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Abstract
Background: The role of angiotensin II type 2 receptor (AT2) in pulmonary fibrosis is unknown.
To evaluate the influence of angiotensin II type 1 receptor (AT1) and AT2 antagonists in a mouse
model of bleomycin (BLM)-induced pulmonary fibrosis.

Methods: We examined effects of the AT1 antagonist (AT1A) olmesartan medoxomil
(olmesartan) and the AT2 antagonist (AT2A) PD-123319 on BLM-induced pulmonary fibrosis,
which was evaluated by Ashcroft's pathological scoring and hydroxyproline content of lungs. We
also analyzed the cellular composition and cytokine levels in bronchoalveolar lavage fluid (BALF).

Results: With olmesartan, the lung fibrosis score and hydroxyproline level were significantly
reduced, and lymphocyte and neutrophil counts and tumor necrosis factor (TNF)-α levels in BALF
were reduced on day 7. On day 14, macrophage and lymphocyte counts in BALF were reduced,
accompanied by a reduction in the level of transforming growth factor (TGF)-β1. With PD-123319,
the lung fibrosis score and hydroxyproline level were reduced. On day 7, macrophage, lymphocyte,
and neutrophil counts in BALF were reduced, accompanied by reductions in TNF-α and monocyte
chemoattractant protein (MCP)-1 levels. On day 14, macrophage, lymphocyte, and neutrophil
counts in BALF were also reduced, accompanied by a reduction in the level of macrophage
inflammatory protein (MIP)-2 level but not TGF-β1.

Conclusion: Both AT1 and AT2 are involved in promoting interstitial pneumonia and pulmonary
fibrosis via different mechanisms of action.

Background
It is known that the renin-angiotensin system (RAS) has a
variety of actions in vivo. A classical action of this system

includes contraction of the blood vessels and increase in
intravascular volume, both of which are involved in eleva-
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tion of blood pressure. The RAS is active not only in the
vascular system but also in various tissues.

Renin converts angiotensinogen into angiotensin I (AI),
and angiotensin-converting enzymes (ACE) convert AI
into angiotensin II (AII). AII is the center of activity of the
RAS. To date, four angiotensin receptors, angiotensin type
1 receptor (AT1), type 2 receptor (AT2), type 3 receptor
(AT3), and type 4 receptor (AT4), have been identified [1],
and AT1 has further been subdivided into AT1a and AT1b
[2]. AII binds to both AT1 and AT2. Angiotensin receptor
blockers (ARBs), which are often used as depressor drugs,
are selective AT1 antagonists (AT1As) [3].

Recent studies have shown that AT1 is involved in fibrosis
of organs. It is widely accepted that inhibition of AT1 can
suppress fibrosis of the heart and kidneys [4-6]. With
respect to AT1 and lung fibrosis, four studies [2,7-9] of an
animal model of bleomycin (BLM)-induced pulmonary
fibrosis revealed that treatment with an AT1A suppressed
pulmonary hydroxyproline levels, and, therefore, AT1As
can suppress pulmonary fibrosis. Of those, two studies
[7,8] also revealed that AT1As suppress the transforming
growth factor (TGF)-β1 level in bronchoalveolar lavage
fluid (BALF) simultaneously.

Although all studies [10,11] of AT2 in the heart indicated
that stimulation of AT2 could suppress fibrosis, the role of
AT2 in fibrosis of the kidney is controversial. One study
[12] found that stimulation of AT2 suppressed fibrosis,
and the authors [10-12] supposed that the inhibitory
effect of AT1A is through the relative stimulation of AT2,
whereas other studies [13,14] showed that inhibition of
AT2 suppressed fibrosis of the kidney.

The role of AT2 in pulmonary fibrosis is not well known
and has been reported only by Melanie, et al. [15]. These
authors found that AII signaling occurred primarily via
AT1 in normal fibroblasts, while AT2-mediated effects
were dominant on activated fibroblasts. In the present
study, we examined the involvement of AT2 in pulmonary
fibrosis by evaluating the influence of AT1A and AT2A in
a mouse model of BLM-induced pulmonary fibrosis, with
the goal of clarifying the differences in the roles of AT1
and AT2 in pulmonary fibrosis.

Methods
Animal preparation of BLM-induced pulmonary fibrosis
Adult male 8-wk ICR mice were purchased from Sankyo
Laboratories (Tokyo, Japan). All mice were maintained
under standard conditions with free access to water and
rodent laboratory food. Mice were anesthetized by inhala-
tion of ether, and BLM (Nippon Kayaku, Tokyo, Japan)
dissolved in 100 μl saline solution was administered
intratracheally at a dose of 2.0 mg/kg body weight. From

the same day of BLM administration, the AT1-specific
antagonist olmesartan medoxomil (olmesartan; Daiichi
Sankyo, Tokyo, Japan) in 200 μl of 0.5% carboxymethyl
cellulose was administered orally at a dose of 0.1 or 1 mg/
kg/day for 14 sequential days. The AT2-specific antagonist
PD123319 (R&D Systems, Minneapolis, MN, USA), dis-
solved in 200 μl saline solution, was administered subcu-
taneously at a dose of 0.5 or 5 mg/kg/day with 2-week
mini-osmotic pumps (Alzet Model 2002; Alza, Palo Alto,
CA, USA) for 14 sequential days. All animal procedures in
this study complied with the standards set out in the
Guidelines for the Care and Use of Laboratory Animals of
the Takara-machi Campus of Kanazawa University.

Histopathological evaluation
Mice were anesthetized by intraperitoneal injection of
pentobarbitone sodium (60 mg/kg body wt; Boehringer
Ingelheim, Bilberach, Germany) and killed on day 14. The
left lung was fixed at a transpulmonary pressures of 25
cmH2O with 10% formaldehyde neutral buffer solution
for at least 48 h and then embedded in paraffin. Sequen-
tial 3 μm sections were stained with hematoxylin-eosin
and Azan-Mallory stains. Severity of fibrosis was semi-
quantitatively assessed according to the method of Ash-
croft et al. [16]. The lung fibrosis score was expressed as a
mean grade of fibrosis for each sample.

Measurement of lung hydroxyproline content
Mice from each group were killed on day 14, and the lungs
were removed. Frozen lung tissues were homogenized by
a polytron tissue homogenizer in saline containing 0.1 M
phenylmethylsulfonylfluoride. The homogenized sample
was hydrolyzed in 6 N HCl, and the hydroxyproline con-
centration was determined according to the method of
Schrier et al. [17].

Bronchoalveolar Lavage (BAL)
Mice from each group were killed on day 7 and 14, and
BAL was performed. After excision of the trachea, a plastic
cannula was inserted into the trachea, and 2 ml saline
solution was injected gently with a syringe and then with-
drawn. This procedure was repeated three times. A 200 μl
aliquot of BAL fluid (BALF) was reserved for total cell
counts and evaluation of cell differentiation. The remain-
ing BALF was centrifuged immediately at 1,100 rpm for 10
min. Total cell number was determined with a standard
hemocytometer. Cell differentiation was examined by
counting at least 200 cells on a smear prepared with cyt-
ospin and Wright-Giemsa staining. Supernatants were
stored at -80°C until used for measurement of cytokines.

Tumor necrosis factor (TNF)-α, macrophage inflamma-
tory protein (MIP)-1α, MIP-2, monocyte chemoattractant
protein (MCP)-1 and TGF-β1 levels in BALF supernatants
were measured by enzyme-linked immunosorbent assay
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(ELISA) (Quantikine; R&D Systems). For the measure-
ment of TGF-β1, BALF samples underwent acidification to
convert the latent TGF-β1 to the active form. 1N HCl was
used followed by neutralization with 1N NaOH. Total
(latent and active form) TGF-β1 levels were measured.

Quantitative Reverse Transcriptase Polymerase Chain 
Reaction analysis (RT-PCR)
Lungs were harvested on day 7 and 14 after bleomycin
administration, and total RNA was isolated from frozen
lung specimens using a RNeasy Mini Kit according to the
manufacurer's instructions (Qiagen, Hilden, Germany).
RNA yield and purity were determined by spectrophotom-
etry. RNA was then reverse transcribed into cDNA and
amplified using the Reverse Transcription System
(Promega, Madison, WI). Real-time RT-PCR was per-
formed using fluorogenic SYBR Green using a LightCycler
thermal cycler system according to the manufacturer's
instructions (Roche Diagnostics GmbH, Mannheim, Ger-
many). Seven mice of each genotype were examined. The
primers for AT1a, AT1b, AT2, and glyceraldehydes-3-phas-
phate dehydrogenase (GAPDH) were designed according
to previous studies and were synthesized by Takara Bio
Co. (Tokyo, Japan). The sense and antisense primers used
were as follows: AT1a primer, 5'-GGA CAC TGC CAT GCC
CAT AAC-3' and 5'-TGA GTG CGA CTT GGC CTT TG-3';
AT1b primer, 5'-CTG CTA TGC CCA TCA CCA TCT G-3'
and 5'-GAT AAC CCT GCA TGC GAC CTG-3'; AT2 primer,
5'-CTC CAG GTT TAG ACT GCT GCC TTC-3' and 5'-GGT
TGA CAC CGA GTT TGT CAT TTG-3'; and GAPDH primer,
5'-TGT GTC CGT CGT GGA TCT GA-3' and 5'-TTG CTG
TTG AAG TCG CAG GAG-3'.

Experiment 1 (Effect of olmesartan)
As shown in Figure 1, the animals were divided into five
groups: the uncombined BLM i.t. group, two groups
treated with a combination of BLM and an olmesartan at
dose levels of 0.1 or 1 mg/kg p.o., the uncombined olme-
sartan treatment group, and the control group.

Experiment 2 (Effect of PD-123319)
As shown in Figure 1, the animals were divided into five
groups: the uncombined BLM i.t. group, two groups
treated with a combination of BLM and an PD-123319 at
dose levels of 0.5 or 5 mg/kg s.c., the uncombined PD-
123319 group, and the control group.

Statistical analysis
Data are expressed as mean ± standard error of the mean
(SEM). Statistical analysis was done with Stat View-J IV
software (Brainpower, Inc., Calabasas, CA) on a Macin-
tosh computer (Apple, Inc. Cupertino, CA). One-way
analysis of variance (ANOVA), followed by Fisher's Pro-
tected Least Significant Difference (PLSD), was used to

detect differences among groups, and a value of p < 0.05
was considered significant.

Results
Pathological score and hydroxyproline content
Ashcroft scores for BLM-induced pulmonary fibrosis were
significantly lower in the olmesartan treatment groups
(Figure 2b, Figure 3A) and in the PD-123319 treatment
groups (Figure 2c, Figure 4A) than in the vehicle treatment
groups.

Hydroxyproline levels in lungs of mice with BLM-induced
pulmonary fibrosis were significantly lower in mice
treated with 1 mg/kg of olmesartan (Figure 3B) as they
were with 0.5 and 5 mg/kg of PD-123319 (Figure 4B) than
in the control groups.

Cell components and cytokine levels in BALF
Effect of olmesartan
On day 7, total cell, lymphocyte, and neutrophil counts
were lower in the mice treated with both BLM and 1 mg/
kg olmesartan than in the group treated with BLM alone
(Table 1). TNF-α levels were also significantly lower in the
BLM and olmesartan treatment group than in the BLM
treatment group (Table 2). No significant intergroup dif-
ference was noted in the level of any other cytokines or
chemokines. MIP-1α and MIP-2 levels were below the
limits of detection in all groups.

Study protocolFigure 1
Study protocol. Arrows indicate times of death. i.t.; intratra-
cheal injection, p.o.; per os, s.c.; subcutaneous injection, BLM; 
bleomycin, OL; olmesartan medoxomil, PD; PD-123319.
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On day 14, total cell, macrophage, and lymphocyte
counts were significantly lower in the group treated with
both BLM and 1 mg/kg olmesartan than the group treated
with BLM alone (Table 1). TGF-β1 levels were also signifi-
cantly lower in the group treated with both BLM and olm-
esartan than in the group treated with BLM alone (Table
2). No significant intergroup difference was noted in the
level of any other cytokines or chemokines. TNF-α, MIP-
1α, and MCP-1 levels were below the limits of detection
in all groups.

Effect of PD-123319
On day 7, total cell, macrophage, lymphocyte, and neu-
trophil counts were significantly lower in the group
treated with both BLM and 5 mg/kg PD-123319 than in
the group treated with BLM alone (Table 3). TNF-α and
MCP-1 levels were also significantly lower in the group
treated with both BLM and PD-123319 than in the group
treated with BLM alone (Table 4). There was no significant
intergroup difference in TGF-β1 level. MIP-1α and MIP-2
levels were below the limits of detection in all groups.

On day 14, total cell, macrophage, lymphocyte, and neu-
trophil counts were significantly lower in the group
treated with both BLM and 5 mg/kg PD-123319 than in
the group treated with BLM alone (Table 3). The MIP-2
level was also significantly lower in the group treated with

Histologic sections of the left lung 14 days after the last dose of bleomycin (BLM)Figure 2
Histologic sections of the left lung 14 days after the last dose of 
bleomycin (BLM). (a) BLM group. Pulmonary fibrosis with definite dam-
age to the lung structure is visible. (b) BLM + olmesartan medoxomil 1 mg/
kg group. Increased fibrosis with definite damage to the lung structure and 
formation of small fibrous masses were partially observed. (c) BLM + PD 5 
mg/kg group. Increased fibrosis with definite damage to the lung structure 
and formation of small fibrous masses were partially observed. (d) Control 
group. The normal alveolar structure is visible. (Azan-Mallory × 40)

Effect of olmesartan medoxomil on pathologic score (A) and hydroxyproline content (B)Figure 3
Effect of olmesartan medoxomil on pathologic score (A) and hydroxyproline content (B). BLM; bleomycin, OL 
(0.1); olmesartan medoxomil 0.1 mg/kg, OL (1); olmesartan medoxomil 1 mg/kg. *p < 0.05.
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both BLM and PD-123319 than in the group treated with
BLM alone. There was no significant intergroup difference
in TGF-β1 level (Table 4). TNF-α, MIP-1α, and MCP-1 lev-
els were below the limits of detection in all groups.

AT1 and AT2 Expression in the lung
As shown in Figure 5, AT1a expression was significantly
lower on day 7 than day 0, and higher on day 14 than day
7. It had inclination to be higher on day 14 than day 0,
but, did not have a significant difference. AT1b expression
was not significantly different on day 7 and day 0. But it

was significantly higher on day 14 than day 7 and day 0.
AT2 expression was significantly lower on day 7 than day
0, and was significantly higher on day 14 than day 7 and
day 0.

Discussion
In this study, we showed expressions of AT1a, AT1b and,
AT2 in the lungs of a BLM-induced model of pulmonary
fibrosis. On day 14 with BLM treatment, lungs up-regu-
lated AT1b and AT2 compared with on day 0, and AT1a,
AT1b and AT2 compared with on day 7. It has been

Table 1: Effect of Olmesartan Medoxomil on cell components in bronchoalveolar lavage fluid

Cell differentiation (× 105/ml)
Total cell number (× 105/ml) Mac Lym Neu

Day 7
BLM (n = 8) 182.4 ± 7.1 67.6 ± 4.0 99.9 ± 5.6 14.9 ± 3.0
BLM + OL (n = 8) 127.8 ± 13.4 ** 55.9 ± 6.2 64.5 ± 7.8 ** 7.4 ± 1.2 *
OL (n = 8) 7.8 ± 2.5 6.4 ± 2.1 1.0 ± 0.3 0.4 ± 0.3

Day 14
BLM (n = 8) 163.7 ± 15.6 87.6 ± 8.1 61.9 ± 10.0 2.5 ± 0.8
BLM + OL (n = 8) 108.5 ± 34.3 * 52.6 ± 16.6 ** 37.6 ± 16.8 * 1.5 ± 0.7
OL (n = 8) 15.4 ± 2.6 12.9 ± 3.0 0.2 ± 0.1 0.1 ± 0.1

Mac; Macrophages, Lym; lymphocytes, Neu; neutrophils, BLM; bleomycin, OL; olmesartan medoxomil
Values are expressed as mean ± SEM.
*p < 0.05, **p < 0.01 as compared to the BLM group.

Effect of PD-123319 on pathologic score (A) and hydroxyproline content (B)Figure 4
Effect of PD-123319 on pathologic score (A) and hydroxyproline content (B). BLM; bleomycin, PD (0.5); PD-123319 
0.5 mg/kg, PD (5); PD-123319 5 mg/kg. *p < 0.05; **p < 0.01.
Page 5 of 9
(page number not for citation purposes)



Respiratory Research 2008, 9:43 http://respiratory-research.com/content/9/1/43
reported that lungs up-regulated AT1 and AT2 on day 14
[18], which is consistent with our results. Of note, only
mice and other rodents have these duplicated AT1 genes
[19,20], whereas other mammals studied thus far have a
single AT1 gene [21]. It has been reported that blood pres-
sure of both AT1a and AT1b knockout mice had lower
than levels of only AT1a knockout mice, and as low as lev-
els of angiotensinogen knockout mice. So both isoform
may have biologically activation. The difference of action
between AT1a and AT1b in lung was not known, but both
of them were expressed in lungs and may be concerned in
lung fibrosis. Therefore, the inhibition of AT1 and AT2,
which are increasing in lungs, may suppress lung fibrosis.

In the BLM-induced model of pulmonary fibrosis, inflam-
matory cytokines such as TNF-α increase immediately
after BLM administration, and subsequently, levels of
chemokines such as MCP-1, MIP-1α, and MIP-2 increase,
resulting in the infiltration of inflamed cells into the
lungs. When alveolitis occurs, levels of growth factors
such as TGF-β1, platelet-derived growth factor (PDGF),
and insulin-like growth factor (IGF)-1 increase, and pul-
monary fibrosis gradually develops [22-24]. In the present
study, both AT1A and AT2A inhibited a variety of BLM-
induced pulmonary fibrosis processes. Furthermore, we

found that the inhibitory effect of AT1A on BLM-induced
pulmonary fibrosis is not mediated by AT2.

It has been reported that AT1A has an inhibitory effect on
pulmonary fibrosis in both the BLM- and amiodarone-
induced pulmonary fibrosis models [2,7-9,25,26]. Most
reports suggest that pulmonary fibrosis is inhibited by
AT1A, while the inhibitory effect was not investigated in
the study by Keogh et al. [26]. The present findings sup-
port the idea that AT1A inhibits pulmonary fibrosis.

AT1A has been reported to inhibit fibrosis in heart and
kidney fibrosis models. It is believed that AT1A has a
fibrosis inhibitory effect, regardless of the organ and tissue
[4-6]. In cardiac fibroblast cells [27], vascular smooth
muscle cells [28], bronchial smooth muscle cells [29], and
kidney mesangial cells [30] cultured with AII in vitro,
increased levels of TGF-β1 were observed [8]. In addition,
stimulation of AT1 in a mesangial cell has been reported
to activate NF-κB [31], and therefore, AT1 is also believed
to promote expression of inflammatory cytokines and
chemokines. In the present study, AT1A inhibited
increases in TNF-α and TGF-β1 levels after BLM adminis-
tration. In other words, it is believed that stimulation of
AT1 by AII promotes expression of these cytokines in the
lung after BLM administration. In addition, Otsuka et al.

Table 3: Effect of PD-123319 on cell components in bronchoalveolar lavage fluid

Cell differentiation (× 105/ml)
Total cell number (× 105/ml) Mac Lym Neu

Day 7
BLM (n = 8) 183.3 ± 7.9 69.0 ± 4.2 99.1 ± 6.1 15.3 ± 3.4
BLM + PD (n = 8) 118.9 ± 6.1 * 52.8 ± 4.1 * 57.7 ± 3.2 †† 6.6 ± 1.4 **
PD (n = 8) 8.0 ± 3.1 6.5 ± 2.6 1.0 ± 0.3 0.5 ± 0.3

Day 14
BLM (n = 8) 151.8 ± 20.8 57.1 ± 7.6 86.6 ± 14.2 7.9 ± 2.0
BLM + PD (n = 8) 84.1 ± 17.1 † 30.5 ± 3.2 ** 51.8 ± 15.5 * 1.8 ± 0.5 *
PD (n = 8) 8.7 ± 1.3 6.8 ± 0.9 1.3 ± 0.2 0.6 ± 0.3

Mac; Macrophages, Lym; lymphocytes, Neu; neutrophils, BLM; bleomycin, PD; PD-123319
Values are expressed as mean ± SEM.
*p < 0.05, **p < 0.01, †p < 0.005, ††p < 0.001 as compared to the BLM group.

Table 2: Effect of Olmesartan Medoxomil on cytokine levels in bronchoalveolar lavage fluid

Day 7 TNF-α (pg/ml) MCP-1 (pg/ml) TGF-β1 (pg/ml)
BLM (n = 8) 20.7 ± 1.7 766.3 ± 100.6 331.3 ± 17.7
BLM + OL (n = 8) 15.6 ± 1.6 * 701.3 ± 97.6 318.3 ± 29.9
OL (n = 8) 5.1 ± 0.0 2.0 ± 0.0 19.9 ± 3.4

Day 14 MIP-2 (pg/ml) TGF-β1 (pg/ml)
BLM (n = 8) 7.1 ± 2.4 287.9 ± 35.2
BLM + OL (n = 8) 1.5 ± 0 173.4 ± 49.9 *
OL (n = 8) 1.5 ± 0 21.2 ± 7.3

BLM; bleomycin, OL; olmesartan medoxomil
Values are expressed as mean ± SEM.
*p < 0.05 as compared to the BLM group.
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[8] reported that AT1 in rat lungs was expressed in alveolar
macrophages, type II alveolar epithelial cells, vascular
smooth muscle cells, endothelial cells, and fibroblasts.
AT1 is expressed in the alveolar epithelium, stroma cells
under the respiratory tract epithelium, vessel smooth
muscle and alveolar macrophages, and even in human
lungs [32]. Therefore, AT1A may act in a variety of man-
ners in the various cells of the lungs that are involved in
the formation of BLM-induced fibrosis.

In cardiac fibrosis, stimulation of AT2 has been reported
to inhibit fibrosis, however, the inhibitory action on renal
fibrosis is controversial [12-14]. In the present study, we
examined the connection between AT2 and pulmonary
fibrosis, and the results clearly showed that BLM-induced
pulmonary fibrosis was inhibited by AT2 antagonism.
Therefore, AT2 stimulation appears to promote BLM-
induced pulmonary fibrosis. These conflicting findings
suggest that the role of AT2 in fibrosis may be organ- or
tissue-specific.

Relative expression levels of AT1a (A), AT1b (B) and AT2 (C) mRNA as determined by real-time PCRFigure 5
Relative expression levels of AT1a (A), AT1b (B) and AT2 (C) mRNA as determined by real-time PCR. BLM; 
bleomycin. *p < 0.05; **p < 0.01; †p < 0.005; ††p < 0.001.

Table 4: Effect of PD-123319 on cytokine levels in bronchoalveolar lavage fluid

Day 7 TNF-α (pg/ml) MCP-1 (pg/ml) TGF-β1 (pg/ml)
BLM (n = 8) 21.0 ± 1.9 795.6 ± 109.2 334.8 ± 19.7
BLM + PD (n = 8) 13.9 ± 2.6 * 441.8 ± 85.9 * 374.7 ± 46.4
PD (n = 8) 5.1 ± 0.0 2.1 ± 0.1 20.7 ± 4.1

Day 14 MIP-2 (pg/ml) TGF-β1 (pg/ml)
BLM (n = 8) 7.0 ± 1.1 390.0 ± 46.5
BLM + PD (n = 8) 1.5 ± 0 * 406.1 ± 25.9
PD (n = 8) 1.5 ± 0 18.0 ± 3.3

BLM; bleomycin, PD; PD-123319
Values are expressed as mean ± SEM.
*p < 0.05 as compared to the BLM group.
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Stimulation of AT2 as well as AT1 activates NF-κB in
mesangial cells [21]. In the present study, AT2A inhibited
increases in TNF-α, MCP-1, and MIP-2 after BLM admin-
istration and prevented infiltration of inflamed cells.
However, there was no difference in expression of TGF-β1.
This is in contrast to our finding that AT1A inhibited the
increase in TGF-β1 while the inhibition of chemokines
was mild. Taken together, these findings suggest that AT1
and AT2 are involved in expression of TGF-β1 and chem-
okines, respectively, in our BLM-induced pulmonary
fibrosis model. Therefore, AT1 and AT2 may promote pul-
monary fibrosis through different mechanisms of action.

AT2 is expressed in the type II epithelial cells in rat lung
[33,34] and in human lung [31,35]. However, the details
are still unclear. Differences in the mechanisms of action
of AT1A and AT2A may be due to expression cells
involved in the fibrosis process.

With respect to AT1A and AT2A in the heart, although
AT1A decreases stroma fibrosis in a wild mouse model of
myocardial infarction, the improvement brought about
by AT1A is less significant in the AT2-knockout mice [10].
In a rat model of cardiac hypertrophy, fibrosis improved
after AT1A administration, but this improvement disap-
peared when AT2A was administered simultaneously
[11]. Similar findings were obtained in a mouse model of
kidney fibrosis where AT1A inhibited stromal fibrosis, but
the inhibition disappeared when AT2A was administered
simultaneously [12]. Therefore, in addition to inhibiting
the stimulation of AT1 by AII, the inhibitory effect of
AT1A on fibrosis occurs through stimulation of AT2 by
AII. However, in some models of kidney fibrosis, the com-
bination of AT1A and AT2A has been reported to yield a
stronger inhibition of fibrosis [13,14]. In the present
study, AT1A and AT2A inhibited BLM-induced pulmonary
fibrosis independently. As a result, it is expected that AT2A
combined with AT1A will show greater inhibition of BLM-
induced pulmonary fibrosis than either agent alone. Fur-
ther testing is necessary to confirm this hypothesis.

Conclusion
Our present analyses of a mouse model of BLM-induced
pulmonary fibrosis indicate that AT1 and AT2 are
involved in interstitial pneumonia and pulmonary fibro-
sis, and each receptor has a different mechanism of action.
In the future, it will be important to examine both tempo-
ral and spatial expression of AT1 and AT2 in lung tissue in
a BLM-induced pulmonary fibrosis model and in various
types of pulmonary fibrosis in humans, as typified by idi-
opathic pulmonary fibrosis.
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