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Abstract

Background: Leptospiral glycolipoprotein (GLP) is a potent and specific Na/K-ATPase inhibitor. Severe pulmonary
form of leptospirosis is characterized by edema, inflammation and intra-alveolar hemorrhage having a dismal
prognosis. Resolution of edema and inflammation determines the outcome of lung injury. Na/K-ATPase activity is
responsible for edema clearance. This enzyme works as a cell receptor that triggers activation of mitogen-activated
protein kinase (MAPK) intracellular signaling pathway. Therefore, injection of GLP into lungs induces injury by
triggering inflammation.

Methods: We injected GLP and ouabain, into mice lungs and compared their effects. Bronchoalveolar lavage fluid
(BALF) was collected for cell and lipid body counting and measurement of protein and lipid mediators (PGE2 and LTB4).
The levels of the IL-6, TNFα, IL-1B and MIP-1α were also quantified. Lung images illustrate the injury and whole-body
plethysmography was performed to assay lung function. We used Toll-like receptor 4 (TLR4) knockout mice to evaluate
leptospiral GLP-induced lung injury. Na/K-ATPase activity was determined in lung cells by nonradioactive rubidium
incorporation. We analyzed MAPK p38 activation in lung and in epithelial and endothelial cells.

Results: Leptospiral GLP and ouabain induced lung edema, cell migration and activation, production of lipid mediators
and cytokines and hemorrhage. They induced lung function alterations and inhibited rubidium incorporation. Using
TLR4 knockout mice, we showed that the GLP action was not dependent on TLR4 activation. GLP activated of p38 and
enhanced cytokine production in cell cultures which was reversed by a selective p38 inhibitor.

Conclusions: GLP and ouabain induced lung injury, as evidenced by increased lung inflammation and hemorrhage.
To our knowledge, this is the first report showing GLP induces lung injury. GLP and ouabain are Na/K-ATPase targets,
triggering intracellular signaling pathways. We showed p38 activation by GLP-induced lung injury, which was may be
linked to Na/K-ATPase inhibition. Lung inflammation induced by GLP was not dependent on TLR4 activation.
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Background
Leptospirosis is a worldwide zoonosis caused by pathogenic
spirochetes of the genus Leptospira. This disease affects
both animals and humans and has veterinary, economic
and medical relevance [1]. In tropical countries, epidemic
outbreaks occur in the rainy season and after floods [2].
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Infection commonly occurs after contact with contami-
nated soil and water. An intact keratinocyte layer is a bar-
rier against leptospiras [3], but water sprays can facilitate
bacterial entry [4]. During the acute phase of the disease,
leptospiras are found in the liver and kidneys [5]. Pulmon-
ary involvement in leptospirosis (Weil’s disease) has been
reported over the last 20 years and is related to the sever-
ity and mortality of the disease [6,7].
Bacterial recognition by a host during leptospirosis is

still not completely understood, but the presence of lep-
tospira may be sensed through Toll-like receptors (TLR4
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and TLR2) [8,9]. The leptospiral lipopolysaccharide (LPS)
differs from those found in other Gram(-) bacteria. In this
regard, lipid A, the active component of leptospiral LPS, is
structurally and functionally different from that of E. coli
[10]. The recognition of L. interrogans LPS requires CD14
and TLR2, but L. interrogans LPS is incapable of inducing
intracellular signaling through TLR4 activation [9]. A key
protein of the outer leptospiral membrane, the lipoprotein
LipL32, is produced during leptospirosis [11]. This protein
is highly conserved and found exclusively in pathogenic
leptospiras [12]. LipL32 has been shown to activate TLR2
[9] in a Ca2+-binding cluster-dependent manner [13].
Another leptospiral component with cytotoxic activity is

the glycolipoprotein fraction GLP [14]. The observation
that GLP causes a decrease in renal water absorption pro-
vides new evidence that this component is an important
contributor to the virulence of pathogenic Leptospira [15].
Due to their peculiar metabolism, leptospiras are able to
store fatty acids [14]. Some of them (e.g., palmitovaccenic
and linoleic acids) are associated with GLP [14], while
others (e.g., hydroxylauric and palmitic acids) are associ-
ated with LPS and lipopolysaccharide-like substance (LLS)
[16]. Oleic acid is associated with both LPS and GLP.
We have proposed that nonesterified fatty acids (NEFA)

produce toxic effects and are involved in multi-organ fail-
ure that is characteristic of Weil’s disease [17]. Supporting
those findings, we have demonstrated increased molar ra-
tios of serum NEFA; in particular, the linoleic and oleic
acids/albumin molar ratios are increased in severe forms
of leptospiral infection [17].
The resolution of pulmonary edema and lung inflamma-

tion are important determinants of the outcome of acute
respiratory distress syndrome (ARDS) [18]. Resolution of
alveolar edema is dependent on the transfer of salt and
water across the alveolar epithelium through apically lo-
cated sodium channels (ENaC) followed by extrusion to
the lung interstitium via the basolaterally located Na/K-
ATPase [19].
GLP inhibits Na/K-ATPase [20], and oleic acid has been

shown to inhibit Na/K-ATPase in the lung in a rabbit
model, resulting in a complete block of active sodium
transport and enhancement of endothelial permeability
[21]. Cardiac glycosides are a large family of clinically rele-
vant, specific Na/K-ATPase inhibitors that have been clas-
sically used to treat heart failure [22]. In addition to their
classical effects, ouabain induces internalization and lyso-
somal degradation of Na/K-ATPase [23], triggering intra-
cellular pathways (including MAPK activation) [24] and
inducing lung injury [25].
Increased cytokine production correlates with a lethal

outcome in leptospirosis patients [26]. IL-6 release seems
to play a key role in acute respiratory distress syndrome
(ARDS), although its detailed mechanism of action re-
mains unclear [27]. In addition, the infection of guinea
pigs with L. interrogans serovar Icteroheamorrhagiae leads
to increased IL-6 and TNFα mRNA levels in the lung
[28]. IL-1β and IL-18 are produced as cytosolic pre-
cursors that require secondary proteolytic cleavage,
which is dependent on inflammasome activation [29]. The
inflammasome consists of several proteins. One of these,
NLRP3, is involved in the recognition of bacterial RNA,
ATP, uric acid and low intracellular potassium concentra-
tions (which is a consequence of the inhibition of Na/K-
ATPase) [30].
In Brazil, the clinical patterns of leptospirosis have

changed, and severe cases with pulmonary involvement
have been detected [31,32]. Nevertheless, the associated
pulmonary distress is not due to extensive bacterial lung
colonization [33,34]. Leptospiral components, including
GLP, can induce lung injury following their release by
bacteria killed during the immune response, as they can
ultimately reach the lung.
Oleic acid, an inhibitor of Na/K-ATPase activity [20,21],

has been used experimentally to induce lung injury in
mice [35]. Intravenously and intratracheally injected oleic
acid targets lung Na/K-ATPase in vivo [25,36]. In this re-
spect, GLP is a much more specific Na/K-ATPase inhibi-
tor than only oleic acid [20]. Oleic acid-induced lung
injury and IL-6 production in the murine lung occur
through ERK1/2 activation [36], and as we have shown,
Na/K-ATPase is a target for GLP and fatty acids and plays
an important role in leptospirosis physiopathology [37].
GLP fatty acid components, including oleic acid, are re-
sponsible for the biological effects of GLP [20].
In this study, we compared two specific Na/K-ATPase

inhibitors (GLP and ouabain), which were administered
through the intra-tracheal route, for their ability to in-
duce lung edema, cell migration and activation, and the
production of lipid mediators and cytokines in different
mouse strains. Because oleic acid triggers lung injury
through MAPK ERK [38], we also investigated if GLP can
activate the MAPK pathway.
Methods
Animals
We used male mice (25 – 30 g) of the following strains:
Swiss Webster (SW) and C57Bl/10 (from the Oswaldo
Cruz Foundation breeding unit, Rio de Janeiro, Brazil) and
C57Bl/10ScCr (kindly provided by the Federal Fluminense
University breeding unit, Rio de Janeiro, Brazil). The ani-
mals were housed at 22°C with a 12-h light/dark cycle and
free access to food and water.
Ethical statement
The Animal Welfare Committee of the Oswaldo Cruz
Foundation approved all the experiments under license
numbers 002-08 and LW36/10 (CEUA/FIOCRUZ).
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Reagents
Ouabain (purity > 99%) and E. coli LPS were obtained from
Sigma-Aldrich, St. Louis, MO. All other reagents were of
the highest purity grade.

Preparation of the GLP fraction
GLP was prepared from Leptospira interrogans serovar
Copenhageni strain Fiocruz L1-130 as previously de-
scribed [14]. L. interrogans was grown at 28°C in EMJH
medium (Bio-Rad) without agitation. At the end of the
exponential phase, the bacteria were pelleted at 9000 × g
in an endotoxin-free, 50-mL polypropylene tube and fro-
zen at -80°C. The pellet was resuspended in endotoxin-
free 0.01 M Tris/HCl (pH 7.4), lysed at 4-8°C for 48 h
by agitating with glass beads and then centrifuged at
20,000 × g for 30 min at 18°C. The supernatant was
treated with RNase and DNase (50 μg/mL each for 3 h at
37°C) and then dialyzed for 24 h at 4°C against 0.1 M
Tris/HCl buffer (pH 7.4). After acidification to pH 3.7
with 1 M acetic acid at 4°C, GLP was sedimented by ultra-
centrifugation (4000 × g, 30 min, 4°C), washed twice with
0.1 M acetic acid and lyophilized. The lyophilized GLP
was kept frozen at -20°C. At the time of usage, the ly-
ophilized powder was suspended in sterile saline, and
50 μL of the solution, containing 12 μg of GLP protein,
was injected into each animal. The Bradford method was
used to determine the protein concentration of the GLP
preparation [39]. The preparation (6 μg of GLP protein)
retained its inhibitory properties, inhibiting approximately
50% the activity of a standard Na/K-ATPase preparation
according to our previous work [20]. This means that the
GLP inhibitory properties were tested in vitro prior to its
injection into mice lung.

Intra-tracheal administration of GLP, ouabain or Gram(-) LPS
Each mouse was anesthetized with isoflurane, and an in-
cision was made above the thyroid region to expose the
trachea. Then, using a syringe, 50 μL of the following
doses were instilled into the tracheas of different groups
of mice: ouabain (0.075 μmol/animal), GLP (12 μg of GLP
protein/animal), Gram(-) E. coli LPS (500 ng/animal) and,
for the control groups, 50 μL of sterile saline. Ouabain
was injected into SW mice, E. coli LPS was injected into
C57Bl/10 and C57Bl/10ScCr, and GLP was injected into
all mouse strains.

Total and differential cell analysis and total protein
quantification in bronchoalveolar lavage fluid (BALF)
After euthanizing the mice in a CO2 chamber, the tracheas
were isolated by blunt dissection, and three 1.0-mL ali-
quots of PBS were sequentially instilled into each animal
through a small-caliber tube inserted into the airway.
After gentle aspiration, 1 mL of fluid was recovered per
instillation/aspiration cycle. The aliquots were pooled, for
a total of approximately 3 mL of bronchoalveolar lavage
fluid per mouse. Total leukocyte counts were performed
using microscopy and Neubauer chambers after diluting
the BALF samples in Türk solution (2% acetic acid). The
differential leukocyte counts of cytocentrifuged smears
stained by the May-Grunwald-Giemsa method were deter-
mined. The total protein in the BALF supernatants was
determined using the Micron BCA Kit method (Pierce)
according to the manufacturer’s instructions.

Lipid body staining and quantification
While still moist, the leukocytes on the CytoSpin slides
were fixed in 3.7% formaldehyde in Ca2+- and Mg2+-free
Hank’s buffered salt solution (HBSS; pH 7.4) and stained
with 1.5% OsO4 [40]. The lipid bodies in 50 consecutively
scanned leukocytes were enumerated by microscopy.

Cytokine/chemokine measurement assays
The IL-6, CCL3/MIP-1α, TNFα and IL1β concentrations
in the cell free-BALF supernatants were measured using
ELISA kits according to the manufacturer’s instructions
(Duo Set, R&D Systems, Minneapolis, USA).

PGE2 and LTB4 assays
The concentrations of LTB4 and PGE2 in the BALF su-
pernatants were assayed using enzyme immunoassay
(EIA) kits according to the manufacturer’s instructions
(Cayman Chemical, Ann Arbor, MI, USA).

Measurement of airway function
The airway function in individual unrestrained animals
was evaluated 24 h after challenge by barometric pleth-
ysmography using a whole body plethysmograph (WBP,
Buxco, Troy, NY) as previously described [41].

Morphological studies
Twenty-four hours after challenge with leptospiral GLP,
E. coli LPS, ouabain or saline, the animals were euthanized
in a CO2 chamber, and the lungs were removed. For
microscopic studies, the lungs were fixed in 10% neutral-
buffered formalin, embedded in paraffin, sectioned at 4 μm
and stained with hematoxylin and eosin.

Isolation of human endothelial cells
Primary human umbilical vein endothelial cells (HUVECs)
were isolated as previously described [42,43] and grown in
199 medium (M-199, Sigma) supplemented with 15 mM
HEPES, antibiotics (100 U penicillin/mL, 100 mg strepto-
mycin/mL), 2 mM L-glutamine, and 20% (v/v) fetal calf
serum (FCS, Cultilab complete medium). The cells were
used at the first or second passages only, and subcultures
were obtained by treatment of confluent cultures with
0.025% (w/v) trypsin/0.2% (w/v) EDTA in PBS. Cell viability
was assessed with Trypan blue, and it remained above 95%.
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Epithelial cell culture experiments
A549 lung epithelial cells were kindly provided by Dr. Cristina
Plotkowski (from the Rio de Janeiro State University, Rio
de Janeiro, RJ, Brazil) and were maintained in complete
DMEM/F12 (Hyclone) medium (containing 2% fetal bo-
vine serum, 1% penicillin, and 100 UI/mL streptomycin).
A day before the experiment, the cells were treated with
trypsin (0.025%), centrifuged at 4°C and 400 × g for
10 min, resuspended in the complete medium, and incu-
bated at 37°C in 5% CO2 in 24-well plates (300,000 cells
per well). The cells were then washed with PBS 30 min
after the stimulus, lysed with lysis buffer (10 mM Tris
pH 8.0, 150 mM NaCl, 1% Triton) containing protease in-
hibitors (Complete Protease Inhibitor Cocktail Tablets
from Roche), and stored at -20°C.
Figure 1 Cell migration and protein extravasation in BALF of SW mice
animal) or GLP (12 μg of GLP protein/animal). (A) Total cells, (B) neutro
50 μL of sterile saline. Cell migration and edema formation in lungs of C57
challenge with LPS (500 ng/animal) or GLP (12 μg of GLP protein/animal). Co
(gray bars), and GLP-treated (black bars). (D) Total cells, (E) neutrophils and (F
at least 8 animals. *P < 0.05 compared to the control group; #P < 0.05 when b
Lung tissue experiments
Animals were anesthetized with ketamine and xylazine
and then perfused with 20 mL of 20 mM ethylenedi-
aminetetraacetic acid (EDTA) pH 7.4 through the right
cardiac ventricle. Then, the lung tissues were cut into
small pieces and homogenized at 4°C in a homogenizer
using the lysis buffer containing protease inhibitors.

Evaluation of p38 activation in cultured cells and lung
tissues
Cell suspensions and lung lysates in the electrophoresis
sample buffer were heated at 100°C for 5 min and run in
10% polyacrylamide gels (PAGE-SDS). After transfer of the
proteins to nitrocellulose membranes at 15 V for 60 min
(Biorad semidry system), the membranes were incubated
24 h after intra-tracheal challenge with ouabain (0.075 μmol/
phils, and (C) total protein in BALF supernatant. Controls received
BL/10 and C57BL/10ScCr (TLR4-deficient) mice 24 h after intra-tracheal
ntrols received 50 μL of sterile saline. Controls (white bars), LPS-treated
) total protein in BALF supernatants. The results are the means ± SEM of
oth strains were compared.
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with a blocking solution followed by incubation with
a monoclonal antibody against phosphorylated p38 (Cell
Signaling; 1:1000 dilution) and then with a peroxidase-
conjugated anti-mouse antibody (Pierce; 1:10,000). De-
tection was performed by utilizing the “Super Signal
Chemiluminescence” kit (Pierce) and then exposing the
membrane to an autoradiograph film (Kodak MR Biomax).
Membranes containing proteins were stripped, blocked
again, and incubated with monoclonal antibodies to total
p38 (Cell Signaling; 1:1000) or glycerol-3-phosphate de-
hydrogenase (GAPDH) followed by treatment with an anti-
mouse antibody conjugated to peroxidase. After digitalized
Figure 2 Lipis body formation and lipid mediators production in BAL
(0.075 μmol/animal) or GLP (12 μg of GLP protein/animal). Lipid body
(C) in BALF of SW mice 24 h after intra-tracheal challenge with ouabai
received 50 μL of sterile saline. Number of leukocyte lipid bodies and the pro
10ScCr mice 24 h after intra-tracheal challenge with LPS (500 ng/animal) or G
Controls (white bars), LPS-treated (gray bars), and GLP-treated (black bars). (D)
to 8 animals per group. *P < 0.05 compared to the control group; #P < 0.05 w
and analysis by size and intensity using the Image Master
2D Elite 4.01 equipment, the bands were compared to those
of the controls and normalized against total p38 or GAPDH.
The expression results are in folds over the controls.

Treatment with a MAPK p38 phosphorylation inhibitor
The p38 phosphorylation selective inhibitor SB203580
(4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4- pyridyl)
imidazole) at a concentration of 10 μM was incubated
with A549 cells 30 min before GLP stimuli. The SB203580
was previously dissolved in dimethylsulphoxide (DMSO)
and diluted with PBS when used.
F of SW mice 24 h after intra-tracheal challenge with ouabain
numbers (A), PGE2 concentrations (B) and LTB4 concentrations
n (0.075 μmol/animal) or GLP (12 μg of GLP protein/animal). Controls
duction of LTB4 and IL-1β in BALF supernatants of C57BL/10 and C57BL/
LP (12 μg of GLP protein/animal). Controls received 50 μL of sterile saline.
Lipid bodies, (E) LTB4 and (F) IL-1β. The results are the means ± SEM of 6
hen both strains were compared.
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Na/K ATPase assay in HUVECs based on Rb+ incorporation
E.coli LPS, ouabain and leptospiral GLP were diluted in
KCl free-Hank’s solution containing non-radioactive Rb+

and incubated with cells for 30 min at 37°C in 5% CO2

atmosphere. The culture was washed with cold PBS and
cells were lysed with 600 μL of SDS 0.25%. Samples were
centrifuged 10000 × g [44] and Rb+ was quantified by in-
ductively coupled plasma optical emission spectrometry
(ICP-OES) using an Ultima 2 apparatus with Mira Mist
Nebulizer and spray chamber (Jobin Yvon, Longjumeau,
France). A rubidium nitrate standard (Ultra Scientific,
EUA) was used to construct the calibration curve. Results
were expressed in μmol of Rb+ incorporated per 30 min
per 3 × 105 cells.

Statistical analysis
Results were expressed as the mean ± standard error
of the mean (SEM) and analyzed by one-way ANOVA
followed by the Newman-Keuls-Student posttest to com-
pare all columns. Differences were considered significant
when p < 0.05.

Results
GLP (12 μg of protein/animal) and ouabain (0.075 μmol/
animal) injected intratracheally induced cell accumula-
tion in BALF, as demonstrated by the increased number of
neutrophils (Figure 1A and B). The total protein concen-
tration of BALF supernatants was also increased after
GLP administration (Figure 1C), indicating increased vas-
cular permeability and edema formation.
As the activation of TLR4 protects mice against lethal

leptospiral infection [45], we compared the effects of
Figure 3 Production of inflammatory cytokines in BALF supernatants
(0.075 μmol/animal) or GLP (12 μg of GLP protein/animal). (A) IL-6, (B)
saline. The results are the means ± SEM of at least 8 animals.
leptospiral GLP and E. coli LPS challenges in C57BL10/
ScCr mice, which possess a null mutation for TLR4
and are therefore resistant to high doses of LPS [46].
The wild-type controls showed a typical response to
LPS, with increased cell migration and higher total pro-
tein content in BALF, while, as expected, the C57BL10/
ScCr mice did not respond to LPS. GLP and ouabain not
only induced cell accumulation in BALF but also aug-
mented the total protein in both C57BL10/ScCr and wild
type control animals (Figure 1D, E and F), thus ex-
cluding the possibility of LPS contamination of our GLP
preparation.
BALF leukocytes showed signs of activation because

lipid body numbers were markedly augmented 24 h after
GLP administration (Figure 2A). The concentrations of
the lipid mediators PGE2 (Figure 2B) and LTB4 (Figure 2C)
were significantly increased in the BALF supernatants
after GLP or ouabain challenge. In addition to inflamma-
tory lipid mediators, we also observed increased cytokine
concentrations (IL-6, IL-1β, MIP-1α and TNFα) in BALF
supernatants 24 h after administration of GLP or ouabain
(Figure 3A, B, C and D, respectively).
As TLR4 is an important leptospiral sensor, we further

investigated other inflammatory parameters, such as
lipid body formation and the production of LTB4 and
IL-1β, in TLR4-deficient mice. GLP-induced lipid body
formation was similar in wild-type and C57BL10/ScCr
mice (Figure 1D). The same pattern was observed for the
IL-1β and LTB4 levels in BALF supernatants (Figure 1B
and C). Again, as expected, LPS did not induce lipid body
formation or the production of IL-1β and LTB4 in
C57BL10/ScCr mice.
of SW mice 24 h after intra-tracheal challenge with ouabain
IL-1β, (C) MIP-1α, and (D) TNF-α. Controls received 50 μL of sterile
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The lung is a key target in leptospirosis; ARDS patients
frequently present hemorrhage, which can be fatal [32], and
leptospirosis-susceptible animals present lung hemorrhage
[47]. Macroscopic lung evaluation (Figure 4B and C) clearly
showed intense hemorrhage 24 h after GLP or ouabain
administration compared to controls (Figure 4A). Micro-
scopic analyses of the lungs confirmed intense alveolar
hemorrhage in GLP- (Figure 4E), ouabain- (Figure 4F) and
GLP plus ouabain-treated animals (Figure 4G) compared
to control animals (Figure 4D). All stimuli induced struc-
tural damage in the lung, with inflammatory cell infil-
tration and focused hemorrhage, characterizing a direct
lung insult. Ouabain induced a less-intense hemorrhage,
Figure 4 Representative macro and microphotographs of SW mous
(0.075 μmol/animal), GLP (12 μg of GLP protein/animal) or ouabai
(A) sterile saline (control), (B) ouabain or (C) GLP. Photomicrographs of the
(D) and hemorrhagic sites in the lungs from mice challenged with leptosp
Plethysmographic analysis of lung function (H), where the enhanced pause
plethysmographic results are represented as the mean ± SEM of 7 to 15 an
and animals injected with GLP plus ouabain presented
high mortality rates immediately after injection (data not
shown). Functional analysis by lung plethysmography (bar
graph, Figure 4H) revealed altered pulmonary function
after challenge with ouabain or GLP.
Na/K-ATPase is a signal transducer that interacts with

different signaling proteins to form a complex called the
signalosome [48]. One pathway involves activation of the
Ras-Raf-MAPK cascade [49], which ultimately activates
ERK, c-jun kinase (JNK) and p38. In this regard, we evalu-
ated p38 activation in the lung, lung epithelial cells and
human endothelial cells. GLP induced p38 activation, in-
creasing its phosphorylation in lung (Figure 5A), which
e lungs 24 h after intra-tracheal challenge with ouabain
n plus GLP. Macroscopic photos of mouse lungs challenged with
same lungs, showing intact alveolar structures in the control group
iral GLP (E), ouabain (F) or GLP plus ouabain (GLP + ouabain) (G).
(Penh) was used to represent airway resistance. The
imals. *P < 0.05.
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Figure 5 GLP-induced p38 phosphorylation in the lung tissue.
Lungs were removed from SW animals 4 h after the GLP challenge.
The graphs represent densitometry analysis of the phosphorylated
p38 and total p38 bands (A), as detailed in the Methods section.
The bars represent the medians of the two animals. Oleic acid, a
constituent of GLP did not activate p38.

Figure 6 GLP-induced p38 phosphorylation and IL-8 production
in HUVECs. Cultured cell lysates were prepared after incubation
with GLP for 30 min or for up to 24 h to measure the IL-8 level
(B) the in the supernatant. The graphs represent densitometry
analysis of phosphorylated p38 and total p38 bands (A), as detailed in
the Methods section.
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was different from the effect of oleic acid. Oleic acid acti-
vates the ERK pathway [38]. GLP induced p38 phosphoryl-
ation (6.7×) and the production of the IL-8 chemokine in
human endothelial cells (Figure 6A and B) as well as lung
inflammation, demonstrating that the intra-tracheal admin-
istration of leptospiral GLP causes lung injury. Based on our
previous in vitro report showing GLP as a Na/K-ATPase in-
hibitor [20,50] and the results of the present work, we sug-
gest that this enzyme is a target for GLP in vivo.
Finally, GLP induced p38 phosphorylation and IL-6

production in lung epithelial cells, and this effect was re-
versed by the selective p38 inhibitor SB203580 (Figure 7A),
which addresses a key role of p38 in GLP-induced lung
inflammation.
We showed that GLP inhibited purified Na/KATPase

in vitro [20]. During leptospirosis, the immune response
kills the bacteria, releasing GLP into the bloodstream,
where it reaches the lung capillary net. In the present
work, ouabain and GLP inhibited Na/K-ATPase in endo-
thelial cells (Figure 8), whereas E. coli LPS had no effect.

Discussion
We used a murine model to study the effects of leptospiral
GLP on inflammation [51]. GLP decreased the mRNA
levels of Na/K-ATPase β1 in vitro [52]. These results re-
vealed that Na/K-ATPase inhibition in alveolar cells is in-
volved in lung edema formation.
Neutrophils are the main cells that migrate to the lung

during ARDS. When activated, they release an arsenal of
potent molecules that contribute to tissue damage and
inflammation [53]. Our data showed neutrophil infiltra-
tion after GLP or ouabain injection. Cytokines such as
TNF-α and interleukins (mainly IL-1β and IL-6) contribute
to the development of ARDS by increasing vascular
permeability and organ dysfunction [53]. GLP has also
been shown to activate blood mononuclear cells, leading
to augmented TNF-α and IL-6 production [54]. Ouabain
is known to affect the immune system by modulating
cytokine production, and its administration has been
shown to induce IL-1 and TNF-α production by mono-
nuclear cells [55]. Our results showed increased lung
levels of IL-6, IL-1β, MIP-1α and TNFα in BALF superna-
tants in GLP- or ouabain-challenged animals. To our



Figure 7 Blocking p38 activation by treatment with the selective inhibitor SB203580 decreases GLP-induced p38 phosphorylation and
IL-6 production. Cultured cell lysates were prepared after incubation with SB203580 and GLP for 30 min, as detailed in the Methods section.
Cultured cell were incubated with GLP for up to 24 h to measure the IL-6 level in the supernatant (A). *P < 0.05 compared to the control group;
#P < 0.05 compared to the GLP group.
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knowledge, this is the first report of lung injury induced
by intra-tracheal ouabain injection. The chemokine MIP-
1α, a chemotactic factor for monocytes [56], was also
increased in our model. Therefore, challenge with GLP or
ouabain induced the main inflammatory mediators in-
volved in ARDS.
The levels of LTB4, a potent chemoattractant for neu-

trophils [57], increased after GLP or ouabain challenge;
therefore, LTB4 might be involved in neutrophil migra-
tion. The production of PGE2 was also elevated after ei-
ther type of challenge. Recent work has shown that
ouabain-induced PGE2 production in the murine lung is
dependent on cyclooxygenase-2 (COX-2) activation [58].
In this regard, some evidence has suggested that the COX-
2/PGE2 pathway plays an important role in augmenting
the inflammatory immune response during ARDS, as the
inhibition of PGE2 synthesis prevents edema formation,
neutrophil infiltration, pro-inflammatory cytokine produc-
tion and the expression of adhesion molecules, thereby re-
storing lung morphology and increasing survival during
Figure 8 Inhibition of Rb+ incorporation into HUVECs by E. coli LPS, o
with KCl-free Hank’s solution containing non-radioactive Rb+. We compared
(6 and 12 μg of GLP protein) in the experimental groups. Rb+ incorporation
The results are expressed in μmol Rb+ incorporated per hour per 3 × 105 cells
between Rb+ incorporation in the absence and in the presence of ouabain. O
entering cells through potassium channels and through passive diffusion. *P <
poly-microbial sepsis [59]. The GLP-induced production
of lipid mediators is most likely associated with increased
number of lipid bodies, which serve as privileged sites for
lipid mediator production [60,61].
Hemorrhage can lead to high mortality rates [62].

Lung hemorrhage can be present in severe leptospirosis
[1,6,63,64] but is less frequent in other ARDS etiologies.
This hemorrhagic syndrome has been described in lepto-
spirosis patients in China, Korea, Brazil and Nicaragua
[65,66]. Animals with leptospirosis infection also display
lung hemorrhage [47,67]. We have previously shown that
ouabain induces hemorrhagic foci in the lung following
local administration [68] and that the hemorrhage is less
extensive compared to GLP. GLP induced both lung in-
flammation and hemorrhage, which contribute to decreased
lung function. Lung hemorrhage may have influenced the
quantities of cytokines and proteins in the BALF because
serum may have flooded the alveoli, increasing the albumin
content; therefore, systemic cytokines may have contributed
to the total cytokine levels measured in the BALF.
uabain or leptospiral GLP. The control group was incubated solely
the effects of ouabain (100, 250 and 500 nM), LPS 1 μg/mL and GLP
in cell cultures after 30 min of treatment was measured by ICP-OES.
. Ouabain-sensitive inhibition of Na/K-ATPase is shown as a difference
uabain-insensitive Rb+ incorporation represents the amount of Rb+

0.05 compared to the control group.
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We cannot eliminate the possible presence of a con-
taminating molecule in our GLP preparation. Neverthe-
less, when a mouse strain carrying a null TLR4 mutation
was compared with the corresponding wild-type strain,
we found that GLP did not act through TLR4 activation,
which indicates that our GLP preparation was free of
Gram(-) LPS. Accordingly, evidence for renal colonization
by leptospira inducing a mild renal fibrosis in mice
through TLR- and NLR-independent pathways would ex-
plain the TLR4-independent effect of GLP [69]. Lepto-
spiral GLP activates the NLRP3 inflammasome protein by
down regulating the Na/K-pump [52]. Inflammasome acti-
vation is an important step in IL-1β release, and in our
study, the IL-1β production in the lung was similar to that
induced by GLP and ouabain. Therefore, inflammasome
activation may play an important role in the inflammatory
events related to leptospirosis.
The signal transduction capacity of Na/K-ATPase oc-

curs through properties different from its function as an
ion pump and does not depend on changes in the intra-
cellular Na+ and K+ concentrations [70]. We showed a
new GLP mechanism of action through the activation of
p38, whereby Na/K-ATPase activity and lung inflamma-
tion triggered by GLP are linked. Therefore, we suggest
another mechanism of Na/K-ATPase in lung inflamma-
tion beyond its key role in edema formation and/or clear-
ance, strengthening the idea that Na/K-ATPase may be
involved in inflammation [71].
Na/K-ATPase has signaling properties [72] that promote

intracellular activation [73]. Furthermore, the GLP compo-
nents oleic acid and ouabain target the Na/K-ATPase in
the lung when injected intravenously and cause lung injury
[25]. Both GLP and ouabain injected directly into the lung
induced similar levels of lung inflammation in SW mice.
Furthermore, GLP inhibited Na/K-ATPase in HUVECs
and induced inflammatory mediators in both endothelial
and lung epithelial cells. Considering Na/K-ATPase as the
sole receptor described for ouabain to date, we suggest that
GLP may also affect the Na/K-ATPase-dependent activa-
tion of signaling cascades.

Conclusions
GLP and ouabain inhibited Na/K-ATPase in endothelial
cells and induced lung injury, as shown by increases in
lung inflammation markers and hemorrhage, which
also occurs in some leptospirosis patients. To our know-
ledge, this is the first report showing that GLP induces
lung injury. The lung inflammation induced by GLP in
our in vivo mouse model was not dependent on the
activation of TLR4. Although inflammasome activation
by low concentrations of intracellular K+ surely plays
an important role, we showed that GLP activates the
p38 pathway, possibly through Na/K-ATPase, resulting
in inflammation.
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