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Abstract

Background: Human bronchial smooth muscle cells (HBSMC) may regulate airway inflammation
by secreting cytokines, chemokines and growth factors. The neurotrophins, including nerve growth
factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), have been
shown to be elevated during airway inflammation and evoke airway hyperresponsiveness. We
studied if HBSMC may be a source of NGF, BDNF and NT-3, and if so, how inflammatory cytokines
may influence their production.

Methods: Basal and cytokine (IL-13, IFN-y, IL-4)-stimulated neurotrophin expression in HBSMC
cultured in vitro was quantified. The mRNA expression was quantified by real-time RT-PCR and the
protein secretion into the cell culture medium by ELISA.

Results: We observed a constitutive NGF, BDNF and NT-3 expression. IL-13 stimulated a
transient increase of NGF, while the increase of BDNF had a later onset and was more sustained.
COX-inhibitors (indomethacin and NS-398) markedly decreased IL-Ip-stimulated secretion of
BDNF, but not IL- I B-stimulated NGF secretion. IFN-y increased NGF expression, down-regulated
BDNF expression and synergistically enhanced IL- I 3-stimulated NGF expression. In contrast, IL-4
had no effect on basal NGF and BDNF expression, but decreased IL-If-stimulated NGF
expression. NT-3 was not altered by the tested cytokines.

Conclusion: Taken together, our data indicate that, in addition to the contractile capacity,
HBSMC can express NGF, BDNF and NT-3. The expression of these neurotrophins may be
differently regulated by inflammatory cytokines, suggesting a dynamic interplay that might have a
potential role in airway inflammation.

Background hyperresponsive to non-specific stimuli, which synergises
Allergic asthma is characterised by an inflammatory air-  with the inflammatory response to aggravate disease [2].
way obstruction induced by specific allergen [1]. In addi-  While the pathogenesis of allergen-induced inflammatory

tion, structural cells of the allergic airways are often  airway obstruction is relatively well understood [1], we
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know much less about the regulation of airway hyperre-
sponsiveness. According to current models, it involves
proliferation and phenotypic changes of structural cells
(e.g. smooth muscle cells, fibroblasts) and nerve cells in
the airways, which contribute to enhanced airway resist-
ance [2,3].

Neurotrophins, such as nerve growth factor (NGF), brain-
derived neurotrophic factor (BDNF) and neurotrophin-3
(NT-3) were initially discovered as factors that regulate
development, differentiation and survival of neurones
(for review see [4]). However, neurotrophins have
recently been implicated also in inflammatory responses.
For example, NGF enhances survival, activation and medi-
ator release from multiple cell types of the immune sys-
tem, such as mast cells, lymphocytes and eosinophils (for
review see [5,6]). In agreement with a pathogenic role in
allergic asthma, elevated levels of NGF, BDNF and NT-3
have been detected in blood and locally in the airways in
patients with asthma [7-10], a response that can be further
augmented after allergen challenge [9,11]. In animal
models, NGF and BDNF may contribute to the develop-
ment of bronchial hyperresponsivness (BHR) [12-14]. A
direct action on neurones may be one part of this response
since NGF increases the number of neurones and the neu-
ropeptide content in the airways [15,16]. However, NGF
has also been suggested to participate in tissue remodel-
ling processes and fibrosis in the airways [17,18], suggest-
ing important roles for neurotrophins in many
pathogenic processes that characterise pulmonary inflam-
mation and allergic disease.

Different members of the neurotrophin family often show
distinct functional effects, a phenomenon that has been
mostly studied in the nervous system [19-21], but has also
been observed in epithelial cells [22]. NGF and BDNF
may also play distinct roles in airway inflammation. For
example, antibody blockage of NGF affected early inflam-
matory responses in murine asthma while neutralisation
of BDNF reduced only chronic airway obstruction and
BHR but not inflammation [23,24]. In addition, BDNF
has been shown to enhance pollen-specific IgE produc-
tion while NGF and NT-3 were without effect [25]. It is
unknown whether similar functional differences between
the neurotrophins are operating in human airway inflam-
mation.

The source and regulation of neurotrophin expression in
the airways is not fully understood. A local NGF produc-
tion by structural cells, including airway smooth muscle
cells, epithelial cells, fibroblasts and infiltrating inflam-
matory cells has been suggested in vivo and in vitro
[10,11,26-28]. Compared to NGF, less is known about the
cellular sources of BDNF and NT-3 in human airways, but
the presence of BDNF and NT-3 in human bronchial
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smooth muscle (HBSMC) and epithelium has been
implied using immunohistochemistry on bronchial biop-
sies from non-asthmatic subjects [28]. In the present
study, we used primary HBSMC to study the expression
patterns of three members of the neurotrophin family,
NGF, BDNF and NT-3, after stimulation with inflamma-
tory cytokines.

Our data show that HBSMC constitutively expressed all
neurotrophins analysed. NGF and BDNF, but not NT-3,
were induced by IL-1p, but with markedly different kinet-
ics. While NGF was induced more rapidly and peaked at 6
hours after the start of stimulation, BDNF was maximally
induced only after 24 hours. A recent study has identified
a critical role for cyclooxygenase (COX) for BDNF produc-
tion [29]. This led us to explore the possibility that an
intermediary mediator, such as a COX-2-derived media-
tor, would be involved in the IL-1B-dependent BDNF
secretion. Interestingly, the induction of BDNF was
shown to involve a COX-2-dependent pathway. Further-
more, the addition of Th1 and Th2 cytokines affected syn-
thesis of NGF but affected BDNF marginally. Our data
suggest that HBSMC display a differential and complex
transcriptional regulation of three different members of
the neurotrophin family, which may provide a framework
for differential functional effects of neurotrophins in air-
way inflammation and asthma, controlled by HBSMC
and regulated by inflammatory cytokines.

Methods

Culture of human bronchial smooth muscle cells (HBSMC)
HBSMC in primary culture from a healthy donor (Promo-
cell, Heidelberg, Germany) were grown in monolayer in
DMEM (Sigma-Aldrich, St Louis, MO, USA) supple-
mented with 10% FBS (Invitrogen, Rockville, MD, USA),
100 U/mL penicillin, 100 pg/mL streptomycin, 2 pg/mL
amphotericin B (Fungizone®, all Sigma-Aldrich) and 0.12
IU/mL insulin (Lilly, St Cloud, France) in 25 cm? flasks
(Becton Dickinson Falcon, Franklin Lakes, NJ, USA). Cells
at passage 9 were used in all experiments. Cells were pos-
itive for smooth muscle specific a-actin and in light
microscopy the cells displayed the reported characteristics
of viable smooth muscle cells in culture [30].

Experimental procedure

At 80% confluence cells (corresponding to 800 000 cells/
25 cm? flask) were growth arrested for 24 h in a low-FBS
(0.3%) insulin-free DMEM. Time-dependent pattern of
neurotrophin expression was studied with and without
cytokines, IL-1B 10 U/mL (Boehringer Ingelheim, Man-
nheim, Germany), IL-4 and IFN-y 10 ng/mL (both R&D
Systems, Oxon, United Kingdom), for 0.5, 1, 2.5, 6, 24
and 48 h in fresh low-FBS medium. Dose-dependent
effects of IL-1B, IL-4 and IFN-y were studied by stimulating
cells in fresh low-FBS medium for 6, 24 and 48 h with or
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Table I: PCR primers and TaqMan probes
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NGF Forward
Reverse
Probe
Length of product (bp)
Forward
Reverse
Probe
Length of product (bp)
Forward
Reverse
Probe
Length of product (bp)

BDNF

NT-3

5" ACATTA ACA ACA GTG TAT TCAAAC AGTACT TT
5" CGG CACCCG CTG TCA

5 ACC AAG TGC CGG GAC CCA AAT CC

79

5" AGT GCC GAA CTACCCAGT CGTA

5 TAT GAA TCG CCA GCC AAT TCT

5" TGC GGG CCC TTA CCATGG ATAGC

74

5"t GAT AAA CAC TGG AAC TCT CAG TGC AA

5" GCC AGC CCA CGA GTT TAT TGT

5': CAA ACC TAC GTC CGA GCA CTG ACT TCA GA
84

without increasing cytokine concentrations; IL-13 0.1-30
U/mL, [L-4 and IFN-y 0.1-30 ng/mL. The effects of COX-
inhibition on IL-1B-dependent neurotrophin secretion
were studied by using the unselective COX-inhibitor
indomethacin (10 pM) and the COX-2 inhibitor NS-398
(10 uM). The chosen dose of indomethacin and NS-398
has been shown to effectively inhibit IL-1B-stimulated
COX activity [31]. The inhibitors were added 1 h prior to
the addition of IL-1f (10 U/mL), and NGF and BDNF
were measured in the cell culture supernatants following
48 h of IL-1p stimulation.

In preliminary studies IL-1p gave a maximal increase in
NGF mRNA-expression at 6 h, whereas IFN-y gave a signif-
icant increase at 48 h. Therefore, to evaluate effects of IFN-
vy on IL-1B-stimulated NGF mRNA-expression, HBSMC
were treated with IFN-y (0.1-30 ng/mL) for 42 h, where
after IL-1pB (10 U/mL) was added and the stimulation con-
tinued for an additional 6 h. The effects of IFN-y on IL-1p-
stimulated BDNF and NT-3 mRNA expression were stud-
ied at both 6 and 48 h of stimulation with a combination
of IL-1B (10 U/ml) and IFN-y (0.1-30 ng/ml). The effects
of IL-4 (0.1-30 ng/mL) on IL-1B (10 U/mL)-stimulated
NGF mRNA-expression were studied following 6 h of
combined stimulation. The effects of IL-4 (0.1-30 ng/mL)
on IL-1B (10 U/mL)-stimulated BDNF and NT-3 mRNA-
expression were studied following both 6 and 48 h of
combined stimulation.

After stimulation cell supernatants were collected, centri-
fuged (+4°C, 400 x g, 10 min) and stored at -70°C until
analysis. Cells were collected in 1 mL RLT lysis buffer
(Qiagen Inc, Valencia, CA, USA) and kept at -70°C until
analysis.

Extraction of total RNA and cDNA synthesis

Total RNA was extracted from the RLT lysis buffer using
the RNeasy extraction kit and genomic DNA was removed
by DNAse I (all products from Qiagen Inc), according to

the manufacturer's protocol. RNA was reverse transcribed
in a 20 pl final volume using 10 pl of total RNA, 20 mM
random primers, 200 uM of each deoxyribonucleoside tri-
phosphate (dANTP), 40 units RNAsin (all products from
Pharmacia Biotech, Uppsala, Sweden) and 200 units
SUPERSCRIPT™ II RNase H- Reverse Transcriptase (Invit-
rogen), according to the protocol and with the buffers
supplied by the manufacturer. To enable detection of
eventual genomic DNA contamination, non-reversed
transcribed total RNA was diluted 1:1 with water whereaf-
ter it was analysed the same way as cDNA.

Quantification of neurotrophin cDNA by real-time PCR

The basal and IL-1B-, IL-4- and IFN-y-stimulated NGF,
BDNF and NT-3 mRNA expression was quantified follow-
ing 0.5, 1, 2.5, 6, 24 and 48 h of cell culture using the ABI
Prism 7700 Sequence Detection System (Applied Biosys-
tems, Foster City, CA, USA) utilising the 5' nuclease
method (TagMan) with a two-step polymerase chain reac-
tion (PCR) protocol (95°C for 10 min, followed by 40
cycles of 95°C for 15 sec and 60°C for 1 min). The PCR
reaction was set up in a volume of 25 pl, with 2 ul cDNA
diluted 1/5 and a final concentration of 1x Buffer A, 5 mM
MgCl,, 0.05 U/ul AmpliTaq Gold (all from Applied Bio-
systems), 200 nM dNTP-mix (Pharmacia Biotech), 300
nM of each primer and 200 nM probe. All primers and
probes were purchased from Applied Biosystems, includ-
ing primers and probe for the housekeeping gene 18S
rRNA, which sequences were commercially available. The
neurotrophin primer and probe sequences were designed
using the PRIMER EXPRESS Software (Applied Biosys-
tems) according to the manufacturer's guidelines and the
target primers and probes were for technical reasons
placed within a single exon. None-reversed transcribed
RNA was analysed in the same way as cDNA as a negative
control. Primer and probe sequences are shown in Table
1. The probes were synthesised with the fluorescent
reporter dye FAM (6-carboxy-fluorescein) attached to the
5'-end and a quencher dye TAMRA (6-carboxy-tetrame-
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Constitutive expression of neurotrophins by non-treated HBSMC evaluated by RT-PCR and ELISA. (A) Expression of NGF,
BDNF, NT-3 mRNA and 18S rRNA. Reversed transcribed (RT+) and non-reversed transcribed (RT-) mRNA or rRNA are dis-
played. (B) NGF (white bars) and BDNF (black bars) protein secretion determined by ELISA. Data presented as mean + SEM of
3—4 independent experiments performed in duplicate. In (B) ***: p < 0.001 for NGF, and #: p < 0.05 and ##: p < 0.0l for

BDNF, versus 2.5 h

thyl-thodamine) to the 3'-end. Relative quantification of
the cDNA levels were performed using the 'Relative Stand-
ard Curve method’, described in detail in User Bullentin
#2 (Perklin Elmer Applied Biosystems, 1997), with ampli-
fication of neurotrophins and the housekeeping gene 18S
in separate tubes. Briefly, standard curves for each neuro-
trophin and 18S were created using five serial dilutions
(1:1, 1:2, 1:10, 1:20 and 1:100) of cDNA from the human
foetal fibroblast cell line HFL-1 (American Type Culture
Collection, Rockville, MD, USA). By plotting the values
for the threshold cycle (C; = the first cycle in which the
amount of amplicon exceeds the threshold) against the
different dilutions a standard curve was obtained. All sam-
ples were run in duplicates and the mean values were used
in further analysis. The relative amount of neurotrophin
mRNA in each sample was then calculated as the ratio
between the neurotrophin mRNA and the housekeeping
gene 18S rRNA before samples were compared.

Detection of neurotrophin expression by conventional
PCR

Constitutive mRNA expression of neurotrophins by
HBSMC was analysed following 0.5, 1, 2.5, 6, 24 and 48
h of cell culture by conventional PCR on a GeneAmp PCR
System 9600 (Applied Biosystems). PCR was performed
in a total volume of 20 pl using 2 pl of 1/5 diluted cDNA
and a final concentration of 200 nM dNTP-mix (Pharma-
cia Biotech), 300 nM of each primer (Tabel 1), 1 x Taq-
Gold-buffer 1I, 1.9 mM MgCl, and 0.05 U/ul AmpliTaq

Gold (all Applied Biosystems). The thermal cycling condi-
tions were: 94°C for 12 min, followed by 30 cycles for 18S
and 40 cycles for the neurotrophins of 94°C for 30 sec,
60°C for 30 sec and 72°C for 1 min, before ending with
72°C for 9 min. The products were analysed on a 1.5%
agarose (Invitrogen) gel complemented with 0.025%o0
ethidium bromide (Pharmacia Biotech), where a 1 kb
DNA-ladder (Invitrogen) was run in parallel to the sam-
ples. The gels were pictured using a Kodak Digital Science
1D™ analysing system (Kodak Scientific Imaging Systems,
New Haven, CT, USA).

Quantification of neurotrophin protein by enzyme-linked
immunosorbent assay (ELISA)

To quantify the NGF, BDNF and NT-3 protein levels in cell
culture supernatants, commercially available ELISA kits
were used, according to the manufacturer's instructions
(Promega, Madison, WI, USA). All measurements were
performed in duplicate. Constitutive protein secretion
was analysed following 2.5, 6, 24, and 48 h of cell culture
for NGF and BDNF, and 2.5, 6, 24, 48 and 72 h of cell cul-
ture for NT-3. IL-1B stimulated protein expression was
analysed at 2.5, 6, 24 and 48 h for all three neurotrophins.
Protein expression following IL-1f stimulation and COX-
inhibition was analysed following 48 h of stimulation.
Prior to analysis of NT-3 the supernatant was concen-
trated using the Amicon Ultra-15 Centrifugal Filter Units
(Millipore, Carrigtwohill, Ireland), with a molecular
weight cut off of 5,000 Da, according to the protocol
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Figure 2

Time-course effects of IL-13 (10 U/mL) on NGF and BDNF mRNA and protein expression in HBSMC evaluated with real-time
RT-PCR and ELISA, respectively. (A) NGF mRNA; (B) NGF protein; (C) BDNF mRNA and (D) BDNF protein. The IL- 13-
dependent effects on neurotrophin mMRNA expression and secreted protein are expressed as change in neurotrophin mRNA
(%) and protein release (pg/mL) from baseline level of time-related control. Unstimulated control is set to 0 (% or pg/mL,
respectively). Data are presented as mean + SEM of 4-10 independent experiments performed in duplicate. In (A) and (C): **:
p < 0.01 versus 0.5 h, ***: p < 0.001 versus 0.5 h. In (B) and (D): ***: p < 0.001 versus 2.5 h.

obtained from the manufacturer. The detection range for
NGF and BDNF was 2.0-250 pg/ml, and for NT-3 2.4-
150 pg/mL.

Statistical analysis

NGF, BDNF and NT-3 mRNA expression was formulated
as the ratio of neurotrophin ¢cDNA to 18S rRNA and
expressed as neurotrophin ¢cDNA/18S rRNA. Effects of
cytokines on neurotrophins mRNA expression and pro-

tein secretion were expressed as change in mRNA (%) and
protein release (pg/mL) from baseline level of time-
related control. Results are presented as mean + SEM of 3—
10 independent experiments performed in duplicate. Raw
data were compared using one-way analysis of variance
(ANOVA) followed by Tukey's post test. Differences were
considered significant at p<0.05. All analyses were per-
formed using GraphPad InStat 3.01 (Graph Pad Software,
San Diego, CA, USA).
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Figure 3

Dose-dependent effects of IL-1[3 on neurotrophin mRNA
expression in HBSMC evaluated by real-time RT-PCR. NGF
mRNA expression evaluated at 6 h (solid squares); BDNF
mRNA expression evaluated at 48 h (open triangle); NT-3
mRNA evaluated at 48 h (closed triangles). The IL-1§-
dependent effects on neurotrophin mRNA expression are
expressed as change in neurotrophin mRNA (%) from base-
line level of time-related control. Unstimulated control is set
to 0 %. Data are expressed as mean + SEM of 3 independent
experiments performed in duplicate. *: p < 0.05 for NGF and
#: p < 0.05 for BDNF versus unstimulated control.

Results

Neurotrophin mRNA and protein expression in HBSMC
In order to study the expression of NGF, BDNF and NT-3
by unstimulated cultured HBSMC, we analysed cellular
mRNA as well as secreted protein in the culture superna-
tants, at six different time points (0.5, 1, 2.5, 6, 24 and 48
h) after the start of the cultures. HBSMC constitutively
expressed all three neurotrophins at the mRNA level. In
Figure 1A a representative expression is pictured following
2.5 h of incubation. Furthermore, NGF and BDNF pro-
teins accumulated in the culture supernatants over time.
Hence, NGF and BDNF reached detectable levels follow-
ing 2.5 h of cell culture and increased further over the next
48 h (Figure 1B). In contrast to NGF and BDNF, NT-3 pro-
tein was made in very low amounts, reaching detectable
levels (3.1 + 0.7 pg/mL) only after 72 h of culture (not
shown).

Effects of IL-1/ on neurotrophin mRNA and protein
expression

We next investigated the ability of the proinflammatory
cytokine IL-1B to induce neurotrophin expression in

http://respiratory-research.com/content/7/1/18

HBSMC. At 2.5 h after addition of IL-1p (10 U/mL), NGF
mRNA expression was significantly increased compared
to control cultures. A maximal increase was reached after
6 h of stimulation, after which mRNA levels dropped to
near basal levels (Figure 2A). A corresponding increase in
NGF protein secretion was detected, reaching a maximal
increase after 24-48 h of IL-1p stimulation (Figure 2B).
Interestingly, the induction of BDNF mRNA expression by
IL-1B (10 U/mL) showed a completely different kinetics.
At 6 h, no increase was seen and only at 24 h after stimu-
lation (which was our next observation point) we
observed a significant upregulation of BDNF mRNA (Fig-
ure 2C). A corresponding elevation of BDNF protein
secretion was evident at 24 h, a secretion that was further
enhanced at 48 h (Figure 2D). The increases in NGF and
BDNF mRNA expression by IL-1B- were both dose-
dependent (0.1-30 U/mL) (Figure 3). NT-3 mRNA
expression was unaltered at any tested dose of IL-1 as
evaluated at 2.5, 6, 24 h (not shown) and 48 h (Figure 3).

Effects of COX-inhibitors on IL-1 f-stimulated NGF and
BDNF protein secretion

We hypothesised that the slower induction kinetics of
BDNF compared to NGF after IL-1f stimulation reflected
an involvement of COX in the induction of BDNF but not
of NGEF. To test this, we evaluated the effects of the COX-
inhibitors indomethacin and NS-398 (both 10 uM) on
the secretion of these two neurotrophins. BDNF secretion
after [L-1B (10 U/mL) stimulation was significantly inhib-
ited by both indomethacin and NS-398 (Figure 4). None
of the COX inhibitors altered basal NGF or BDNF secre-
tion (not shown) and they were inefficient in preventing
IL-1B-stimulated NGF secretion (Figure 4). These data
suggest that the production of BDNF, but not of NGF, in
HBSMC involves COX-2 and the synthesis of prostaglan-
dins.

Effects of IFN-y and IL-4 on neurotrophin mRNA
expression

Allergic asthma is characterised by a disturbed balance
between Th1 and Th2 cytokines towards Th2 dominance
[1]. To test the hypothesis that Th1 and Th2 cytokines dis-
played different effects on neurotrophin gene expression
by HBSMC, we treated HBSMC with either IFN-y or IL-4
and measured the relative mRNA content of NGF and
BDNF at various time points after addition of the
cytokine. IFN-y enhanced NGF mRNA expression in a
time- (Figure 5A) and dose (0.1-30 ng/mL, not shown)-
dependent manner, displaying a maximally enhanced
NGF mRNA level at 48 h after the start of stimulation (Fig-
ure 5A). In contrast to NGF, BDNF mRNA expression was
not induced. If anything, we observed a small decrease in
relative BDNF mRNA content during the first 6 h of [FN-y
stimulation, after which it returned to baseline levels at 48
h after the start of the culture (Figure 5B). NT-3 expression
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Effects of the COX-inhibitors indomethacin and NS-398 (both 10 uM) on IL-1B (10 U/mL)-stimulated NGF (A) and BDNF (B)
secretion by HBSMC, evaluated by ELISA. Data are presented as mean + SEM of 6 independent experiments. **: p < 0.001 ver-
sus control, and #: p < 0.05, ##: p < 0.01 versus IL-13 (10 U/mL) alone.

was unaltered in response to IFN-y under the tested con-
ditions (not shown). In contrast to IFN-y, IL-4 (0.1-30 U/
mL) did not have any affect on basal NGF, BDNF or NT-3
expression at any of the tested intervals (0.5, 1, 2.5, 6, 24,
48 h) (not shown).

Effects of different combinations of IL-1£, IFN-y, IL-4 on
neurotrophin mRNA expression

During an inflammatory response in vivo, T cell-derived
cytokines such as IFN-y and IL-4 are likely to act in concert
with proinflammatory cytokines, such as IL-1f3. An inter-
esting question was therefore whether IFN-y or IL-4 would
work in synergy with IL-1P. Since the kinetics of NGF
induction in HBSMC was different between IFN-y (peak at
48 h) and IL-1B (peak at 6 h) we cultured HBSMC with
IFN-y for 42 h and added IL-1p during the last 6 h of cul-
ture to maximise the effect of each cytokine. Under such
culture conditions, we observed a potent and dose-
dependent synergistic behaviour on NGF secretion by
IFN-y (0.1-30 ng/mL) and IL-18 (10 U/mL) (Figure 6A).
We also tested IL-4 (0.1-30 ng/mL) in this protocol. To
our surprise, we noted that IL-4 reduced the stimulatory
effects of IL-1 (10 U/mL) on NGF mRNA expression,
reaching a maximal reduction with an IL-4 dose of 10 ng/
mL as evaluated at 6 h of combined stimulation (Figure

6B), despite the fact that IL-4 did not affect NGF secretion
by itself.

In contrast, the IL-1f (10 U/mL)-stimulated expression of
BDNF mRNA was not altered by IFN-y or IL-4 at any tested
dose (0.1-30 ng/mL) or time (6 and 48 h, data not
shown). In addition, NT-3 mRNA expression was not
altered by combining IL-18 (10 U/mL) with either INF-y
or IL-4 at any tested dose (0.1-30 ng/mL) or time (6 and
48 h, data not shown).

Discussion

IL-1B is a pro-inflammatory cytokine of known impor-
tance in asthma pathogenesis [32]. The effect of IL-1$ on
NGF expression by structural cells in the airways, includ-
ing HBSMC, has already been studied in some detail [27].
However, our study is the first to use HBSMC to systemat-
ically investigate how IL-1B-induced expression of NGF
relates to IL-1B-induced expression of BDNF and NT-3,
two other members of the neurotrophin family. This is an
important question to address since these three neuro-
trophins have been shown to display different functional
activities, including in asthmatic disease [19-22,24,25].
We found several differences in the regulation of these
three neurotrophins. First, mRNA synthesis of NGF and
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BDNF, but not of NT-3, was stimulated in a dose-depend-
ent fashion by IL-1B. Since nonstimulated HBSMC
expressed mRNA from NT-3, the lack of induction of NT-
3 cannot be explained by lack of basal gene transcription.
Rather, differences in critical IL-1p response elements in
the NT-3 gene may be crucial. Alternatively, NT-3 expres-
sion may require a different set of intermediate factors
compared to NGF and BDNF that may be lacking in our
HBSMC. It is interesting to note that NT-3 expression, but
not NGF or BDNF expression, is transcriptionally down-
regulated in chronic obstructive pulmonary disease, sug-
gesting that cells from the airways may be poor at
producing NT-3 compared to other neurotrophins [33].

A second difference we observed was that the two neuro-
trophins that were induced by IL-1p (NGF and BDNF)
showed markedly different kinetics of induction. While
NGF mRNA induction was transient and high already at 6
h after addition of IL-1B, BDNF showed a more sustained
expression pattern with a slower onset and a maximal
induction after 24 h. With regard to the kinetics of NGF
induction, our data is in line with that of Freund and co-
workers, who similarly demonstrated a rapid and tran-
sient increase of NGF by IL-1f in airway smooth muscle
cells, although Freund and co-workers reported a maximal
upregulation at 2.5 h of IL-1p stimulation [27]. It may be
speculated that the difference in time-course effects by IL-
1B on NGF expression is dependent on the origin of the
smooth muscle cells. Hence, the question of whether cells
from different locations in the bronchial tree have differ-
ent synthetic properties needs further investigation. In
both our, and in the study by Freund and co-workers, NGF

protein induction was detected with a significant delay.
The dramatic differences in mRNA and protein induction
between NGF and BDNF shown in our study demonstrate
remarkable heterogeneity in the regulation of neuro-
trophin expression in HBSMC. One possible explanation
for this difference could be the involvement of additional
intermediary mediators in BDNF induction. Our finding
that secretion of BDNF, but not NGF, was inhibited by the
unselective COX inhibitor indomethacin and the COX-2
inhibitor NS-398 imply the prostaglandins as such inter-
mediary mediators. A regulatory role of COX-2 in BDNF
secretion adds to recent data showing that prostaglandins
can stimulate the expression of BDNF in mouse astrocytes
[34] and that COX inhibitors are able to counteract
BDNF-mediated effects of spatial learning in a mouse in
vivo model [29]. Interestingly, Toyomoto and co-workers
found that also NGF expression was stimulated by pros-
taglandins [34]. More work is needed to investigate
whether our observation of a differential role of COX
inhibitors on NGF and BDNF secretion in HBSMC will
also be observed in vivo.

We also found that the lymphocyte-derived cytokines
IFN-y and IL-4 affected neurotrophin expression differ-
ently. For example, the Th1 cytokine IFN-y induced NGF
expression but not BDNF expression, and IFN-y syner-
gised with IL-1B to enhance NGF gene transcription,
implying an important role for [FN-y in the airway inflam-
mation. In addition, we found IL-4, a typical Th2
cytokine, to downregulate IL-1B stimulated NGF expres-
sion. In relation to the asthma, these results are surprising,
but may reflect a more complex involvement of Th1/Th2
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cytokines in the asthmatic airway inflammation, as also
suggested from recent studies in humans [35,36] as well
as from animal models of asthma [37]. More work is
needed to clarify the role and pathogenic importance of
Th1/Th2 cytokines and neurotrophin release in asthma
pathogenesis.

Proliferation and survival of mast cells, eosinophils and
lymphocytes in the airways may be of importance in
establishment and maintenance of a chronic inflamma-
tion. In asthmatic subjects, NGF, BDNF, NT-3 and NT-4
significantly enhanced airway eosinophil survival [38].
Mast cells located in human asthmatic bronchus have
been demonstrated to express the neurotrophin receptor
TrkA [11] and NGF may enhance mast cell proliferation
and survival [6]. Since mast cells have been shown to be
in close contact with smooth muscle cells in the asthmatic
bronchus [39], smooth muscle cell-derived NGF has the
potential to influence airway mast cells. B and T lym-
phocytes, including CD4+ T cells, express the neuro-
trophin receptors TrkA and TrkB, and NGF has been
shown to enhance proliferation of B and T cells and sur-
vival of B cells [6]. Thus, there is evidence for a broad reg-
ulatory role for neurotrophins in the airways. In addition
to cells of the immune system, neurones may also be tar-
gets for the neurotrophins in the airways. Hence, NGF has
been shown to increase the number of neurones and the
neuropeptide content in the airways [15,16], and both

NGF and BDNF may evoke airway hyperreactivity in the
airways [12-14]. In this respect, it is interesting to note
that while both NGF and BDNF have been shown to
evoke airway hyperreactivity in animal studies [12-14],
they may have distinct roles in allergen-dependent airway
obstruction [24]. Hence, NGF may play a role in the early
airway response (EAR) in asthma, since anti-NGF attenu-
ated the early allergen-induced bronchoconstriction
[13,40,41], and NGF causes histamine release from mast
cells [42] and basophils [43]. Anti-NGF-treated mice also
reduced the eosinophil recruitment to the airways and
decreased IL-4 and IL-5 production [40], and IL-1f-
induced airway hyperactivity in isolated human bronchus
[44]. BDNF, on the other hand, seems not to influence the
EAR but rather to abrogate chronic airway obstruction
[23]. Thus, NGF and BDNF may influence different phases
of the allergic response. Interestingly, there are also indi-
cations of a differential in vivo production of the neuro-
trophins in allergic airway inflammation. Hence,
following allergen challenge, NGF levels in bronchoalve-
olar lavage were increased fourfold at 18-24 h, whereas
the increase in BDNF peaked after 1 week [24]. An inter-
esting possibility is that that the differential functional
effects and secretion observed between NGF and BDNF in
vivo might somehow reflect a differential release patterns,
such as the one described in our study.
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In the present study, HBSMC were obtained from a
healthy donor. An important next step will be to obtain
airway smooth muscle cells from asthmatic donors, and
ask whether such cells are similar to HBSMC from normal
individuals or in some way biased towards production of
a different set of neurotrophins [45]. Also, an important
next step will be to test whether inflammatory and
asthma-associated mediators might have different effects
on asthmatic as compared to non-asthmatic bronchial
smooth muscle [45,46].

Conclusion

In conclusion, this study shows that HBSMC are a source
of NGF, BDNF and NT-3 in the airways, that IL-13, IFN-y
and IL-4 may alter this production differently, and that
the IL-1B-dependent BDNF, but not IL-1B-dependent
NGF, secretion is COX-2-dependent. Taken together, we
propose a paracrine interaction between smooth muscle
cells, neurones, inflammatory cells and structural cells in
the vicinity, in which neurotrophins derived from bron-
chial smooth muscle may promote airway hyperreactivity,
inflammation and tissue remodelling.
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