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Abstract
Background: The pleiotrophic cytokine interleukin (IL)-13 features prominently in allergic and
inflammatory diseases. In allergic asthma, IL-13 is well established as an inducer of airway
inflammation and tissue remodeling. We demonstrated previously that IL-13 induces release of
transforming growth factor-α (TGFα) from human bronchial epithelial cells, with proliferation of
these cells mediated by the autocrine/paracrine action of this growth factor. TGFα exists as an
integral membrane protein and requires proteolytic processing to its mature form, with a
disintegrin and metalloproteinase (ADAM)17 responsible for this processing in a variety of tissues.

Methods: In this study, normal human bronchial epithelial (NHBE) cells grown in air/liquid
interface (ALI) culture were used to examine the mechanisms whereby IL-13 induces release of
TGFα and cellular proliferation. Inhibitors and antisense RNA were used to examine the role of
ADAM17 in these processes, while IL-13-induced changes in the intracellular expression of TGFα
and ADAM17 were visualized by confocal microscopy.

Results: IL-13 was found to induce proliferation of NHBE cells, and release of TGFα, in an
ADAM17-dependent manner; however, this IL-13-induced proliferation did not appear to result
solely from ADAM17 activation. Rather, IL-13 induced a change in the location of TGFα expression
from intracellular to apical regions of the NHBE cells. The apical region was also found to be a site
of significant ADAM17 expression, even prior to IL-13 stimulation.

Conclusion: Results from this study indicate that ADAM17 mediates IL-13-induced proliferation
and TGFα shedding in NHBE cells. Furthermore, they provide the first example wherein a cytokine
(IL-13) induces a change in the intracellular expression pattern of a growth factor, apparently
inducing redistribution of intracellular stores of TGFα to the apical region of NHBE cells where
expression of ADAM17 is prominent. Thus, IL-13-induced, ADAM17-mediated release of TGFα,
and subsequent epithelial cell proliferation, could contribute to the epithelial hypertrophy, as well
as other features, associated with airway remodeling in allergic asthma.
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Background
Growth factors and cytokines serve integral functions in
physiological processes as diverse as proliferation, differ-
entiation, angiogenesis, immune responses and disease
progression [1-3]. In a process impacting many cell types
such as an immune response, the relationship between
cytokines and growth factors can influence the response of
tissues that become surrounded by an inflammatory
milieu [3]. Similarly, cytokines and growth factors serve to
ultimately enhance or resolve inflammation-induced
changes in biological structures [4,5]. Such a coordinated
relationship between the cytokine interleukin-13 (IL-13)
and the growth factor, transforming growth factor-α
(TGFα), was demonstrated previously by our laboratory
in normal human bronchial epithelial (NHBE) cells. In
these cells, IL-13 was found to induce proliferation via the
autocrine/paracrine activity of epithelium-derived TGFα
[6].

IL-13, produced by CD4+ T cells, is categorized as a Th2
cytokine based on its roles in immune function [7]. IL-13
is also known to be a central mediator of the allergic asth-
matic phenotype, exerting numerous effects on airway
epithelial cells [8]. Specifically, IL-13 has been shown to
play a role in the development of mucous cell hyperplasia
[9-11], in activating matrix metalloproteinases [12], and
in inducing expression of epithelium-derived growth fac-
tors (i.e. TGFα [6], TGFβ [13]) and chemokines (i.e.
eotaxin [14], MCP-3 [15]). These released factors, in turn,
affect neighboring epithelial cells as well as other cell
types within the airway walls such as fibroblasts and
smooth muscle cells [16]. While it is well documented
that epithelial cells, including those of the airways, pro-
duce and release growth factors [17], the mechanism, or
mechanisms, regulating cytokine-induced release of
growth factors has not been fully elucidated.

TGFα is a growth factor that helps control essential bio-
logical processes such as development, differentiation,
and proliferation [18-20], with its overexpression contrib-
uting to a variety of disease states. Specifically, overexpres-
sion of TGFα has been implicated in the development of
mammary, squamous, and renal carcinomas, melanomas,
hepatomas, glioblastomas [21,22], and in the induction
of pulmonary fibrosis or emphysema [23,24].

The release of mature TGFα requires proteolytic cleavage
of a membrane-associated pro-peptide. This process,
termed shedding, is usually accomplished by the ADAM
(adisintegrin and metalloproteinase) family member,
TNFα converting enzyme (TACE or ADAM17) [25].
ADAM17 appears to be activated by protein kinase C
(PKC) [26], nitric oxide (NO) [27] and extracellular sig-
nal-regulated kinase (Erk) [28]. Although cytokines are
known to activate PKC, NO and Erk in a variety of cells

[29], direct cytokine-induced activation of ADAM17 has
yet to be documented. ADAM17 does, however, have the
capacity to mediate cytokine-inducible events such as
MUC5AC expression, as demonstrated in an airway epi-
thelial cell line (NCI-H292) [30]. Furthermore, IL-13-
induced mucin gene and protein expression can be
blocked by a broad-spectrum inhibitor of MMP/ADAM in
differentiated NHBE cells [31].

ADAM17 is known to be expressed on the surface of cells,
and has been observed in perinuclear compartments as is
the ADAM17-cleavable protein, TNFα [32]. Another
ADAM17 target, TGFα, also has been found stored in
intracellular granules in monocytes, neutrophils [33], and
eosinophils [34]. It is not known, though, whether these
intracellular stores of growth factor are mobilized in
response to stimuli that induce shedding.

In this study, we use primary NHBE cells differentiating in
air/liquid interface (ALI) culture to explore potential rela-
tionships between IL-13, ADAM17, and TGFα in the
mechanism controlling IL-13-induced proliferation. Spe-
cifically, we demonstrate that IL-13-induced proliferation
of NHBE cells requires ADAM17; however, the mechanis-
tic link between IL-13 and TGFα shedding seems to
involve more than a simple increase in ADAM17 activity.
Rather, we show that IL-13 appears to mobilize intracellu-
lar TGFα to the apical region of the cells where the cleav-
age enzyme ADAM17 is expressed in abundance.

Materials and methods
Cell culture and experimental protocol
NHBE cells (Cambrex, Walkersville, MD) were grown on
Transwell membranes as described previously [35]. Media
was changed every other day until the cells reached con-
fluence, at which time the apical medium was removed to
establish an ALI. Thereafter, the basolateral medium was
changed daily. All experimentation was carried out on day
7–9 after ALI establishment. At this point, mature secre-
tory cells are present in these differentiating cultures and
the cells respond with maximal proliferation to IL-13 (10
ng/ml) as determined previously [6]. Concentrations of
TGFα (5 ng/ml) and neutralizing antibodies (0.2 μg/ml)
used were based on studies utilizing similar compounds
in NHBE cells ([6]; X Fu and LD Martin, unpublished
results). A range of concentrations of rhADAM17 (50 - 0.1
ng/ml) as well as TIMP1 and TIMP3 (100 - 0.5 μg/ml;
R&D Systems, Minneapolis, MN) were examined for effec-
tiveness in modulating IL-13-induced proliferation or
TGFα shedding in NHBE cells. The lowest possible con-
centrations that yielded repeatable results with little
impact on constitutive growth or growth factor release
were used for final experiments in this study. All experi-
ments were repeated a minimum of three times using cells
from at least two human donors (except the RT-PCR
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which was done once). One representative experiment is
shown in each Figure.

ELISA
Following experimental treatments, media samples were
collected and analyzed with commercially-available TGFα
or IL-8 ELISA kits according to manufacturer's instructions
(R&D Systems, Minneapolis, MN).

Proliferation assays
[3H]-thymidine incorporation assays were performed as
described previously [6]. Cells were exposed for 24 hrs to
IL-13 (10 ng/ml) and/or specific reagents as described. To
perform manual cell counts, NHBE cells were liberated
from the Transwell membranes with warm Versene (Invit-
rogen, Grand Island, NY) for 5–10 min at 37°C and
counted using a hemacytometer.

Antisense assays
Antisense oligonucleotides were utilized following a pro-
tocol modified from Li et al [36]. Briefly, NHBE cells in
ALI culture were exposed to varying concentrations of
antisense oligonucleotides directed against ADAM17,
scrambled oligonucleotides as a control, or transfection
reagent alone (FuGene6; Roche, Indianapolis, IN). All
cells were treated for 3 days with the oligonucleotides,
with FuGene6 added only on the first day at the manufac-
turer's suggested concentration. On the third day, the cells
were exposed to IL-13, media (control) or TGFα for 24
hrs, with media samples collected and cells counted.
Phosphorothioate-modified oligonucleotides were syn-
thesized by Invitrogen (Rockville, MD). ADAM17 anti-
sense sequence was 5'-CCG CCT CAT GTT CCC GT-3'
[Genbank: NM_003183]. The scrambled sequence was 5'-
TGC GCC ATC TCG CTC TC-3'.

Immunoprecipitation
Total protein was extracted from NHBE cells using RIPA
buffer containing Roche Complete protease inhibitor
cocktail (1 mM EDTA; 1% NP-40; 0.5% sodium deoxy-
cholate, 0.1% SDS, 30 μg/ml pancreas extract, 3 μg/ml
pronase, 0.8 μg/ml thermolysin, 1.5 μg/ml chymotrypsin,
0.2 μg/ml trypsin, and 1.0 mg/ml papain). These lysates
were incubated overnight with primary antibody at 4°C
with shaking. A 50% slurry of Protein A was then added
and incubated for 3 hrs. The resulting pellet was washed 5
times in buffer and mixed 1:1 with 2× SDS gel loading
buffer (100 mM Tris-Cl, pH 6.8; 4% SDS, 0.2%
bromophenol blue, 20% glycerol, 200 mM β-mercap-
toethanol). Western analysis was then performed.

Western analysis
Total protein in 2× SDS gel loading buffer was boiled for
5 min, and separated via SDS-PAGE on 10–20% precast
gradient gels (Bio-Rad, Hercules, CA). Proteins were trans-

ferred to a nitrocellulose membrane (Bio-Rad, Hercules,
CA) that was then blocked in 5% nonfat milk/PBS for 1 hr
at room temperature. Membranes were hybridized with
primary anti-ADAM17 antibody (R&D Systems, Minneap-
olis, MN) at a concentration of 1:1000 in 5% nonfat milk/
PBS overnight at 4°C. The membranes were then washed
twice (30 min each) with 0.01% Tween-20/PBS at room
temperature. After the second wash, the membrane was
exposed to HRP-conjugated secondary antibody diluted
1:5000 in 5% nonfat milk/PBS for 45 min at room tem-
perature. Washes were repeated and bands visualized with
ECL (Amersham, Buckinghamshire, UK). The blots were
stripped using a commercially available kit (Chemicon
International, Temecula, CA) and then rehybridized with
an anti-actin primary antibody (Santa Cruz Biotechnol-
ogy, Santa Cruz, CA) to verify equal protein loading.

RT-PCR
Total RNA was extracted from NHBE cells with TRI Rea-
gent (Sigma, St. Louis, MO) and reverse transcribed using
specific oligonucleotides and the First Strand cDNA Syn-
thesis Kit for RT-PCR (AMV) (Roche, Indianapolis, IN) in
accordance with manufacturer's guidelines. Effort was
made to use the amount of cDNA in each PCR that would
provide a product in the linear range of the reaction in 35
cycles. PCR reactions were carried out using Taq polymer-
ase (Boeringher Mannheim, Mannheim, Germany) in a
Perkin Elmer GenAmp PCR System 2400. PCR products
were separated by electrophoresis through a 2% agarose
gel and visualized by staining with ethidium bromide.
Primers used were ADAM17 forward-ACCTGAAGAGCTT-
GTTCATCGAG, ADAM17 reverse-CCATGAAGTGTTC-
CGATAGATGTC [Genbank: NM_003183]; β-actin
forward-TCGACAACGGCTCCGGCA, β-actin reverse-
CGTACATGGCTGGGGTGT [Genbank: BC014861].

Confocal microscopy
At each time point, 2 control cultures were exposed to
media and 2 experimental cultures to IL-13 (10 ng/ml).
Following treatment, the NHBE cells were fixed on the
Transwell inserts with 4% formalin. All staining was car-
ried out in the Transwell inserts. Cells were washed with
PBS, permeabilized with 0.2% Triton X-100 in PBS, and
reacted with primary antibodies, either anti-TGFα or anti-
ADAM17, followed by a 45 min incubation in the dark
with appropriate secondary antibodies tagged with Alexa
488 (for use with anti-ADAM17) or Alexa 594 (for use
with anti-TGFα) (Molecular Probes, Eugene, OR). Mem-
branes containing the cells were then removed from the
Transwell inserts and mounted on glass slides in Vectash-
ield mounting media (Vector Laboratories, Burlingame,
CA). Cells were visualized with a Nikon Eclipse TE2000-E
confocal microscope via a Plan Apo 60× water immersion
objective. The entire experiment, from cell growth
through microscopy, was repeated 3 times, resulting in 6
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samples per experimental and 6 samples per control, time
point. Each sample was divided into quadrants and 250 to
300 cells per quadrant were examined qualitatively to
gain a general understanding of the expression patterns at
each time point.

Confocal quantitative analyses
Six to nine scans per control or experimental time point
were chosen randomly from the captured Z-stack confocal
microscopy images. Five to 10 cells per scan were exam-
ined. Three areas [apical/middle/basal] within each cell
were inspected to determine whether more TGFα or more
ADAM17 was expressed in each area. The Z-stack images
had been generated using a constant Z-stack interval. In
each Z-stack, the first image was from just above the tran-
swell membrane at the basal cellular surface and the last
image was at the cell's apical surface. Thus, "apical" and
"basal" refer to the apical-most and basal-most images in
the Z-stack from a single cell, while "middle" is defined as
the image halfway between the apical-most and basal-
most images from a single cell. With examination of
approximately 100 cells (50 control and 50 experimental)
per time point, about 97% of the cells were found to have
essentially two expression patterns [apical/middle/basal]:
[TGFα/TGFα/ADAM17] or [ADAM17/ADAM17/TGFα ].
Using only these 97% of cells, final percentages of cells
exhibiting each pattern were calculated.

Statistical analysis
Experimental data were analyzed for significance by one-
way analysis of variance (ANOVA), with post-test correc-
tion for multiple comparisons where appropriate. Differ-
ences between treatments were considered significant at p
< 0.05. Data are shown as mean ± standard error of the
mean (SEM).

Results
ADAM17 induces TGFα-mediated proliferation of NHBE 
cells
Research from our laboratory indicates that IL-13 initiates
proliferation of NHBE cells via a TGFα/EGFR (epidermal
growth factor receptor) autocrine/paracrine growth loop
[6]. Since ADAM17 is known to cleave membrane-
inserted pro-TGFα to its mature form in a number of cell
types [25,37,38], we determined whether ADAM17 could
act similarly in NHBE cells to mediate proliferation in a
TGFα-dependent manner. Treatment of NHBE cells with
exogenous recombinant human (rh) ADAM17 resulted in
an increase of soluble TGFα in the surrounding medium
(Fig. 1a). ADAM17 also induced cellular proliferation as
did IL-13 and TGFα (Fig. 1b). These results indicate that
NHBE cells express TGFα on the extracellular membrane
in a form that is amenable to proteolytic cleavage by
ADAM17. Next we determined if the proliferation
observed following exposure to rhADAM17 was occurring

ADAM17-induced proliferation is mediated by TGFαFigure 1
ADAM17-induced proliferation is mediated by TGFα. 
a) NHBE cells were treated with rhADAM17 (10 ng/ml) for 
1 hr after which surrounding medium was analyzed for the 
presence of TGFα by ELISA (n = 3, *p < 0.05 vs. CON). b) 
NHBE cells were treated with rhADAM17 (10 ng/ml), IL-13 
(10 ng/ml), or TGFα (5 ng/ml) for 24 hrs. [3H]-thymidine 
incorporation was used as a measure of proliferation (n = 6, 
*p < 0.05 vs. CON). c) NHBE cells were treated with IL-13 
(10 ng/ml), ADAM17 (10 ng/ml) or ADAM17 plus neutraliz-
ing anti-TGFα antibody (0.2 μg/ml) for 24 hrs, with [3H]-thy-
midine incorporation used as a measure of proliferation (n = 
6, *p < 0.05 vs. CON).
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via cleavage of surface expressed TGFα, rather than via
cleavage of another growth factor. The addition of neutral-
izing anti-TGFα antibody attenuated the proliferative
effect induced by exogenous rhADAM17 (Fig. 1c) suggest-
ing that rhADAM17 cleaves surface-expressed TGFα, that
in turn induces proliferation of the epithelial cells.

ADAM17 mediates IL-13-induced proliferation of NHBE 
cells
After determining that exogenous ADAM17 can induce
cellular proliferation mediated by TGFα in NHBE cells, we
determined whether endogenous ADAM17 is involved in
IL-13-induced proliferation of these cells. First, the effects
of various inhibitors of ADAM17 on IL-13-induced shed-
ding of TGFα were examined. Tissue inhibitor of metallo-
proteinase (TIMP)-3 is a documented inhibitor of
ADAM17 [39,40], while a related family member, TIMP-
1, has been found to have no effect on ADAM17 [41]. Fur-
thermore, the differential inhibition of ADAM17 by the
two TIMPs is useful to distinguish the action of ADAM17
from that of ADAM10, whose activity can be inhibited by
both TIMP-3 and TIMP-1 [41]. In the current study, TIMP-
3 was found to attenuate IL-13-induced TGFα shedding,
while TIMP-1 did not have an inhibitory effect (Fig. 2a).
Additionally, anti-ADAM17 antibodies also blocked IL-
13-induced TGFα shedding (Fig. 2b). Thus, these data
support the role of ADAM17 in mediating IL-13-induced
TGFα shedding in NHBE cells.

To confirm the requirement of ADAM17 in mediating IL-
13-induced TGFα shedding, and to determine whether
ADAM17 is similarly required for IL-13-induced NHBE
cell proliferation, cells were exposed to antisense oligonu-
cleotides directed against ADAM17 or to scrambled oligo-
nucleotides as a control. Scrambled oligonucleotides had
little effect on ADAM17 expression in a culture exposed to
media and in another culture exposed to IL-13; however,
in the same experiment, decreased expression of ADAM17
was easily discernible in comparable cultures exposed to
antisense oligonucleotides directed against the protease
(Fig. 3a). In cultures similarly exposed in this same exper-
iment, ADAM17 antisense oligonucleotides inhibited IL-
13-induced NHBE cell proliferation (Fig. 3b) and inhib-
ited IL-13-induced, as well as constitutive, shedding of
TGFα (Fig. 3c). ADAM17 antisense oligonucleotides,
however, did not inhibit TGFα-induced proliferation (Fig.
3b). In all experiments, scrambled oligonucleotides had
no significant effect on growth of control cells or on their
constitutive release of TGFα (Figs. 3b and 3c). Further-
more, while the presence of scrambled or ADAM17 anti-
sense oligonucleotides reduced the maximal level of
proliferation inducible by IL-13 or TGFα, only the
ADAM17 antisense oligonucleotides were capable of
blocking IL-13-induced proliferation with specificity, as
these oligonucleotides had no effect on TGFα-induced

proliferation (Fig. 3b). Taken together, these results sup-
port the requirement of endogenous ADAM17 for IL-13-
induced proliferation of NHBE cells, and confirm that
ADAM17 plays a role in the shedding of TGFα in NHBE
cells.

IL-13-induced effects are not mediated solely via 
activation of ADAM17
Since ADAM17 appeared to mediate IL-13-induced TGFα
shedding and proliferation in NHBE cells, we wanted to
determine whether these effects were due to a simple IL-
13-induced increase in ADAM17, or its activity. The
amount of steady-state mRNA coding for ADAM17 in
control or IL-13-treated cells was found to be the same fol-
lowing 4 or 24 hrs of treatment (Fig. 4a). Next the amount

Inhibitors of ADAM17 attenuate IL-13-induced shedding of TGFαFigure 2
Inhibitors of ADAM17 attenuate IL-13-induced shed-
ding of TGFα. NHBE cells were exposed to control media, 
inhibitors of ADAM17, IL-13 or IL-13 plus inhibitors for 1 hr. 
a) NHBE cells were exposed to either control media (no 
inhibitor), TIMP-1 or TIMP-3 (both at 2 μg/ml) for 30 min 
prior to treatment with IL-13 (10 ng/ml) or control media. 
The inhibitors were also included during the treatment 
period. After the 1 hr treatment, supernatants were exam-
ined for TGFα shedding via ELISA (n = 4, *p < 0.05 vs. corre-
sponding control, †p < 0.05 vs. IL-13 alone). Light gray bars = 
TIMP-1; Dark gray bars = TIMP-3. b) NHBE cells were 
exposed to control media, anti-ADAM17 antibodies, IL-13, 
or IL-13 plus anti-ADAM17 for 1 hr. Supernatants were then 
examined for shed TGFα via ELISA (n = 6, *p < 0.05 vs. 
media control, †p < 0.05 vs. IL-13 alone).
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of ADAM17 protein was examined. This protein exists in
two forms, an inactive, latent form and an active form
[32]. Conversion to the active form requires proteolytic
cleavage of the enzyme, resulting in removal of a 20-kDa
section of the protein. The amount of latent ADAM17 in
NHBE cells varied little in response to control media or IL-
13 over a time course of 5 min to 24 hrs (Fig. 4b). The
amount of active ADAM17 in control cells during this
time period also varied little, while slightly less active
ADAM17 was observed at early time points in IL-13-
treated cells. The amount of active ADAM17 in these
treated cells, however, was similar to control levels at the
latter time points (1 to 24 hrs) (Fig. 4b). Thus, while IL-13
may induce a small, transient decrease in the amount of
active ADAM17, the quantity of active protein is no
greater than that observed in control cells at time points
when IL-13 induces an increase in soluble TGFα (i.e.
approximately 60 min in this study (Fig. 4c), and as early
as 15 min in a previous study [6]). These data show that
IL-13 does not induce a dramatic alteration in the amount
of ADAM17 mRNA, latent ADAM17, or active ADAM17 in
NHBE cells.

Since activation of ADAM17 and ADAM17-mediated
shedding can be induced via PKC stimulation [26,42], we
tried to enhance the shedding of TGFα by exposing NHBE
cells to phorbol-12-myristate 13-acetate (PMA), a known
activator of PKC and well-characterized inducer of TGFα
ectodomain shedding [43], at a concentration shown pre-
viously to enhance TGFα shedding in a pulmonary
mucoepidermoid carcinoma cell line (NCI-H292) [30].
Exposure of the NHBE cells to PMA, however, did not
yield an increase in soluble TGFα (Fig. 4c) or cellular pro-
liferation (Fig. 4d), even though IL-13 could still induce
these events. The NHBE cells did respond to the PMA,
however, as secretion of IL-8, a process known to be PKC-
dependent in NHBE cells [44], was enhanced while IL-13
had no effect on IL-8 secretion (Fig. 4e). Thus, these
results suggest that the mechanism mediating IL-13-
induced release of soluble TGFα from NHBE cells differs
from the PKC-mediated mechanism responsible for TGFα
shedding in NCI-H292 cells, an event which appears to
involve direct activation of ADAM17 by PKC [30]. Thus, it
appears that although the IL-13-induced increase in TGFα
shedding, as well as the IL-13-induced proliferation, is
mediated by ADAM17 in NHBE cells, these events do not
occur solely via an IL-13-induced increase in ADAM17 or
its activity.

IL-13 induces apical movement of intracellular TGFα
An alternate mechanism whereby IL-13 could increase the
amount of TGFα shed from NHBE cells would be for the
cytokine to promote the release of pre-formed, intracellu-
lar growth factor. NHBE cells are already known to release
pre-formed mucin proteins (the glycoprotein component

Blocking endogenous ADAM17 inhibits IL-13-induced effectsFigure 3
Blocking endogenous ADAM17 inhibits IL-13-induced 
effects. Antisense oligonucleotides directed against ADAM17 
(antisense), or corresponding scrambled oligonucleotides (scram-
bled), were added to NHBE cell cultures for 2 days. Cultures con-
taining no oligonucleotides received the transfection reagent 
(FuGene6) during this time. On the third day, cells were exposed 
to control media, IL-13 (10 ng/ml), or TGFα (5 ng/ml), with or 
without the addition of the scrambled or antisense oligonucle-
otides for 24 hrs. a) Total protein was extracted from a single cul-
ture from each treatment group and from the FuGene-only 
control group. ADAM17 was immunoprecipitated from these 
extracts and subjected to Western analysis (A = antisense oligo-
nucleotides; Sc = scrambled oligonucleotides; 10 μM). The per-
centage of ADAM17 in experimental cultures compared to a 
FuGene-only exposed culture (Fugene) was determined by densit-
ometry as indicated (left panel). The right panel was overexposed 
to verify the location of the two, expected ADAM17 bands. Both 
blots reveal decreased expression of ADAM17 in the two cultures 
exposed to antisense oligonucleotides. b) Cell number was deter-
mined as a measure of proliferation (n = 6, *p < 0.05 compared to 
appropriate control, †p < 0.01 compared to appropriate IL-13-
treated, scrambled oligo sample), and c) the amount of TGFα in 
the supernatant was quantified via ELISA (n = 4, *p < 0.05 com-
pared to appropriate control, †p < 0.01 compared to appropriate 
treated, scrambled oligo sample).
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of airway mucus) upon stimulation with various inflam-
matory mediators [36,45]. Under such conditions, gran-
ules containing the mucin proteins are thought to be
mobilized rapidly to the cell surface where the proteins
are secreted [36]. To determine whether a similar mecha-
nism mediates IL-13-induced release of TGFα, confocal
microscopy was used to examine the location of TGFα and
its sheddase, ADAM17, in NHBE cells exposed to IL-13 or
control media over a 4-hr time course. (Quantitative
results from this study are shown in Table 1.)

Untreated NHBE cells (data not shown), or NHBE cells
exposed only to control media (Figs. 5 and 6a; Table 1),
were found to express TGFα and ADAM17 constitutively.
The majority of the growth factor (TGFα) was localized to
the interior of the epithelial cells, with ample expression
observed in the basal and central regions of the cells. Little

expression of TGFα was observed in apical cellular
regions. By contrast, ADAM17 was expressed throughout
the cytoplasm, although the majority of this enzyme was
expressed in portions of the cytoplasm adjacent to the cell
membrane, with expression particularly prominent in the
apical region of the epithelial cells. In fact, about 80% of
control cells exhibited this pattern of expression which
remained relatively unchanged as NHBE cells were
exposed to fresh media for 15 min, 30 min, 1 hr, or 4 hrs
(Figs. 5 and 6a; Table 1). More precisely, the percentage of
media-exposed, control cells exhibiting this expression
pattern (TGFα interior with ADAM17 highly expressed in
the apical region) at these time points was 81%, 82%,
71%, and 88%, respectively (see Table 1). The cross-sec-
tion and Z-stack video images of the control cells (Fig. 6a
and Additional file 1, respectively) as well as an illustra-
tion of a control cell (Fig. 6b) summarize the observed
location of TGFα (red) and ADAM17 (green) in cells with-
out IL-13 stimulation.

While exposure of NHBE cells to IL-13 for 15 min did not
alter the location of TGFα expression compared to its loca-
tion within control cells (Fig. 5), continued exposure to
IL-13 for 30 min or more did induce an alteration in the
location of TGFα expression. Specifically, at 30 min,
patches of TGFα were less defined within the cytoplasm,
with almost no TGFα expression detectable in the basal
areas of IL-13-exposed cells. Rather, the majority of the
growth factor was expressed in the apical region and on
the apical surface of the NHBE cells (Fig. 5). This pattern
of apical TGFα localization was observed in 46% of the IL-
13-treated cells compared to just 18% of the control cells
(Table 1). While IL-13 induced increased apical localiza-
tion of TGFα, apical localization of ADAM17 was

Table 1: Percentage of NHBE cells with specified patterns of 
TGFα/ADAM17 expression following IL-13 stimulation.

EXPRESSION PATTERN

Time point % Cells with 
Apical TGFα

% Cells with Apical 
ADAM17

15 min CON 19 81
IL-13 20 80

30 min CON 18 82
IL-13 46 54

60 min CON 29 71
IL-13 35 65

4 hrs CON 12 88
IL-13 2 98

Cells were examined by confocal microscopy to determine whether 
expression of TGFα or ADAM17 was greater in the apical-most, 
middle and basal-most sections of the Z-stack images. "Expression 
pattern" refers to expression noted within [apical/middle/basal] 
regions on an NHBE cell. "Apical TGFα " refers to a pattern of 
[TGFα/TGFα/ADAM17]. "Apical ADAM17" refers to a pattern of 
[ADAM17/ADAM17/TGFα].

IL-13-induced effects are not due solely to activation of ADAM17Figure 4
IL-13-induced effects are not due solely to activation 
of ADAM17. a) NHBE cells were exposed to IL-13 (10 ng/
ml) or control media for 4 or 24 hrs, and steady-state mRNA 
levels of ADAM17 and β-actin determined via RT-PCR. 
Ethidium bromide-stained gels of PCR products are shown. 
b) NHBE cells were treated with control media or IL-13 for 
the times indicated. Total protein from these cells was exam-
ined for ADAM17 expression via Western blot. Membranes 
were chemically stripped and rehybridized to detect β-actin 
as a control for equal protein loading. c) NHBE cells were 
treated with control media, IL-13, or PMA (10 nM) for 1 hr 
and the supernatants examined for soluble TGFα via ELISA 
(n = 4, *p < 0.05 compared to control). d) NHBE cells were 
treated for 24 hrs with control media, IL-13, or PMA (10 
nM), and [3H]-thymidine incorporation determined as a 
measure of proliferation (n = 6, *p < 0.05 compared to con-
trol). e) Secretion of IL-8 from NHBE cells was examined by 
ELISA following 1 hr exposure to control media, IL-13, or 
PMA (10 nM) (n = 6, *p < 0.05 compared to control).
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observed in fewer cells (54% compared to 82% of control
cells) following IL-13 exposure, with the enzyme now
found to a greater extent in the middle and basal regions
of the NHBE cells. Thus, it would appear that when NHBE
cells are exposed to IL-13, localization of TGFα shifts to
the apical region of these cells within 15 to 30 min. Such
a finding would be consistent with the movement of
TGFα from its intracellular region of constitutive expres-
sion (middle and basal) into the apical region of these
cells, a region where prominent ADAM17 expression is
observed constitutively.

Following exposure of NHBE cells to IL-13 for 60 min, the
expression patterns of both TGFα and ADAM17 remained
similar to those observed in cells exposed to IL-13 for 30

min (Fig. 6a; Table 1; see Additional file 2); more treated
cells expressed TGFα in their apical regions (35% com-
pared to 29% of control cells) while fewer treated cells
expressed ADAM17 apically (65% compared to 71% of
control cells). However, the percentage of affected cells
appeared somewhat intermediate between the 15 min
and the 30 min-treated values. This finding may suggest
that the TGFα, whose apical expression was induced by IL-
13, is beginning to be cleaved from the cell, while
ADAM17 is being internalized.

Following a 4-hr exposure to IL-13, little TGFα remains
within most of the NHBE cells. In fact, 98% of the treated
cells, compared to 88% of the control cells, express mainly
ADAM17 with little to no TGFα expression found at any
level within the cells. The relatively small amount of
growth factor that is present appears to be expressed in the
intracellular regions where TGFα was maintained prior to
stimulation (middle or basal region of the cells). Con-
versely, more control cells (12%) express TGFα in their
apical regions compared to IL-13-treated cells (2%). This
dramatic shift from 35 – 46% of IL-13-treated cells
expressing TGFα apically at 30 – 60 min, to just 2% of the

Summary of TGFα and ADAM17 expression patterns induced by IL-13Figure 6
Summary of TGFα and ADAM17 expression patterns 
induced by IL-13. a) Confocal images (y-z plane; apical to 
basal cross-section) of NHBE cells exposed for 60 min to 
media alone (control) or IL-13 (10 ng/ml). See Additional files 
1 and 2 for movies of Z-stack images (basal to apical) taken 
from a control culture and an IL-13-treated culture, respec-
tively, at this time point. TGFα (red) and ADAM17 (green); 
scale bars represent 10 μm. b) Illustration summarizing 
expression patterns of TGFα and ADAM17 observed via 
confocal microscopy in IL-13-treated NHBE cells at the times 
indicated. Colors represent TGFα (red) and ADAM17 
(green).

60 Min

Control IL-13 Treated
a

b

TGFα and ADAM17 expression patterns are consistent with IL-13-induced movement of TGFαFigure 5
TGFα and ADAM17 expression patterns are consist-
ent with IL-13-induced movement of TGFα. Confocal 
microscopy was used to determine the cellular distribution 
of TGFα and ADAM17 in NHBE cells following stimulation 
with IL-13 for various lengths of time. Representative images 
from cultures of NHBE cells treated with media only (con-
trol) or IL-13 (10 ng/ml) for 15 or 30 min are shown. NHBE 
cultures were imaged in Z-stack mode from the basal to the 
apical boundaries of the cells. Images shown are x-y planes 
(large squares) halfway between the basal-most and the api-
cal-most images, bordered by corresponding y-z planes 
(shown at right of x-y plane) and x-z planes (shown at bot-
tom of x-y plane). The y-z and x-z plane images are from the 
sites indicated by the white arrows at the bottom and the 
right of the x-y plane images, respectively. a → b denotes the 
apical (a) to basal (b) direction as it relates to the x-z and y-z 
planes. TGFα (red) and ADAM17 (green); scale bars repre-
sent 10 μm.

Control IL-13 Treated

15 Min

b       a

b

a

30 Min
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treated cells expressing it at 4 hrs, is consistent with the
apical TGFα being cleaved and released from the cells.

Taken together, the confocal images (examples provided
in Figs. 5 and 6a) and quantitative analysis (Table 1) of
TGFα and ADAM17 expression in NHBE cells support the
conclusion that IL-13 can induce movement of a stored
growth factor (TGFα) from the central and basal cytoplas-
mic regions to the apical region of airway epithelial cells,
where it is cleaved by ADAM17. Fig. 6b illustrates the tim-
ing of this inducible translocation, with an increase in
TGFα near the apical surface observed by 30 – 60 min of
IL-13 exposure, with the growth factor co-localizing with
ADAM17 in this region. By 4 hrs of IL-13 exposure, very
little TGFα is observed within the cells, likely due to its
being cleaved from the apical surface by ADAM17, follow-
ing its IL-13-induced translocation.

Discussion
In this study, we report what appears to be the first
cytokine-induced redistribution of a growth factor (TGFα)
from an intracellular store to the apical surface of a cell,
where a protease required for shedding of the growth fac-
tor (ADAM17) is prominently expressed. Having demon-
strated previously that IL-13-induced proliferation of
NHBE cells is mediated by TGFα [6], this report extends
those results by establishing that ADAM17 is required for
both IL-13-induced proliferation and TGFα shedding in
these cells. This conclusion is supported by data demon-
strating that the proliferation and growth factor shedding
are inhibited by antisense oligonucleotides directed
against ADAM17, while rhADAM17-induced prolifera-
tion of NHBE cells can also be blocked with neutralizing
anti-TGFα antibodies. In examining the mechanism
whereby IL-13 induces these ADAM17-mediated events, a
dramatic activation of ADAM17 was not observed; rather,
IL-13 induced a change in the location of TGFα expression
in 30 to 60 min, with expression shifted to the apical
region of the NHBE cells where significant ADAM17
expression is observed constitutively. A slight increase in
the expression of ADAM17 was also observed within the
middle and basal regions of the cells following IL-13 stim-
ulation; this observed increase may be relative, as it is pos-
sible that apically-located sheddase is released along with
the cleaved growth factor. Alternatively, ADAM17 may be
internalized, an event known to occur with PMA-stimula-
tion [46].

While a short exposure to IL-13 appears to induce a rapid
redistribution of TGFα in NHBE cells, by 4 hrs of exposure
to the cytokine only a small amount of the growth factor
is observed within the cells and that within the basal
region. While low-level synthesis of TGFα may occur con-
tinuously in NHBE cells, regardless of stimulation, it is
also possible that new intracellular stores of the growth

factor must be synthesized following IL-13-induced cleav-
age of apically-located TGFα.

Implications of the novel IL-13-induced mechanism
directing TGFα to the apical region/surface of NHBE cells
are broad-reaching, having the potential to provide
insight not only into the role of epithelial cells in allergic
asthma, but also into the impact of intracellular growth
factor pools in a variety of cell types and diseases. Such
intracellular stores are known to exist in neutrophils and
monocytes where TGFα appears to be stored in mem-
brane-bound compartments [33]. Intracellular stores of
EGF have been similarly reported in human submandibu-
lar and parotid glands [47,48]. There is not, however, a
complete understanding of the cellular mechanisms acti-
vating these stores, particularly in response to inflamma-
tory stimuli.

By contrast, some growth factors, rather than being stored
in intracellular compartments, are known to sort to vari-
ous surfaces of polarized epithelial cells immediately fol-
lowing translation. For example, in Madin-Darby canine
kidney cells, pro-TGFα sorts to the basolateral surface in a
process requiring specific domains within the newly trans-
lated protein [49] and interaction with specific cytoplas-
mic proteins [50]. Similar sorting of another EGF family
ligand, heregulin-α, also appears to occur in human bron-
chial epithelial cells [51]. EGF, however, has been found
to sort to both apical and basolateral surfaces of polarized
epithelial cells where it is released into the medium sur-
rounding the cells. Differential activation of this growth
factor then occurs due either to the presence, or activity, of
metalloproteinases within the extracellular compartments
around the cells [52].

In a similar fashion, the constitutive expression of acti-
vated ADAM17, occurring mainly in defined apical and
lateral regions of NHBE cells, could result in constitutive
release of TGFα during exponential and stationary growth
of these cells. Constitutive release of TGFα is observed in
unstimulated NHBE cells in vitro [6], where it appears to
be mediated by ADAM17 (Fig. 3c). Although the present
study does not distinguish the continuous presence of a
small amount of TGFα in the cell membrane from a slow
sorting of intracellular growth factor to this membrane, it
does indicate that TGFα present in the membrane of a
resting cell can be cleaved when it encounters activated
ADAM17. Specifically, addition of a large excess of exoge-
nous rhADAM17, which ensures a high probability of
cleaving all TGFα in the membrane, results in a significant
increase in soluble TGFα compared to control levels (Fig.
1a). This cleavage and release of TGFα by exogenous
ADAM17 is similar to that observed previously using cell
membrane preparations [38].
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While constitutive release of TGFα may be important for
general maintenance of an epithelial barrier, it is the
inducible nature of TGFα redistribution that likely con-
tributes to the role of airway epithelial cells as rapid "effec-
tors" following a provocation, such as inhalation of an
allergen to which the host is sensitized. By maintaining
intracellular reserves of growth factors, and perhaps other
molecules, as well as the constitutive expression of pro-
teases that activate these factors, the reaction time in
response to inflammatory stress and other epithelial inju-
ries can be minimized. This inducible system also pro-
vides a number of safeguards to ensure the cell will be
both equipped to respond to a stimulus and to direct that
response in a specified manner. For example, the mainte-
nance of intracellular growth factor reserves eliminates the
possibility of surface-tethered molecules being inadvert-
ently cleaved prior to their being needed for response to a
specific biological insult. Such unintentional cleavage
events could occur as neutrophil elastase or other pro-
teases become present in the airway as a natural response
due to infiltration of inflammatory cells following inhala-
tion of everyday irritants. If growth factors were expressed
constitutively in large amounts on airway epithelial cells,
such proteases might liberate ligands such as TGFα, result-
ing in unwarranted consequences such as upregulation of
mucin gene expression [53] or unnecessary proliferation.

The IL-13-inducible, apparent movement of TGFα from
intracellular basal regions to the apical region/surface of
NHBE cells could also have evolved as a way to lessen the
impact of TGFα on cell types which underlie the epithe-
lium. By keeping the ligand and sheddase separated phys-
ically within the epithelial cells, cleavage of the growth
factor is prevented; even direct PKC activation, an event
known to enhance ADAM17 activity and subsequent
shedding [26,43], was incapable of inducing TGFα release
above constitutive levels in this study. Inducible move-
ment of the growth factor into the apical region where
activated ADAM17 is present, however, would direct the
shedding of TGFα exclusively from the apical surface of
the NHBE cells toward neighboring epithelial cells, or res-
ident and infiltrating inflammatory cells within the epi-
thelium, rather than toward the basally-located
fibroblasts or smooth muscle cells. In this manner, the IL-
13-induced mechanism may provide a means of maximiz-
ing the presence of growth factor near damaged epithelial
cells in an inflamed airway, enhancing the probability of
epithelial barrier restoration without induction of remod-
eling features such as fibrosis or smooth muscle hyperpla-
sia. A related mechanism has been suggested previously
when heregulin-α was observed to be present exclusively
in the apical membrane of human airway epithelia while
its receptors, erbB2-4, were found to be present only on
the basolateral membrane [51]. This arrangement appears
to allow for ligand-receptor interaction only after epithe-

lial integrity is disrupted, or when the tight junctions
between cells are opened.

Conclusion
In NHBE cells, IL-13-induced proliferation and TGFα
shedding are mediated by ADAM17. Surprisingly, IL-13
does not seem to regulate these events by inducing a dra-
matic activation of ADAM17; rather, the cytokine appears
to initiate a change in location of TGFα expression to the
apical region of the cells where ADAM17 is prominently
expressed. Thus, the cytokine appears to induce redistri-
bution of an intracellular store of TGFα into a location
where ADAM17 is expressed constitutively, thereby direct-
ing the apical cleavage and shedding of the growth factor.

Since growth factors exhibit their functions during many
stages of development, cellular differentiation, the heal-
ing process, and inflammatory responses, the finding that
stored growth factors can be released from cells in
response to cytokines is likely to have far-reaching impact.
Such cytokine-induced release may prove essential for
restorative biological functions, yet also mediate deleteri-
ous cellular outcomes as growth factor levels are enhanced
repeatedly during chronic inflammation. Thus, while the
precise mechanism whereby IL-13 induces the movement
of TGFα to the apical surface of NHBE cells remains to be
elucidated, unraveling such a mechanism will likely pro-
vide diverse therapeutic targets for the prevention of air-
way remodeling or the enhancement of epithelial repair.
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Additional file 1
Confocal Z-stack images of NHBE cells exposed to control media for 60 
min. NHBE cells were exposed to control media for 60 min, reacted with 
fluorescent-tagged antibodies against TGFα (red) and ADAM17 (green), 
as described in Materials and methods, and then imaged by confocal 
microscopy. Shown is a video of the Z-stack images beginning with the 
basal-most section of the NHBE cells and ending with the apical-most sec-
tion.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1465-
9921-8-51-S1.zip]

Additional file 2
Confocal Z-stack images of NHBE cells exposed to IL-13 for 60 min. 
NHBE cells were exposed to IL-13 (10 ng/ml) for 60 min, reacted with 
fluorescent-tagged antibodies against TGFα (red) and ADAM17 (green), 
as described in Materials and methods, and then imaged by confocal 
microscopy. Shown is a video of the Z-stack images beginning with the 
basal-most section of the NHBE cells and ending with the apical-most sec-
tion.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1465-
9921-8-51-S2.zip]
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