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Abstract

Background: Lung disease in cystic fibrosis (CF) patients is dominated by chronic inflammation
with an early and inappropriate influx of neutrophils causing airway destruction. Congenic C57BL/
6 CF mice develop lung inflammatory disease similar to that of patients. In contrast, lungs of
congenic BALB/c CF mice remain unaffected. The basis of the neutrophil influx to the airways of
CF patients and C57BL/6 mice, and its precipitating factor(s) (spontaneous or infection induced)
remains unclear.

Methods: The lungs of 20-day old congenic C57BL/6 (before any overt signs of inflammation) and
BALB/c CF mouse lines maintained in sterile environments were investigated for distinctions in the
neutrophil chemokines SI00A8 and S100A9 by quantitative RT-PCR and RNA in situ hybridization,
that were then correlated to neutrophil numbers.

Results: The lungs of C57BL/6 CF mice had spontaneous and significant elevation of both
neutrophil chemokines SI00A8 and SI00A9 and a corresponding increase in neutrophils, in the
absence of detectable pathogens. In contrast, BALB/c CF mouse lungs maintained under identical
conditions, had similar elevations of SIO0A9 expression and resident neutrophil numbers, but
diverged in having normal levels of SI00A8.

Conclusion: The results indicate early and spontaneous lung inflammation in CF mice, whose
progression corresponds to increased expression of both SI00A8 and SI00A9, but not SI00A9
alone. Moreover, since both C57BL/6 and BALB/c CF lungs were maintained under identical
conditions and had similar elevations in SI00A9 and neutrophils, the higher SI00A8 expression in
the former (or suppression in latter) is a result of secondary genetic influences rather than
environment or differential infection.
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Background

Cystic fibrosis (CF) is an autosomal recessive disease
caused by mutations in the Cystic Fibrosis Transmem-
brane conductance Regulator (CFTR) gene [1,2]. Clinical
manifestations of CF include exocrine pancreatic insuffi-
ciency, intestinal obstruction, male infertility and particu-
larly lung disease [3]. To date, over 1000 CF-causative
mutations have been identified in CFIR [4].

Lung disease is the leading cause of morbidity and mortal-
ity among CF patients, and is increasingly regarded as
multifactorial, being a combination of abnormalities in
inflammatory response and pathogen clearance, in addi-
tion to electrolyte transport and airway surface layer com-
position [3,5-16]. Due to yet unknown CFIR-dependent
processes, CF lung disease presents as a vicious cycle of
inflammation and infection, ultimately leading to the
destruction of the airways (reviewed in [3,7,17]). A hall-
mark of the CF lung disease is a massive and inappropri-
ate influx of neutrophils that release profuse amounts of
proteases and activated oxygen radicals, resulting in severe
pulmonary damage (reviewed in [3,7,17]). Along with the
inappropriate influx of neutrophil into the CF airways, a
dysregulation in the levels of inflammatory cytokines,
including IL-1f, IL-6, IL-8 and TNF-a are detected [10-16],
[18-20]. Given that numerous studies have demonstrated
heightened or prolonged inflammatory responses [5] and
upregulation of inflammatory mediators in presympto-
matic or uninfected CF infants [6,8,9,21,22], it remains
unclear whether the inflammation precedes infection or is
a result of its destructive properties.

Mouse models of cystic fibrosis, containing disruptions of
the CFIR gene, show epithelial bioelectric lesions similar
to that observed in CF patients [23,24](reviewed in [25]).
CF mice also manifest different abnormalities of lung
physiology and certain strains, including those congenic
for C57BL/6, have been shown to be hypersusceptible to
infections with CF-associated pathogens and develop-
ment of inflammatory disease [26-36], also reviewed in
[37]. In addition, lungs of CF mice have been shown to
demonstrate altered expression profiles of numerous
inflammatory markers [31,38-41], reminiscent of the dis-
ease in CF patients. Thus, CF mouse models could thus
provide important insight into the pathogenesis and/or
pathophysiology of the lung disease in patients.

Previous studies by us and others have described a con-
genic C57BL/6] CF mouse model (B6-CF) that manifests
an inflammatory lung phenotype [26,27,42] to some
extent similar to that seen in CF patients. The major pul-
monary disease phenotype of these mice presents at
roughly 6 months-of-age with inflammation, interstitial
fibrosis, loss of non-ciliated cells, bronchiolar mucus
retention, alveolar wall thickening and alveolar hyperin-
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flation. At roughly 4 to 5 weeks-of-age B6-CF lungs
present a marked influx of neutrophils, which heralds the
more advanced inflammatory lesions. This overt lung dis-
ease phenotype appears spontaneous in that no precipi-
tating airway pathogen infections are detected either
preceding or concurrent to the onset of inflammation. In
contrast to the B6-CF animals, congenic BALB/c CF mice
(Bc-CF) do not develop any obvious lung disease pheno-
type, even at later ages [26,27,42].

To gain further insight into the early pathogenesis of the
lung disease in B6-CF mice we previously undertook a
study to identify genes having differential expression
between 20 day-old lungs (before any indications of an
abnormal lung phenotype) of B6-CF and age- and sex-
matched wild-type sibs maintained in a specific pathogen
free environment and free of any detectable lung infec-
tion, using Affymetrix GeneChip™ analysis [43]. These
studies identified the neutrophil chemokine S100A8 (also
known as mMRP8, Calgranulin B or CP-10) (reviewed in
[44]) as having roughly 3-fold elevated expression in the
B6-CF compared to wild-type lungs [43]. SI00AS, along
with the related S100A9 (also known as MRP14), are
members of the S100 calcium-binding protein family
involved in regulation of calcium dependent intracellular
processes (reviewed in [45]) and act as potent chemokines
for neutrophil recruitment to sites of inflammation
(reviewed in[44,46,47]). In inflammatory states, expres-
sion of S100A8 is co-upregulated with S100A9 [46,48]
and reviewed in [44,47,49-51]. Here we report that
S100A9 expression shows spontaneous (without detecta-
ble infection) and early (before 20 days of age) increased
expression in lung neutrophils of both B6-CF and Bc-CF
mice, in agreement with an approximate 3-fold increase in
the number of resident neutrophils. However, the expres-
sion of S100A8 was not elevated in the lungs of Bc-CF
mice, whereas those of B6-CF showed elevated expression
that appeared to correlate with increased neutrophil num-
bers. Importantly, no increased levels of either SI00A8 or
S100A9 were detected in other CF-affected tissue (ileum
and liver) of these animals. These results suggest: 1) an
early and spontaneous (without any detectable precipitat-
ing infection) inflammatory phenotype in the lungs of CF
mice, 2) progression to overt lung disease in CF mice cor-
responds to elevated levels of both ST00A8 and S100A9
(or only S100A8), but not S100A9 alone, and 3) a prom-
inent influence of secondary genetic factors on differential
regulation of S100A8 expression.

Methods

Mouse studies

The B6-CF and Bc-CF mice used for this study and their
phenotypes have been described in detail elsewhere
[26,27,52,53]. All studies were carried out on 20-day-old
mice before any evidence of lung inflammation in the B6-
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CF animals as previously described [26,27], and personal
communication (Dr. G. Kent). To alleviate the severe
intestinal lesions resulting in the early death of the con-
genic B6-CF mice, they were placed on a liquid Peptamen
diet from age 18-days until sacrifice, as previously
described [54].

Genomic DNA was prepared from tail clips using a salt-
ing-out extraction procedure [55]. Briefly, about 2 cm of
tail was removed and digested overnight at 55°C with
proteinase K (0.5 mg/ml). Proteins were then precipitated
with a saturated NaCl solution followed by centrifugation
at 13,000 rpm for 10 min. DNA was ethanol precipitated
and redissolved in Tris-EDTA buffer. PCR reactions were
performed as previously described [54]. Briefly, the wild-
type and mutant CFTR alleles were detected in the mice by
PCR, using primers specific for the endogenous CFTR
locus and for the mutant CFTR locus: Primer A (wild type)
5'-CTGTAGTTGGCAAGCTITGAC-3'; Primer A (mutant)
5'-ACACTGCTCGAGGGCTAGCCTCTTC-3'; Primer B
(wild type and mutant) 5'-CAGTGAAGCTGAGACTGT-
GAGCTT-3'. The PCR was performed using standardized
conditions: 2 mM MgCl2, 200 mM dNTPs, 100 nM each
primer, 100 ng genomic DNA, and 1 U Taq polymerase.
Thermal cycling was carried out for 35 cycles (1 min,
94°C; 1 min, 50°C; 1 min, 72°C). After electrophoresis
the PCR products were visualized on an ethidium bro-
mide stained 1% agarose gel.

All mice (CF and wild-type controls) were maintained
under stringent Specific Pathogen Free (SPF) conditions
in microisolator cages at the Hospital for Sick Children
Animal Facility, as previously described [26]. Detailed
serological surveillance was continuously performed on
the entire colony of CF mice using sentinel animals. Sen-
tinels were placed in open cages adjacent to, and/or in the
same cage as, the CF heterozygous breeders for 3 months
and then exsanguinated. The sera from these animals was
frozen and shipped to the University of Missouri Research
Animal Diagnostics Laboratory (Columbia, MO) to be
screened for rodent viral pathogens (mouse hepatitis,
Sendai, mouse pneumonia, respiratory enteric orphan,
ectromelia, Theiler's murine encephalitis, mouse adenovi-
ruses 1 and 2, lymphocytic choriomeningitis, infant
mouse enzootic diarrhea, polyoma, and parvovirus), Car-
bacillus and Mycoplasma pulmonis. A second group of senti-
nels (congenic C57BL/6] CF and C57BL/6] heterozygous
CF breeders) housed in open cages adjacent to the hetero-
zygous CF breeders were maintained under the same con-
ditions for an additional 6 weeks. Half of these animals
were screened as above, while the remaining mice were
sent to the Ontario Veterinary College Department of
Pathology, University of Guelph (Guelph, Ontario, Can-
ada) for detailed histopathological screening for signs of
infections of their lungs, kidneys, heart, spleen, pancreas,
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salivary glands, jejunum, ileum, colon, brain, seminal ves-
icles, thymus, and lymph nodes. Lung and jejunal tissue
were also routinely cultured for bacteria, and found to be
negative for conventional CF lung pathogens (E. coli, P.
aeruginosa, B. cepacia, S. aureus, as well as Proteus and
Streptococcus sp). In addition, histopathological screens
were also performed to detect pathogenic infections of the
specific lung samples used for RNA preparation. The stud-
ies performed did not identify any obvious signs of lung
infection in the CF animals; nevertheless it is not possible
to completely rule out the presence of any undetected
pathogens.

mRNA quantification

Total cellular RNA was extracted from snap-frozen whole
right lung lobes dissected from 20-day old CF and wild-
type sibs from both the C57BL/6 and BALB/c strains (8 of
each genotype/strain) using the Qiagen RNAeasy™ Midi
kit according to the manufacturer's protocol. Sample con-
centration and purity were determined by measuring opti-
cal density at 260 nm and the ratio of 260 nm to 280 nm,
respectively. A ratio of absorbance (A,,/A,50) between
1.6 and 1.9 was considered acceptable for purity. RNA
integrity was assessed by visualization on an ethidium
bromide stained 1% agarose gel. One microgram of total
cellular RNA from each sample was then treated with 1
unit of amplification grade DNase I (Invitrogen) accord-
ing to the manufacturer's protocol.

To determine S100A8 and S100A9 mRNA expression lev-
els, 1 ng of DNase I-treated total cellular RNA from the
mouse whole lung was reverse transcribed using the Invit-
rogen Superscript™ II RNase H-Reverse Transcriptase First-
Strand Synthesis kit using conditions recommended by
the manufacturer. Briefly, 1 pg of DNase I-treated total
RNA and oligo(dT),,_,5 primer were incubated at 65°C
for 5 minutes, added to 5X RT buffer, 0.1 M DTT, 10 mM
deoxyribose nucleotide triphosphate (dNTP) mix and
incubated at 42°C for 2 minutes. Fifty units of Super-
script™ 11 reverse transcriptase was added and the mixture
was incubated at 42°C for 50 minutes, 70°C for 15 min-
utes, then treated with 2 units of RNase H at 37°C for 20
minutes and stored at -20°C. Oligonucleotide primers to
amplify the target SI00A8, S100A9 and the B-actin cDNA
sequences were designed from published cDNA
sequences (Genbank ascension numbers S57123,
M83219 and X03672, respectively). The primers were
chosen to span at least 1 intron to distinguish products
resulting from the amplification of cDNA and potentially
contaminating genomic DNA. Primer sequences were as
follows: S100A8 sense 5'-CCCGTCTTCAAGA-
CATCGTITG-3"' (position 1-22 in the cDNA), S100A8
antisense 5'-ATATCCAGGGACCCAGCCCTAG-3' (posi-
tion 347-326 in the cDNA), S100A9 sense 5'-CCCT-
GACACCCTGAGCAAGAAG-3' (position 120-141 in the
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cDNA), S100A9 antisense 5'-TTTCCCAGAACAAAG-
GCCATTGAG-3' (position 453-430 in the cDNA), B-actin
sense 5'-GTGGGCCGCCCTAGGCACCAG-3' (position
183-203 in the cDNA), B-actin antisense 5'-CTCTTTGAT-
GTCACGCACGATTTC-3' (position 722-699). The
expected size of the PCR products was 347 bp for S100A8,
333 bp for SI00A9 and 539 bp for B-actin. Multiplex PCR
amplification was performed using 1/20 of the total
cDNA reverse transcribed from each sample. A total reac-
tion volume of 20 pL also contained 200 pM dANTP mix,
150 uM MgCl,, 10 mM Tris-HCI (pH 8.3), 50 mM KCl,
2.5 units of Thermus aquaticus (Taq) DNA polymerase
(Fermentas) and 2.5 ng/uL of both sense and antisense
oligonucleotide primers for the target (either ST00A8 or
S100A9) and the endogenous standard (B-actin). Four
reactions were run in parallel for each sample in a Perkin
Elmer Applied Biosystems Geneamp Thermocycler 9700,
using a hot-start protocol where Tag polymerase was
added to reaction mixtures after an initial denaturation
step at 94°C for 3 minutes. The reactions were cycled at
94°C for 30 seconds (denaturation), 65 °C for 30 seconds
(annealing) and 72°C for 30 seconds (extension). Equal
volumes of the PCR reaction were removed at cycles 19,
21, 23 and 25. Fifteen microliters from each PCR reaction
were loaded unto an ethidium bromide stained 1% agar-
ose gel and documented with a Kodak EDAS 290 electro-
phoresis documentation system. Band intensities (and
thus starting product levels) of the target relative to con-
trol were measured using the program NIH Image® http://
rsb.info.nih.gov/nih-image/. Band intensities of PCR
products (S100A8, S100A9 and p-actin) were plotted
against cycle number in order to determine the exponen-
tial phase of amplification. For each sample, the S100A8
and S100A9 multiplex RT-PCR product band intensities
after 21 cycles of amplification were normalized to that of
the B-actin produced in the same tube and the mean of the
four runs was calculated to obtain relative expression lev-
els. All measurements for expression were performed with
the investigator blinded to mouse strain and genotype.

Neutrophil counts

To ascertain relative neutrophils numbers in the lungs of
the different mice (B6-CF, Bc-CF, and their wild-type sibs)
the left lung lobes of 7 animals of each strain and geno-
type were harvested, inflated, and infused with 10% buft-
ered formalin. After overnight fixation in formalin the
lobes were cut into 4 separate sections (from top to bot-
tom of the lobe to maximize representation of the speci-
men), embedded in paraffin blocks and sectioned to a
thickness of 4 pum followed by Hematoxylin & Eosin
(H&E) staining for visual inspection and counts of neu-
trophils (recognized by their characteristic multi-lobed
nuclei) by an experienced pathologist blinded to strain,
genotype and expression status. For each of the 4 lung sec-
tions from each animal, the number of neutrophils in 6
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distinct and randomly chosen fields was counted and the
average of the 6 was calculated for that lung section. Thus,
a total of 24 distinct sections of each lung from 7 mice
(168 total independent fields) of each genotype and strain
were counted to arrive at a representative measure of neu-
trophil content for each group of animals.

RNA in situ hybridization

Left lung lobes (4 of each genotype/strain) were inflated,
fixed in paraformaldehyde, OCT-embedded and thin-
sliced (5 independent sections for each lung) onto ami-
noalkylsilane-coated slides (SIGMA) followed by air-dry-
ing for 2 hrs. Samples were fixed in 4% paraformaldehyde
in PBS for 20 min, protein hydrolyzed in 20 ng/ml protei-
nase K for 7.5 min, and then post-fixed for 5 min in 4%
paraformaldehyde in PBS. Tissues were incubated for 10
min in a 0.1 M triethanolamine, 0.5 % acetic anhydride
solution. To dehydrate samples, slides were dipped suc-
cessively in a graded series of ethanol baths before hybrid-
ization. Samples were hybridized overnight at 55°C in
50% formamide, 0.3 M NaCl, 20 mM Tris-HCL (pH 7.6),
5 mM EDTA, 10% dextran sulphate, 1.5 x Denhardts, 0.5
mg/ml yeast tRNA, and digoxigenin-UTP-labeled RNA
probes. Antisense and sense probes were prepared by in
vitro transcription, using T7 RNA polymerase, from a 347
bp sequence (nucleotides 1-347) of S100A8, and a 333
bp sequence (nucleotides 120-453) of S100A9, of Hin-
dII linearized pCR2.1 (Invitrogen) vector with SI00A8
and S100A9 inserted in both orientations into the
BamHI/HindIII sites of the multiple cloning region. Fol-
lowing hybridization, slides were soaked for 15 min in 0.1
M maleic acid and 0.15 M NaCl, then for 1 hrin a 1% Boe-
hringer blocking reagent solution in 0.1 M maleic acid
and 0.15 M NaCl. Bound probes were detected by expos-
ing samples to alkaline phosphatase-conjugated anti-dig-
oxigenin antibodies for 1.5 hrs and slides were then
washed in 0.1 M Tris (pH 9.5), 0.1 M NaCl, 50 mM MgCl,
for 10 min. The substrate, nitro blue tetrazolium/5-
bromo-4-chloro-3-inolyl phosphate (Invitrogen), was
added to the samples and the color reaction was allowed
to develop overnight. All samples were hybridized to both
anti-sense and sense (negative control) probes to ensure
specific signal detection. The number of positive-staining
neutrophils in 5 independent fields for each section was
counted and the average taken as representative of that
lung.

Statistical analysis

All statistical comparisons were performed using non-par-
ametric Mann-Whitney Tests (2-tailed) and Spearman
Rank Correlation tests, as appropriate. Data is plotted as
the median with interquartile ranges.
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Semi-quantitative reverse-transcriptase PCR of SI00A8 and SI00A9 expression relative to -actin in the lungs of A. congenic
C57BL/6 CF and wild-type mice, B. congenic BALB/c CF and wild-type mice, (n = 8 for each strain/genotype), and C. ileum and
liver of CF and wild-type mice from both strains (n = 5 for each strain/genotype). White and gray bars represent wild-type and
CF samples, respectively. Median with 25% and 75% intervals are shown. An asterisk (*) denotes a significant difference

between the wild-type and CF samples (p < 0.05).

Results

Lung-specific upregulation of SI00A8 and S100A9 in CF
mice

We had previously reported a roughly 2.5-fold elevation
of S100A8 expression in the lungs of 20 day-old B6-CF
mice, as ascertained through an Affymetrix GeneChip
experiment [43]. To confirm this increase in expression,
semi-quantitative RT-PCR experiments were undertaken.
As shown in Fig. 1A, analysis of the expression data
showed significantly (p < 0.005, two-tailed Mann-Whit-
ney test) elevated expression of S100A8 (~2.5-fold) in the
lungs of B6-CF mice compared to their wild-type sibs, in
agreement with the microarray data. Since the expression
of S100A8 may be coordinately regulated with its het-
erodimerization partner S100A9, the expression level of
S100A9 was next investigated in these lungs. As shown in
Fig. 1A, expression of S100A9 also had roughly 2.5-fold
higher expression in the lungs of B6-CF mice compared to
their wild-type littermates (p < 0.005), confirming a coor-
dinate increase in levels of the two S100 mRNAs in B6-CF
lungs. In contrast, similar studies of 20 day-old Bc-CF
lungs, which do not progress to the inflammatory lung
disease phenotype, maintained under identical condi-
tions showed no significant increase in S100A8 expres-
sion (p < 0.5), although expression of S100A9 was
significantly elevated (p < 0.001) in a manner similar to
that of the B6-CF samples (Fig. 1B). A significant increase
of S100A8 levels was detected in all 8 B6-CF lungs exam-
ined, while none of the B6-WT, Bc-CF or Bc-WT lung sam-
ples from identical environments showed a marked
elevation. Furthermore, no significant difference in either
S100A8 or S100A9 expression levels was detected in non-
airway tissue, including the ileum (tissue most severely

affected in CF mice) or liver of CF compared to wild-type
animals of both C57BL/6J and BALB/cJ strains (p < 0.5,
five mice for each group), as shown in Fig. 1C, indicating
that increased levels of SI00A8 and S100A9 expression
were lung specific.

These results indicate an early and specific increase of
both S100A8 and S100A9 expression levels in lungs of B6-
CF mice in contrast to Bc-CF lungs in which only S100A9
expression levels were elevated.

Elevated neutrophils in CF mouse lungs

To assess the basis of the differential ST00A8 and S100A9
levels, the number of resident neutrophils (primary sites
of S100A8 and S100A9 expression) between the lungs of
20 day-old B6-CF, Bc-CF and their wild-type sibs were
next quantified as described in Materials and Methods. As
shown in Fig. 2, the B6-CF mice showed a significant 2.6-
fold increase in resident neutrophils in their airways and
interstitium, compared to their wild-type sibs (p <0.001).
Similarly, Bc-CF mice had a significant roughly 3-fold
increase in neutrophil numbers compared to their wild-
type sibs (p < 0.005). Thus, since neutrophils are the pri-
mary site of expression of SI00A8 and S100A9, and the
B6-CF and Bc-CF lungs showed an almost 3-fold increase
in neutrophil count, respectively, the elevation of SI00A9
in both strains of CF lungs, and in the B6-CF lungs for
S100A8, likely corresponds to the increased neutrophil
numbers. Supplementary assessment of the correspond-
ence between neutrophil numbers and S100A8/S100A9
expression levels per sample was performed by Spearman
Rank Correlation analyses, which further supported a
likely relationship (p < 0.005 for all results, with the
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Neutrophil counts. The average number of neutrophils in the
lungs of 20 day-old congenic C57BL/6 and BALB/c wild-type
(white bars) and CF (gray bars). The average number of neu-
trophils per lung section (n = 4 levels per left lobe, n = 6
fields for each level) from 7 animals per strain/genotype is
represented. Median with 25% and 75% intervals are shown.
An asterisk (*) denotes a significant difference between the
wild-type and CF samples (p < 0.05).

exception of S100A8 in the Bc-CF lungs (p < 0.5)). The
lack of correlation between S100A8 levels and neutrophil
numbers in the Bc-CF lungs suggests a suppression of its
expression in neutrophils in this strain. An assessment of
resident macrophage between the B6-CF and B6-WT
lungs did not detect a significant difference in numbers
(data not shown), suggesting that this early course of the
inflammatory lung phenotype appears to be limited to
neutrophils.

Localization of SI00A8 and S100A9 lung expression

To confirm the specific cell types conferring S100A8 and
S100A9 expression, RNA in situ hybridization of lung sec-
tions taken from 20-day old Bc-CF, B6-CF mice and their
wild-type sibs was performed. As expected, hybridization
of the lung sections with S100A8 and S100A9 sense
probes showed no positively staining cells (Fig. 3A and 3F,
respectively). Both the S100A8 and S100A9 antisense
probes detected staining only in a small number of scat-
tered neutrophils in the B6-WT lungs (Fig. 3D and I,
respectively), which did not appear significantly different
in number to that seen in the Bc-WT lungs (Fig. 3B and
3G, respectively). Hybridization of Bc-CF lung sections
with S100A8 (Fig. 3C) only rarely detected positively
staining cells, similar to their Bc-WT sibs, whereas SI00A9
(Fig. 3H) detected markedly more staining cells, which
were identified morphologically as neutrophils. In con-
trast, both the S100A8 and S100A9 probes detected signif-
icantly higher numbers of positive neutrophils in the B6-
CF lungs (Fig. 3E and 3], respectively). Summation of the
number of total ST00A8 and S100A9 staining neutrophils
per B6 lung assessed revealed an almost 3-fold higher
number of positive cells in the CF compared to wild-type
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Figure 3

RNA in-situ hybridization of lungs with SI00A8 and S100A9.
Panels A and F represent 20 day-old congenic C57BL/6) CF
lung sections stained with a sense probe for SI00A8 and
SI00A9, respectively. The panels are representative of
SI100AS8 antisense hybridized sections of 20 day-old Bc-WT
(B), Bc-CF (C), B6~WT (D) and B6-CF (E) mouse lungs, and
S100A9 antisense probe hybridized sections of 20 day-old
Bc-WT (G), Be-CF (H), B6~WT (1) and B6-CF (J) mouse
lungs. Panels K and L show a absence of staining for S|00A8
in endothelial cells and macrophage of 20 day-old B6-CF
lungs, respectively. Panels A-J are shown at 40X magnification
and panels K and L are at 60x magnification.

lungs (p <0.01, in both cases) (Fig. 4), in agreement with
the increased numbers of neutrophils identified by mor-
phometric measures and the increase in levels of expres-
sion in the lungs. A similar determination of the number
of total S100A8 and S100A9 staining cells in the samples
from the Bc strain showed no significant difference (p <
0.20) with S100A8; however, the S100A9 probe detected
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Figure 4

Counts of positively staining neutrophils for SI00A8 (A8) and
S100A9 (A9) in lungs of 20 day-old congenic C57BL/6 and
BALB/c wild-type (white bars) and CF (gray bars) mice. The
values represent the average number of positive-staining neu-
trophils from 4 mice of each strain/genotypes with 5 inde-
pendent sections and 5 fields from each section for each.
Median with 25% and 75% intervals are shown. An asterisk
(*) denotes a significant difference between the wild-type and
CF samples (p < 0.05).

a significant (p < 0.01) increase positively-staining neu-
trophils (Fig. 4), in agreement with the morphometric
measures and increased whole lung expression.

Importantly, other cell types reported to have inducible
expression (vascular endothelial cells and macrophage)
were negative for S100A8 staining in B6-CF lungs (Figure
3K and 3L, respectively), indicating that its increased lev-
els in whole lungs were not the effect of induction in such
cells, but exclusively due to the increased numbers of
expressing neutrophils. However, due to limitations
inherent of RNA in situ hybridization it was not possible
to quantitate S100A8/S100A9 expression levels on a per
cell level.

Discussion

Differential disease states between distinct congenic
mouse strains harboring identical mutations and main-
tained in a common environment provides a powerful
means for identifying secondary genetic factors that have
influence disease phenotypes. Here we report that the
lungs of 20-day old congenic C57BL/6] CF mice, that
progress to overt inflammatory disease, maintained in a
sterile environment have elevated numbers of neutrophils
and a corresponding increased level of both SI00A8 and
S100A9, which is not detected in other CF-affected tissues
(ileum and liver). In contrast, the lungs of 20-day old con-
genic BALB/cJ CF mice, which do not develop any obvious
inflammatory phenotype, housed with the congenic

http://respiratory-research.com/content/7/1/51

C57BL/6] CF animals, had no increase in S100A8 levels,
although resident airway neutrophil numbers and
S100A9 levels were similarly elevated.

S100A8 (calgranulin A, MRP8) and S100A9 (calgranulin
B, MRP14) are small cytoplasmic proteins (members of
the S100 family of the EF hand calcium-binding proteins
[56]) that are expressed principally, constitutively and
coordinately by circulating neutrophils and monocytes
but not normally in tissue macrophages or lymphocytes
[57]. The two proteins make up roughly 30% of the
cytosolic protein in these cells [58] and support distinct
functions (both as monomers and homodimers), as well
as forming calprotectin (S100A8/S100A9 heterodimer) in
the presence of Ca2+, with potentially different func-
tion(s). Although an understanding of the complete
role(s) of each of ST00A8, S100A9 and calprotectin is cur-
rently lacking [57,59] diverse functions that could impact
on CF lung disease have been attributed to them, includ-
ing calcium sensing [60], cell differentiation, arachidonic
acid metabolism [61,62], as well as leukocyte and mono-
cyte endothelial microvascular adherence, transmigration
and retention [63-69]. Moreover, calprotectin is impli-
cated in bacteriostasis (reviewed in [44-46,51,70]), possi-
bly by sequestering Zn2+ [71-78] as well as inhibiting the
adhesion of bacteria to mucosal epithelial cells [79].
S100A8's important role in regulating inflammatory proc-
esses is clearly indicated in S100A8-null mice, where loss
of immunoprotection from invading maternal cells
results in embryonic death shortly after implantation
[80].

During chronic inflammatory conditions, including that
underlying CF lung disease, S100A8 and S100A9 are coor-
dinately upregulated and secreted into the extracellular
milieu [57,81], and their products elevated in the serum
of patients [82-87], (reviewed in [50]). Likewise, coordi-
nate regulation of SI00A8 and S100AY is also observed in
neutrophils where absence of S100A9 leads to a coordi-
nate loss of SI00A8 expression [60,88]. However, the con-
cise mechanisms of regulatory controls that underlay
S100A8 and S100A9 expression are unclear, although
they are known to be complex and involve proinflamma-
tory mediators including lipopolysaccharides [89], TNF,
IFN-y and IL-1 [90,91].

The results of the present study are important to further
understand the basis and pathogenesis of the inflamma-
tory lung phenotype of CF mice, its distinction among dif-
ferent congenic strains and possibly having implications
to understanding airway disease of CF patients. Several
important points can be drawn from these results. First,
these results provide further support for the increasingly
prevalent notion of spontaneous inflammation of the CF
airways. This conclusion is supported by: 1) the early inci-
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dence of elevations in SI00A8 and S100A9 expression
along with resident neutrophil influx, 2) the fact that the
mice were maintained in sterile environments without
detectable lung pathogens, and 3) elevated S100A8 levels
were detected in the B6-CF lungs but not Bc-CF airways
maintained in identical environments.

Second, since S100A8 and S100A9 act as potent leukocyte
chemokines and their elevation at 20-days of age are the
earliest reported signs of a lung inflammatory phenotype
in CF mice, this elevation may be directly responsible for
eliciting the massive neutrophil influx observed in 4-5
week old B6-CF lungs [26,27,42].

Third, these results implicate S100A8 alone or both
S100A8/S100A9 (calprotectin), but not S100A9 alone, as
having a possible role in progression of the inflammatory
lung phenotype in CF mice.

Finally, since both the B6-CF and Bc-CF mice were main-
tained in identical environments, the differential levels of
S100A8 expression between the two strains is likely influ-
enced by secondary genetic factors acting on neutrophils
(either intrinsically or through the pulmonary interstitial
milieu) to either suppress or upregulate its expression in
the Bc or B6 strain, respectively, rather than the effect of
differential environmental exposures or infection status.
However, since the elevated levels of S100A8 in the B6-CF
lungs agrees with the corresponding increased population
of neutrophils and no expression was detected in induci-
ble cells (endothelial and macrophage), it is more likely
that its expression is being suppressed in the Bc strain as
opposed to B6-CF, which maintains expression in resi-
dent neutrophils. Since S100A8 is normally expressed in
circulating but not interstitial neutrophils [58], a possible
explanation for the differential S100A8 levels is that B6-
CF neutrophils do not properly recognize or transition to
the resident milieu of the CF lung, or their mechanism of
suppression may be compromised; thereby, B6-CF neu-
trophils fail to properly down-regulate SI00A8 expression
once they leave circulation and enter the lung intersti-
tium, which may constitute a basic defect of the neu-
trophils or lung in the absence of CFIR function. In this
regard, further studies of differences between the B6-CF
and Bc-CF lungs in terms of signaling pathways and the
mechanisms underlying the neutrophil phenotype transi-
tion from circulatory to interstitial, as well as the effect of
differential lung milieus on this transition will be required
to ascertain the mechanistic basis of this defect.

The results of this study extend on two previous reports of
S100A8 overexpression in the lungs of distinct CF mouse
lines [31,38]. In the first study by Thomas et al. [31], a
constitutive 4-fold overexpression of ST00A8 was detected
in the lungs of CF mice homozygous for the G551D muta-

http://respiratory-research.com/content/7/1/51

tion (in which a spontaneous lung inflammatory pheno-
type has not been reported) compared to controls.
Although expression of S100A9 was not investigated, the
results suggested that CF pathology relates to abnormal
regulation of the immune system. Importantly, however,
this report documented significant variations in basal
expression of S100A8 between individual G551D CF
lungs, and since these mice were of a mixed 129/Sv x CD1
strain the differences was attributed to genetic variations.
It is thus possible that the same genetic factor(s) confer-
ring marked differences in S100A8 expression between
congenic C57BL/6 and BALB/c CF lungs correspond to
those of the former study, and that the consistent overex-
pression inherent to the congenic lines (as opposed to the
variability of the mixed background) are necessary for the
clear and consistent detection of a lung inflammatory
phenotype. In the study by Xu et al. [38], a series of micro-
array analyses were performed to identify differential gene
responses to the loss of CFIR in the lungs of FVB/N X
C57BL/6 mixed background mice. Of the multiple genes
identified as having significantly up- or down-regulated
expression in the CF lungs, both S100A8 and S100A9
were found to be roughly 2-fold elevated. However, the
specific cells conferring the overexpression and its possi-
ble effect on a lung inflammatory phenotype were not
investigated. Moreover, since these studies were similarly
performed on mixed background mice that would likely
also have marked variability in S100A8 and/or S100A9
levels, the potential effect of the overexpression on the
lung phenotype could not be readily assessed, in contrast
to the strictly controlled aspects of the present investiga-
tion.

The results presented here justify additional studies to
clarify the role of SI00A8 overexpression on the patho-
genesis and/or progression of the CF lung inflammatory
disease, and, in particular, the possible effect of ST00A8
inhibition.

Conclusion

Taken together, these results derived from genetically-
defined CF mice maintained in strict controlled environ-
ments provide further support for an early and spontane-
ous induction of inflammation in lungs devoid of the
cystic fibrosis transmembrane conductance regulator, and
suggest that S100A8 may play a prominent role. Moreo-
ver, since similar elevations of S100A8/S100A9 are
detected in CF patients, these results also provide justifica-
tion for the application of congenic C57BL/6J CF mice as
a potential model to gain insight into the pathogenesis of
lung disease of CF patients and potential therapeutic ave-
nues.
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