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Abstract

Background: Deep inspirations (DI) have bronchodilatory and bronchoprotective effects in
healthy human subjects, but these effects appear to be absent in asthmatic lungs. We have
characterized the effects of DI on lung mechanics during mechanical ventilation in healthy mice and
in a murine model of acute and chronic airway inflammation.

Methods: Balb/c mice were sensitized to ovalbumin (OVA) and exposed to nebulized OVA for |
week or 12 weeks. Control mice were challenged with PBS. Mice were randomly selected to
receive DI, which were given twice during the minute before assessment of lung mechanics.

Results: DI protected against bronchoconstriction of central airways in healthy mice and in mice
with acute airway inflammation, but not when OVA-induced chronic inflammation was present. DI
reduced lung resistance induced by methacholine from 3.8 + 0.3 to 2.8 + 0.1 cmH,O-s'mL"! in
healthy mice and 5.1 £ 0.3 to 3.5 £ 0.3 cmH,O-s'mL-! in acute airway inflammation (both P < 0.001).
In healthy mice, DI reduced the maximum decrease in lung compliance from 15.9 £ 1.5% to 5.6 +
0.6% (P < 0.0001). This protective effect was even more pronounced in mice with chronic
inflammation where DI attenuated maximum decrease in compliance from 44.1 £ 6.6% to 14.3
1.3% (P < 0.001). DI largely prevented increased peripheral tissue damping (G) and tissue elastance
(H) in both healthy (G and H both P < 0.0001) and chronic allergen-treated animals (G and H both
P <0.0001).

Conclusion: We have tested a mouse model of potential value for defining mechanisms and sites
of action of DI in healthy and asthmatic human subjects. Our current results point to potent
protective effects of DI on peripheral parts of chronically inflamed murine lungs and that the
presence of DI may blunt airway hyperreactivity.
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Background

Mice are increasingly being used to develop in vivo models
for studying airway physiology and airway inflammation.
Exposure to aerosolized antigen in animals mimics the
chronic inflammatory characteristics of human asthma
and prolonged exposure to allergen has been suggested to
be of importance for the development of airway hyperre-
activity and remodeling in asthma [1,2].

Deep inspirations (DI) have been shown in human sub-
jects to cause a decrease in airway resistance, to have bron-
choprotective effects in healthy subjects, and to reverse
bronchoconstriction [3-8]. The effectiveness of a deep
inspiration is related to the number of DI before adminis-
tration of a bronchoconstricting stimulus [4]. There is
convincing evidence that both bronchodilatory and bron-
choprotective actions of DI are deficient or absent in the
asthmatic lung and it has been proposed that a lack of
bronchoprotective or bronchodilatory effects of DI may
play a major role as an underlying abnormality leading to
airway hyperreactivity in asthma [5,7,9-13].

In this study, we aimed at characterizing the effects of DI
on lung mechanics during mechanical ventilation in
healthy mice and in mice exposed to allergen to simulate
asthma and we describe both a murine OVA model for
acute inflammation and a model for chronic inflamma-
tion that may resemble chronic airway inflammation in
humans. Our goals were to investigate if these mouse
models could be used to identify the site of action of DI
and whether it is a good model of response to DI in nor-
mal and asthmatic subjects.

Methods

Animals

Female Balb/c mice (Charles River, Sulzfeld, Germany,
and Taconic (M&B), Denmark) were used in this study.
They were housed in plastic cages with absorbent bedding
material and were maintained on a 12 h daylight cycle.
Food and water were provided ad libitum. Their care and
the experimental protocols were approved by the
Regional Ethics Committee on Animal Experiments in
Sweden (Stockholm N348/05 and Uppsala C86/5).
Healthy mice were 12 weeks of age and weighed 20.5 +
0.2 gand animals included in the acute airway inflamma-
tion study were 9 weeks of age and weighed 18.9 + 0.2 g
when airway physiology was assessed. Animals included
in the chronic airway inflammation study were 8 weeks
old when the inflammatory protocol started and 22 weeks
old and weighed 22.0 + 0.2 g when airway physiology was
assessed.

Preparation of animals
The mice were anesthetized with an intraperitoneal (i.p.)
injection of pentobarbital sodium (90 mg-kg!, from
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local suppliers). They were tracheostomized with an 18-
gauge cannula and mechanically ventilated in a quasi-
sinusoidal fashion with a small animal ventilator (FlexiV-
ent®, Scireq, Montreal, PQ, Canada) at a frequency of 2.5
Hz and a tidal volume (V;) of 12 mL-kg! body weight.
Once ventilation was established bilateral holes were cut
in the chest wall so that pleural pressure would equal
body surface pressure and so that the rib cage would not
interfere with lung movement. This enabled strict lung
mechanics measurements. Positive end-expiratory pres-
sure (PEEP) of 3 cmH,O was applied by submerging the
expiratory line in water. Four sigh maneuvers at three
times the tidal volume were performed when beginning
the experiment to establish stable baseline lung mechan-
ics and ensure a similar volume history before the experi-
ments. The lateral tail vein was cannulated for intravenous
(i.v.) injections. The mice were then allowed a five min
resting period before the experiment began.

Analysis of lung mechanics

Dynamic lung mechanics were measured by applying a
sinusoidal standardized breath and analyzed using the
single compartment model and multiple linear regres-
sion, giving us lung resistance (R;) and compliance (C;)
[14]. More thorough evaluations of lung mechanics were
made using Forced Oscillation Technique (FOT). During
the forced oscillatory maneuver the ventilator piston
delivers 19 superimposed sinusoidal frequencies, ranging
from 0.25 to 19.625 Hz, during 4 s (prime 4), at the
mouse's airway opening. Harmonic distortion in the sys-
tem is avoided by using mutually prime frequencies [15].
Knowing the dynamic calibration signal characteristics,
the Fourier transformations of the recordings of pressure
and volume displacement within the ventilator cylinder
can be used (P, and V) to calculate the respiratory sys-
tem input impedance (Zrs) [16]. Fitting the Zrs to an
advanced model of respiratory mechanics, the constant
phase model [15], allows partitioning of lung mechanics
into central and peripheral components. The primary
parameters obtained are the Newtonian resistance (Ry), a
close approximation of resistance in the central airways;
tissue damping (G), closely related to tissue resistance and
reflecting energy dissipation in the lung tissues; and tissue
elastance (H), characterizing tissue stiffness and reflecting
energy storage in the tissues [14,17-19].

Experimental Protocols

Common for all mice studied, lung mechanics measure-
ments were assessed every fifth min during a 30 min pro-
tocol (Figure 1A). Mice were randomly selected to receive
DI, that was given twice during the minute before assess-
ment of lung mechanics, DI is defined as incremental
increase and decrease of three times V during a period of
16 s. Mice not receiving DI, were given normal ventilation
for 16 s.
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Schematic presentation of study design and graph describing tracings and measurements of lung compliance. (A) Experimental
protocol. R&Cscan is a program for measuring lung resistance and compliance with the single compartment model. A pertur-
bation of forced oscillation was performed for 4 s (Prime 4, Zrs measurements) and was used in the acute 17-day (OVA'l7 and
PBS'17 animals) and chronic 98-day protocol (OVA'98 and PBS'98 animals). During A — F, methacholine (MCh) or phosphate
buffered saline (PBS) was administrated or nothing was given. MCh or PBS was administrated 20 s after last DI. (B) Tracings of
lung compliance (C,) obtained by R&Cscan indicating measurement points for C; (A — F) and AC| with and without deep

inspirations (DI).

Healthy mice
Healthy mice were allocated into the following groups:

1) the TIME group: To investigate the effect of time, lung
mechanics were assessed at five min intervals in mice ran-
domly selected to receive DI (TIME+DI, n = 6) or no DI
(TIME, n = 6).

2) the PBS group: This group received i.v. injections of
2000 pL-kg! phosphate buffered saline (PBS, pH 7.4,
Sigma-Aldrich, St. Louis, MO, USA) containing 10 U - ml-
1 of heparin. Mice either received DI before each injection
and measurement of lung mechanics (PBS+DI, n = 6), or
received no DI (PBS, n = 6). PBS was given six times, at five
min intervals, lung mechanics were measured immedi-
ately before and after the injections at the same time
points used for the TIME group.

3) the MCH group: To assess airway responsiveness this
group was given incremental doses of MCh (MCh, acetyl-
B-methylcholine chloride, Sigma-Aldrich) i.v. (0 = PBS,
0.03, 0.1, 0.3, 1, and 3 mg-kg!) at five min intervals.
MCh was diluted in PBS with 10 U - ml-! of heparin, and a
volume of 2000 pL- kg was given at each injection. Lung
mechanics were measured immediately before and after
the injections at the same time points used for the TIME
and PBS groups. Control mice received no DI before the
MCh doses (MCH, n = 8), while another group of mice
received DI before the injection of MCh (MCH+D], n = 6).

R, and C; were measured immediately after each DI or
normal ventilation. To further evaluate the ability of DI to
reverse a fall in C;, we calculated the total fall from base-
line to the last measurement of C;, denoted AC, (Figure
1B).
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Acute allergen-challenged, OVA- or PBS-treated mice

Acute airway inflammation was induced by intraperito-
neal injections of 10 pg ovalbumin (OVA, Sigma-Aldrich)
emulsified in AI(OH), (Sigma-Aldrich) on day 0 and day
7. Mice were then challenged with 1% OVA diluted in
phosphate-buffered saline (PBS, Sigma-Aldrich). Animals
were exposed to aerosolized OVA for 30 min, on day 14,
15 and 16. Aerosol exposure was performed in a chamber
coupled to a nebulizer (DeVilbiss UltraNeb®, Sunrise
Medical Ltd, U.K.). The chamber was divided into pie-
shaped compartments with individual boxes for each ani-
mal, providing equal and simultaneous exposure to aller-
gen. The experiment ended with assessment of lung
mechanics on day 17, 24 h after last allergen exposure.
Control mice were sensitized with OVA i.p. and chal-
lenged with aerosolized PBS using the same protocol as
for OVA described above.

The effects of DI on lung mechanics were investigated
after the 17-day protocol in OVA and PBS challenged mice
in a fashion similar to that described above for healthy
unchallenged mice in the MCH group. Besides, OVA and
PBS challenged mice received immediately after each DI
or normal ventilation for 16 s, a shorter 4 s perturbation
of forced oscillation (Prime 4), followed by the injection.
Mice were given one of four treatments:

1) PBS-challenged mice that were given DI (PBS'17+D], n
= 8) before injection of incremental doses of MCh i.v.
(from 0 to 3 mg-kg1).

2) Another group of PBS-challenged mice that did not
receive any DI (PBS'17, n = 7).

3) OVA-challenged mice that were given DI (OVA'17+D],
n = 8) before injection of incremental doses of MCh i.v.
(from 0 to 3 mg- kg1).

4) Another group of OVA-challenged mice that did not
receive any DI (OVA'17, n = 10).

Chronic allergen-challenged, OVA- or PBS-treated mice

Chronic airway inflammation was induced using the
same protocol as for acute OVA described above. How-
ever, animals were exposed to aerosolized OVA for 30
min, three days a week between day 14 and 93. Five days
after last allergen exposure, the experiment ended with
assessment of lung mechanics on day 98. Control mice
were sensitized using the same protocol as for acute OVA
described above and challenged with aerosolized PBS.

The effect of DI on lung mechanics were investigated after
the 98-day protocol in OVA and PBS-challenged mice in a
fashion similar to that described above for healthy
unchallenged mice in the MCH group. Besides, OVA and
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PBS challenged mice also received a shorter 4 s perturba-
tion of forced oscillation (Prime 4), followed by the injec-
tion. Mice were given one of four treatments:

1) PBS-challenged mice that were given DI (PBS'98+DI, n
= 5) before injection of incremental doses of MCh i.v.
(from O to 3 mg-kg1).

2) Another group of PBS-challenged mice that did not
receive any DI (PBS'98, n = 6).

3) OVA-challenged mice that were given DI (OVA'98+DI,
n = 5) before injection of incremental doses of MCh i.v.
(from 0 to 3 mg- kg1).

4) Another group of OVA-challenged mice that did not
receive any DI (OVA'98, n = 6).

Bronchoalveolar lavage

After completion of the lung mechanics experiment, mice
subjected to the 17-day and the 98-day protocol respec-
tively were exsanguinated and subjected to bronchoalveo-
lar lavage (BAL). The lungs were lavaged three times via
the tracheal tube with a total volume of 1 mL PBS contain-
ing 0.6 mM EDTA (EDTA, Ethylenediaminetetraacetic
acid, Sigma-Aldrich). The BAL fluid was then immediately
centrifuged (10 min, 4°C, 1200 rpm). After removing the
supernatant, the cell pellet was resuspended in 100 pL of
red cell lysis buffer containing 0.15 M NH,CI, 1.0 mM
KHCO;, and 0.1 mM EDTA for 2 min at room tempera-
ture. The suspension was then diluted with 1 mL PBS and
recentrifuged (10 min, 4°C, 1200 rpm). Leukocytes were
counted manually in a hemacytometer so that 50,000
cells could be loaded and centrifuged using a cytospin
centrifuge. Cytocentrifuged preparations were stained
with May-Griinwald-Giemsa and differential cell counts
of pulmonary inflammatory cells (macrophages, neu-
trophils, lymphocytes, and eosinophils) were determined
using standard morphological criteria and counting 3 x
100 cells per cytospin preparation. The total number of
each cell type was then calculated and expressed as
number of cells per mL of BAL fluid.

Histological evaluation of the chronic allergen-challenged
lungs

Following BAL, the lungs were inflated with 4% parafor-
maldehyde solution to a pressure of 20 cmH,O without
removing the lungs from the chest. After 1 h the trachea
was tied off, the lungs were stored at 4 °C overnight in 4%
paraformaldehyde, then washed several times in ethanol
and stored in 70% ethanol at 4°C until time for embed-
ding. After embedding in paraffin, the tissue was cut into
5 um sections and mounted on positively charged slides.
To assess inflammatory cell infiltration the sections were
deparaffinized, dehydrated, and stained with hematoxylin
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and eosin (H&E). H&E stained sections were examined by
bright field microscopy (Nikon Eclipse TS100, Nikon
Instruments Inc., Melville, N.Y, USA) and images were
captured with a Nikon DS digital camera system (Tekno
Optik AB, Stockholm, Sweden).

Statistical analysis

Results are presented as mean + standard error of mean
(SEM). Statistical significance was assessed by parametric
methods using two-way analysis of variance (ANOVA) to
analyze differences between groups, followed by Bonfer-
roni post hoc test. When appropriate, one-way ANOVA or
Student's unpaired t-test was used. A statistical result with
P < 0.05 was considered significant. Statistical analysis
and preparations of graphs were performed with Graph-
Pad Prism (version 4.0 GraphPad software Inc., San
Diego, CA, USA).

Results

Healthy mice

MCh increased R, from baseline 0.33 + 0.01 to 3.8 + 0.3
cmH,0O s -mL! (P < 0.001) at the highest dose of MCh
(Figure 2A). DI significantly reduced the maximum R;
from 3.8 £+ 0.3t02.8 + 0.1 cmH,0-s-mL1 (P <0.001, Fig-
ure 2A). R, did not change from baseline in TIME or PBS
groups, (no MCh provocation), with or without DI (P >
0.05).

C, was measured immediately before injections of PBS or
MCh. In the TIME group, receiving no i.v. injections and
no DI, C, decreased by 9.3 + 0.8% from baseline to the last
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measurement point (AC;, Figure 2B). A similar decline
was seen in the PBS group, receiving PBS injections with-
out DI, where C; decreased by 6.9 + 1.6% (P > 0.05, Figure
2B). In the MCH group, receiving incremental doses of
MCh without DI, C, decreased by 15.9 + 1.5%, the decline
being significantly larger than in the TIME and PBS groups
(P<0.05 and P < 0.001 respectively, Figure 2B). DI signif-
icantly protected against the reduction in C; in the
MCH+DI group, where the decline in C, was attenuated to
5.6 + 0.6% (P < 0.0001, Figure 2B). Although displaying a
tendency to protection, DI had no significant attenuating
effect on the decrease in C, in either the TIME+DI (4.0 +
1.9%, P > 0.05) or the PBS+DI group (3.8 + 1.1%, P >
0.05, Figure 2B).

Bronchoalverolar lavage and histology

Mice undergoing the 17-day or 98-day ovalbumin chal-
lenge protocol, the OVA'17 and OVA'98 group respec-
tively, had clear signs of airway inflammation compared
to control animals. OVA'17 group had approximately a 6-
fold increase in total BAL cell count and OVA'98 had a 5-
fold increase compared to control groups (both P <
0.001). Animals in the OVA'17 had a significant higher
BAL cell count than OVA'98 (P < 0.03). Differential BAL
cell count confirmed an inflammatory profile with mark-
edly increased counts of macrophages, eosinophils, neu-
trophils, and lymphocytes in both acute and chronic
challenged OVA groups. The OVA'17 animals had a
higher number of eosinophils than OVA'98 animals
(Table 1).

TIME TIME+DI PBS PBS+DI MCH MCHsDI
0.000-
€L
-0.002} _{
1
-0.004
-0.006 L
0.006
*%kk
*k%k
| |
-0.008 "

Effects of deep inspirations (DI) in healthy mice; (A) lung resistance (R) in mice given incremental doses of methacholine
(MCH group), and (B) the effect of DI on lung compliance (C,) presented as AC,. Values are mean + SEM, * P < 0.05, ** P <

0.0, ¥ P < 0.001.
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Table |: Differential cell counts in bronchial alveolar lavage from animals having undergone an ovalbumin challenge protocol (OVA'l7
and OVA'98) or a control protocol with phosphate buffered saline (PBS'l7 and PBS'98).

PBS'I7 (n = 15) OVA'I7 (n = 17) PBS'98 (n = 11) OVA'98 (n = I1)
Macrophages 73 600 + 4 100 147 000 + 7 500 = 68 000 + 5 500 168 000 + 10 700 *
Eosinophils 0 222 100 + 39 700 = 0 76 000 + 26 500 *
Neutrophils 2300 + 500 3900 +2 100 2500 + 2 000 52500 % 11 000 *
Lymphocytes 9100 + 2400 23 000 + 3 500 = 900 + 350 23 500 + 6 500 *

Values are mean * SEM. ®P < 0.05 vs. PBS'17, * P < 0.05 vs. PBS'98.

OVA'98 group had also clear signs of remodeling, light  patchy distribution of eosinophils surrounding the air-
microscopic examination of hematoxylin and eosin sec-  ways and within the alveolar spaces. OVA'98 animals also
tions from OVA'98 and PBS'98 animals revealed an eosi-  revealed a significantly increased perivascular inflamma-
nophilic inflammation in the OVA-treated animals witha  tion (Figure 3).

Figure 3

Representative histological sections (hematoxylin and eosin stained) from healthy control animals in the PBS'98 group (picture
A and B) and from animals having undergone a 98-day ovalbumin challenge protocol, the OVA'98 group (picture C and D).
Examination of sections from OVA'98 animals revealed a significant inflammation surrounding the airways and within the alve-
olar spaces. PBS'98 did not show any signs of inflammation.
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Acute allergen-challenged mice

Lung resistance and compliance

In PBS'17 mice, MCh induced bronchoconstriction with a
maximum R; of 3.6 + 0.2 cmH, O -s- mL1. After DI, R; was
significantly lower, 2.5 + 0.2 cmH,0O -s-mL! (P < 0.0001,
Figure 4A). In OVA'17 mice, MCh induced bronchocon-
striction with a maximum R; of 5.1 + 0.3 cmH,O s -mL.
After DI, R, was significantly lower, 3.5 + 0.3
cmH,O-s-mL! (P < 0.0001, Figure 4B). In the OVA'17
group, MCh induced higher bronchoconstriction than the
PBS'17 group, (P < 0.0001).

In the PBS'17 group, C,; decreased by 12.5 + 3.2% from
baseline to the last dose of MCh (Figure 5). Animals
treated with DI, the PBS'17+DI group, had a significantly
smaller decrease in C; (2.5 + 1.6%, P < 0.05). In the
OVA'17 group without DI, the decrease in C; was larger
than in the PBS-treated animals (15.9 + 2.3%, NS, Figure
5). In OVA-treated animals receiving DI, the OVA'17+DI
group, the decrease in C; was largely prevented (2.7 *
3.4%, P < 0.001, Figure 5).

Peripheral lung mechanics

During bronchial reactivity assessment the 4 s perturba-
tion of forced oscillation (Prime 4) before each dose of
PBS and MCh revealed significant differences in Newto-
nian resistance (Ry) between OVA'17 and PBS'17 groups
(23.3 +3.6% and 8.6 + 4.5% respectively, P < 0.01). Treat-
ing animals with DI significantly lowered Ry at each dose
of PBS and MCh in OVA'17 group (OVA'17+D], 10.5 +
2.8%, P < 0.01). DI did not have any effect in the PBS'17
group (PBS'17+DI, 8.2 = 3.9%, P > 0.05).
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In the PBS'17 group, tissue elastance (H) increased by 9.4
+ 4.6% from baseline to the last dose of MCh. There was
no protective effect on H in animals treated with DI,
PBS'17+DI group. In the OVA'17 group without DI, H was
two times higher than in the PBS'17 group (20.7 + 3.1%,
P < 0.0001). In the OVA'17+DI group, DI largely pre-
vented the increase in H (8.5 + 1.9%, P < 0.0001). There
were no differences in tissue damping (G) in the PBS'17
group and the OVA'17 group (26.5 + 4.4% and 14.5 +
4.5% respectively, P > 0.05). DI prevented the increase in
G in the OVA'17 group but not in the PBS'17 group
(OVA'17+D], 15.0 £ 2.2%, P < 0.05 and PBS'17+DI1 4. 7 +
3.1%, NS)

Chronic allergen-challenged mice

Lung resistance and compliance

In PBS'98 mice, MCh induced bronchoconstriction with a
maximum R; of 3.8 + 0.2 cmH,O - s- mL-1. After DI, R; was
significantly lower, 2.4 + 0.2 cmH,O-s-mL1 (P < 0.001,
Figure 6A). This protective effect of DI against bronchoc-
onstriction was totally abolished in OVA treated mice
(OVA'98,3.7 £ 1.1 cmH,0O-s-mL1and OVA'98+DI, 4.3 +
0.4 cmH,0 -s-mL ! respectively, P > 0.05, Figure 6B).

In the PBS'98 group, C; decreased by 18.1 + 1.2% from
baseline to the last dose of MCh (Figure 5). Animals
treated with DI, the PBS'98+DI group, had a significantly
smaller decrease in C; (9.7 + 1.0%, P < 0.001). In the
OVA'98 group without DI, the decrease in C; was more
than double that in PBS-treated animals (44.1 + 6.6%, P <
0.001, Figure 5). In OVA-treated animals receiving DI, the

64 —e— OVA'17 n=10
--¥-- OVA"17+DI n=8

*k%k

R (cmH,0-smL")

003 01 03 3
[MCh] (mgkg™)

T
PBS

The effect of deep inspirations (D) on lung resistance (R) in healthy mice (PBS'17) and in animals with acute airway inflamma-
tion (OVA'l7 group). Values are mean + SEM, ** P < 0.01, *** P < 0.001.
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The effect of deep inspirations (DI) on lung compliance (C,) presented as AC,. DI attenuated the fall in AC, in both healthy
mice (PBS'17) and in mice with acute airway inflammation (OVA'98). Mice with chronic airway inflammation, the OVA'98
group, had significantly larger fall in AC, than healthy control animals, the PBS'98 group. DI attenuated the fall in AC, in both
groups, OVA'98 and PBS'98. Values are mean * SEM, * P < 0.05, ** P < 0.01, *** P < 0.001.
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The effect of deep inspirations (DI) on lung resistance (R)) in healthy mice (PBS'98) and in mice with chronic airway inflamma-
tion (OVA'98 group). Values are mean + SEM, ** P < 0.001.
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OVA'98+DI group, the decrease in C; was largely pre-
vented (14.3 + 1.3%, P < 0.001).

Peripheral lung mechanics

During bronchial reactivity assessment the 4 s perturba-
tion of forced oscillation (Prime 4) before each dose of
PBS and MCh revealed no significant differences in Ry
between OVA'98 and PBS'98 groups. Treating animals
with DI significantly lowered Ry at each dose of PBS and
MCh in both groups (P < 0.0001, Figure 7). In the PBS'98
group, tissue elastance (H) increased by 16.7 + 2.3% from
baseline to the last dose of MCh (Figure 8). Animals
treated with DI, PBS'98+DI group, had a significantly
smaller increase in H (3.5 + 2.0%, P < 0.0001). In the
OVA'98 group without DI, H was three times higher than
in the PBS'98 group (51.1 + 7.5%, P < 0.0001). In the
OVA'98+DI group, DI largely prevented the increase in H
(14.7 + 1.1%, P < 0.0001).

In the OVA'98 group without DI, the increase in tissue
damping (G) (Figure 9) from baseline was four times
greater than in the PBS'98 group (108.1 + 20% and 25.9
4.97%, respectively, P < 0.0001). In the OVA'98+DI
group, DI largely prevented the increase in tissue damping
(25.0 + 1.2%, P< 0.0001), while there were no differences
in tissue damping between the PBS'98 and PBS'98+DI
groups.

Discussion
We have investigated the effects of deep inspirations (DI)
in healthy mice, in mice with acute airway inflammation

0.404 ——PBS'98 n=6
0.354 --¥-- PBS'98+DI n=5
—8— OVA'98 n=6
7, 0309 --4-- OVA'98+DIN=5
€ * * %
G 0-254
o
< 0-20- * % * ok b ___’i*
e ¥ ot ety
3 0.15 i ________________ T
Pz
C 0.104
0.05-
000 T T T T T T
PBS 0.03 0.1 0.3 1 3
[MCh] (mgkg™)
Figure 7

Measurements of Newtonian resistance (Ry) were per-
formed with forced oscillation technique (Prime 4 perturba-
tion, Zrs measurements) before each injection of phosphate
buffered saline or methacholine. P values for each significant
Ry value for each group; * P < 0.05, ** P < 0.01, *** P < 0.001
vs. same group without DI. Values are mean + SEM.

http://respiratory-research.com/content/9/1/23

404 —¥— PBS98 n=6
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Figure 8

Measurements of tissue elastance (H) were performed with
forced oscillation technique (Prime 4 perturbation, Zrs
measurements) before each injection of phosphate buffered
saline or methacholine. Values are mean + SEM, * P < 0.05, **
P <0.0l, ¥ P <0.001 vs. all other groups.

and in mice with chronic airway inflammation and
remodeling. Our major findings are that: 1) DI had a
marked effect on lung resistance after MCh-challenge in
healthy mice and in acute allergen-challenged mice, but
not in mice with chronic inflammation; 2) DI protects
against the decrease in lung compliance that occurs both
spontaneously over time and after intravenous injections

204 —¥—PBS'98 n=6
--9-- PBS98+DI n=5
—l— OVA’98 n=6
154 --A-- OVA'98+DI n=5

o
E
o *k%*
2 10+
£
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Figure 9

Measurements of tissue damping (G) were performed with
forced oscillation technique (Prime 4 perturbation, Zrs
measurements) before each injection of phosphate buffered
saline or methacholine. Values are mean + SEM, ** P < 0.01,
*k P < 0.001 vs. all other groups.
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of PBS or MCh; 3) DI has a major impact on peripheral
airway and tissue physiology, protecting against MCh-
induced increases in tissue elastance (H) in both animals
with acute and chronic inflammation and also in healthy
mice undergoing the 98-day protocol; 4) DI totally abol-
ishes MCh-induced increases in tissue damping (G) seen
in mice with acute and chronic inflammation.

This mouse model has potential value for defining mech-
anisms and sites of action of DI and our goals were to
investigate if this mouse model could be used to identify
the site of action of DI. We have implemented both the
constant phase model (the low-frequency oscillation tech-
nique) and the single compartment model to characterize
the effect of a DI. The constant phase model has the capac-
ity to partition the respiratory properties into central and
peripheral airways and also pure tissue properties
[15,17,19]. In this study animals were of varying age
depending on the duration of the different protocols. This
could have possible effects on mouse lung mechanics [20-
23], we solved this by having matched controls.

The airway protective effects of DI are similar to what has
also been seen in other animal studies [24-27] and in
humans [5-7,28]. The mechanisms underlying this bron-
choprotective effect are not clear, but several hypotheses
have been put forward as to how DI confers bronchopro-
tection [9], in which the main mechanisms have been sug-
gested to be neural, nitric oxide (NO)-mediated, or
mechanical. Scichilone et al. [7] suggested that DI could
reduce bronchoconstriction through inhibition of cholin-
ergic tone or activation of nonadrenergic, noncholinergic
(NANC) system, and it has been suggested that airway
stretch could cause release of substances such as NO [29]
or cyclooxygenase products [30]. Mechanical explana-
tions involve different theories, the simplest one being
that stretching airway smooth muscle disrupts cross
bridges, thereby reducing force generation. Fredberg et al.
[31,32] suggested that asthmatic smooth muscle becomes
"frozen" due to excessive latch bridge formation and that
DI may detach these latch bridges, which provides an
opportunity for normal cross-bridges. On the other hand,
Gunst and co-workers [33,34] contend that cross-bridge
properties cannot account for this, and that it is rather due
to the plastic organization of contractile filaments in
smooth muscle, allowing for adaptation to stretch [34].
This idea is in line with Wang and Paré [9] who proposed
that DI initiate an adaptive process involving dissembly of
contractile filaments, thereby allowing for reorganization
of the contractile apparatus and better adaptation to the
new smooth muscle cell length. In spite of recent investi-
gations and new theories on the behavior of smooth mus-
cle cells in response to stretch and mechanical forces [35-
37], the cellular and subcellular mechanisms behind DI
and bronchial responsiveness remain undefined. The cur-

http://respiratory-research.com/content/9/1/23

rent study provides a model for further investigation of
the mechanisms.

Using short acute OVA challenge protocols [38], mice
develop inflammation almost completely localized to the
proximal airways, while chronic exposure to OVA leads to
inflammation throughout the lung [39,40]. In the current
study, mice were subjected to a 1-week or a 12-week OVA
inflammation protocol and we found clear signs of
inflammation and after the 12-week protocol there was
also airway remodeling. Our results indicate that our 98-
day long chronic inflammation model resembles human
asthma more than an acute model does because of more
peripheral inflammation in the lung after chronic chal-
lenge. When Wegmann [39] ran a similar protocol,
chronic inflammation and remodeling were seen to
involve peripheral airways, compared with acute inflam-
mation that mainly involved proximal airways. Xisto et al
[40] found inflammatory cell infiltration and remodeling
of the central as well as the peripheral airways and lung
parenchyma after a chronic inflammation protocol. Con-
trary to what Wegmann [39] and Xisto [40] reported, we
could not detect any increased responsiveness to MCh in
the chronically inflamed animals not receiving DI as com-
pared with healthy mice and mice with acute airway
inflammation. Possible explanations for this may be due
to the use of a shorter OVA protocol [40] or to differences
between assessing airway function with body-plethys-
mography [41] and our measurements of lung resistance.
While cautiously interpreting responses based on the
body plethysmography technique and refraining from
directly comparing enhanced pause system and lung
resistance [18,42], there is in a study by McMillan et al [1]
a trend toward less reactivity after a long term chronic
OVA-protocol that resembles our findings. Another expla-
nation to our findings in the chronic inflammation could
be that these animals induced a tolerance against OVA
[43] and this could lead to a decreased responsiveness to
MCh. Our results are also in line with human studies,
where airway response to MCh is similar in healthy and
asthmatic subjects when no DI is allowed [13], a phenom-
enon directly linked to narrowing of the conducting air-
ways [44]. This has led us to believe that our mouse model
of chronic airway inflammation closely resembles human
asthma with respect to several points. Our present results
show that DI protects from MCh-induced increase in lung
resistance in healthy mice and in acute airway inflamma-
tion, but not in mice with chronic inflammation. The lack
of protective effect against increased lung resistance in
chronically inflamed mice is in line with human studies
where DI gives asthmatic patients no protection against
MCh-induced bronchoconstriction [5,6].

Most investigations of murine models of airway inflam-

mation have focused on bronchial responsiveness and
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remodeling of more central airways. Recent reports show
that the peripheral airways and parenchyma play a more
important role in pathophysiology than expected. Lund-
blad et al [45] and Wagers et al [46] have recently shown
that increased airway reactivity in OVA inflamed mice is
entirely due to exaggerated closure of peripheral airways
and that excessive narrowing is due to purely geometric
reasons.

Inflammation of distal airways and lung parenchyma
directly affects lung physiology by increasing tissue
elastance and resistance, as well as by elevating pulmo-
nary static and dynamic elastance [40]. In our current
study, acute inflammation increased lung resistance and
reduced lung compliance. There was no effect on tissue
damping but an effect on tissue elastance. When applying
DI before MCh-challenges, we saw a strong protective
effect on lung resistance and lung compliance. DI had a
significant protective effect on tissue elastance, while tis-
sue damping was already low and was not altered by DI.
However, chronic inflammation reduced lung compli-
ance, while increasing tissue elastance and tissue damp-
ing. When applying DI before MCh-challenges, we saw
stronger protective effects on these peripheral parameters
in animals with chronic inflammation than in the acute
inflammation. In healthy animals, DI had a significant
protective effect on lung compliance and tissue elastance,
while tissue damping was already low and was not altered
by DI. This indicates that DI has a stronger effect on
peripheral tissue in the chronic airway inflammation and
that the protective effect of DI on lung resistance is greater
in acute airway inflammation. Our results in the chronic
airway inflammation are in line with those of Schweitzer
etal [24], who showed that DI in Brown Norway rats, pro-
tected against MCh-induced increases in respiratory sys-
tem elastance, but not resistance. Similar results were
previously found by Hirai and Bates [25], who showed
that DI, in healthy Sprague-Dawley rats, was neither bron-
chodilatory nor bronchoprotective, but indeed had a sig-
nificant effect on both tissue damping and tissue
elastance.

Conclusion

In summary, we have found that presence of DI may blunt
bronchoconstriction of central airways in healthy mice
and in acute airway inflammation, but not when chronic
inflammation is present. We have presented a murine
OVA model that in many ways resembles human chronic
airway inflammation. Many human studies suggest that
DI is not bronchoprotective in asthmatic subjects, which
is in line with our current findings in the chronic inflam-
mation model. However, our present results point to very
potent protective effects in the peripheral parts of the
chronically inflamed murine lung and it is conceivable
that this could also play a major role on overall lung

http://respiratory-research.com/content/9/1/23

health in asthma patients. This model of chronic airway
inflammation should pave the way for investigations of
mechanisms that may help identify new targets for thera-
pies in chronic airway inflammation and asthma.
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