale bars, 40 um.
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Figure 10 Y-FISH and SPC double-immunofluorescence staining in lung tissues. (A) Control group (group ). Y-FISH staining (red) was negative.
Nuclei were counterstained with DAPI (blue). (B) Emphysema group (group II). Y-FISH staining was again negative. (C) Emphysema + rAFMSC
transplantation for 20 days (group Ill). Y-FISH staining was weakly positive and a few Y-FISH-positive cells were also positive for SPC staining
(green). (D) Emphysema + rAFMSC transplantation for 40 days (group IV). The number of Y-FISH-positive cells was increased substantially, and
the number of Y-FISH and SPC double-positive cells was markedly higher than that in group Il (E) Positive-control group (male rats). Y-FISH
staining was strongly positive. Cells were counterstained with DAPI. (F) The percentage of Y-FISH-positive cells in each group. (G) The percentage of
Y-FISH and SPC double-positive cells in each group. Values are presented as average percentages of positive cells (means + SEM, n = 10); *P < 0.01

mRNA was strongly expressed after rAFMSC trans-
plantation (groups III and IV), but it was not expressed
in the absence of transplantation (groups I and II),
which indicated that the transplanted rAFMSCs had
integrated into lung tissues. Moreover, when we examined
AECII apoptosis, the results showed that the percentage of
TUNEL and SPC double-positive cells (apoptotic AECII)

after rAFMSC integration was substantially lower than the
percentage in the emphysema group.

To locate and count the AECII-like cells that were
differentiated from the rAFMSCs in lung tissues, we
performed immunostaining and observed SPC expres-
sion by rAFMSCs, and the identity of these cells was
confirmed by means of Y-FISH in the lung tissues. The
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results indicated that rAFMSCs in the lung tissues
might be able to differentiate into AECII-like cells or
induce local regeneration of the lung alveolar epithelium
after transplantation.

Conclusions

The results of this study suggest that transplanted
rAFMSCs can alleviate the lung injury caused by emphy-
sema; they do so by integrating into lung tissues, potentially
differentiating into AECII-like cells or inducing local regen-
eration of the lung alveolar epithelium, inhibiting AECII
apoptosis, and elevating the levels of SPA, SPC, and TTFI
mRNAs and SPA and SPC proteins. Thus, rAFMSC trans-
plantation can potentially be used as a method for the treat-
ment of COPD and in lung regenerative therapy.
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