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Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease caused by the
interaction of genetic susceptibility and environmental influences. There is increasing evidence that
genes link to disease pathogenesis and heterogeneity by causing variation in protease anti-protease
systems, defence against oxidative stress and inflammation. The main methods of genomic research
for complex disease traits are described, together with the genes implicated in COPD thus far,
their roles in disease causation and the future for this area of investigation.

Background
Chronic obstructive pulmonary disease (COPD) is charac-
terised by airflow limitation that is not fully reversible,
which usually progresses, together with an abnormal
inflammatory response to noxious particles or gases [1].
Patients may have chronic bronchitis [2], emphysema[3],
small airways disease or a combination of these, with or
without systemic manifestations of the disease [4]. This
results in great variety within the patient population. It is
not yet clear what the significance of each disease compo-
nent is in terms of cause, or effect on management,
though research into genetics and pathogenesis is starting
to clarify this.

Although cigarette smoking is the main environmental
risk factor for developing COPD, only about 15% of
smokers develop clinically significant disease [5], suggest-
ing that there are other influences on disease expression.
Previous studies estimated that smoking contributes 15%
to the variability of lung function[6], whilst genetic factors
account for a further 40%[7]. Family based studies sup-
port this: they have shown ancestral aggregation of spiro-
metric measures in groups unselected for respiratory

disease [8,9], and higher rates of airflow obstruction in
first-degree relatives of patients with COPD[10]. Moreo-
ver, the observation of differences in rate of decline of
lung function between smokers[11] suggests an interac-
tion between genetic and environmental influences.

A genotype-environment interaction is defined by a non-
additive contribution of gene and environment to the
clinical phenotype[12]. Thus the two influences together
confer a different level of risk than that expected by simply
adding them. In a complex disease such as COPD there
are likely to be many genes contributing to the overall
phenotype, which may have additive or synergistic effects;
these are known as epistatic interactions. When interpret-
ing the results of genetic studies in complex diseases it is
important to take such effects into account, lest a disease
causing locus be missed. There are a variety of statistical
methods that can allow for, detect or control for the pres-
ence of epistasis [13,14].

There are three main themes within the pathogenesis of
COPD. The protease-anti-protease theory suggests that
there is an imbalance between proteases that digest elas-
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tin, together with other components of the extra-cellular
matrix, and anti-proteases that protect against this[15,16].
The origin of this theory was the observation that patients
with α1-antitrypsin (an anti-protease) deficiency (AATD)
develop early onset emphysema [17] implicating a role
for its target enzymes (neutrophil elastase and proteinase
3), which can induce many of the features of COPD in
animal models[18]. Subsequent work has suggested other
important proteases, such as the matrix metalloprotein-
ases (MMP's) [16], cathepsin B and collagenases [19] may
also play a role, perhaps as part of a protease/anti-protease
cascade.

The oxidant-antioxidant theory states that disparity
between levels of harmful oxidants and protective antioxi-
dants leads to oxidative stress, which in turn influences
the actions of anti-proteases, and expression of proinflam-
matory mediators[20]. Both of these theories link to the

third observation: the importance of inflammation in the
pathogenesis of COPD[21]. These concepts are illustrated
in Figure 1.

Polymorphisms in genes relating to proteases, antioxi-
dants and inflammation have been found that relate to
the presence of features of COPD, suggesting reasons for
the heterogeneity of the observed clinical phenotype. This
review will describe some of the methods that have iden-
tified candidate genes and summarise the evidence for a
genetic basis to  COPD (see Table 2).

How to identify candidate genes
Candidate genes may be suggested by pathogenesis, or
vice versa. Variation, or polymorphism, within the gene
can be classified in different ways[22], such as the struc-
tural nature of the change in the DNA, or its effect on the
protein it codes for. Two common structural changes are

The pathogenesis of COPDFigure 1
The pathogenesis of COPD. Cigarette smoke activates macrophages (1), leading to the direct release of proteases or neu-
trophil chemotracctants (2), together with the release of oxidants resulting in subsequent breakdown of connective tissue in 
the lung (3), causing emphysema. Epithelial cell stimulation promotes fibroblast activity (4), eventually leading to small airways 
disease (5).
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microsatellites – multiple repeats of a short segment of
DNA, and single nucleotide polymorphisms (SNP's) – a
change of a single base. The latter are the most common
type of polymorphism in the human genome[23]. Such
changes may occur in coding regions of DNA (those that
contribute to the making of a protein) or non-coding
regions. If a change occurs in a coding region it can be
described as non-synonymous or synonymous, depend-
ing on whether it affects the amino acid sequence of the
gene product or not. Generally speaking non-synony-
mous changes in coding regions are more likely to alter
the function of a protein[24], and hence to be related to
disease. International projects, such as the SNP consor-
tium[25], which catalogues common SNP's in the human
genome, and HapMap[26,27], which has genotyped
SNP's in 4 major ethnic groups, have contributed to the
many databases available on genetic variation. Research-
ers can use such resources to identify potential disease
causing polymorphisms, and their likely population fre-
quencies, allowing the design of case-control association
studies, looking for the polymorphism in those with and
without the disease. This is a widely used approach,
though often producing inconsistent results [28]; this may
be because of variation in the definition of cases and con-
trols, underpowered studies, racial differences and popu-
lation heterogeneity. The issue of power is particularly
important when examining a complex disease such as
COPD, as each gene may contribute only a small amount
to the clinical phenotype: if this results in a genotype rel-
ative risk of developing the trait of less than 2, then ade-
quate power may not be achievable[29].

Linkage studies look for haplotypes, or short segments of
the genome, conserved between generations by virtue of
their size [30] – anything larger has the potential to be
changed by recombination during meiosis. If a haplotype
can be found that is passed down through a family, along-
side a disease, then it suggests that there is a gene within
or close to it that may have a functional effect on the dis-
ease. Haplotype analyses can also be useful in association
studies, though difficult to perform[31]. This is because
they allow for the possibility that a combination of SNP's
within a gene may be causing the trait in question, rather
than one of the SNP's alone[32].

Linkage is usually reported as a logarithm of the odds
(LOD) score[33], which is a form of likelihood ratio
derived from the recombination fraction between the
marker and the proposed locus of the disease-causing
gene. The threshold level of LOD score needed for
genome-wide significance at 5% (p = 0.05) varies depend-
ent on the study design, from 3.3 for family studies, using
a proposed mode of inheritance (parametric linkage anal-
ysis) to 3.6 in sibling pair (non-parametric, no model of
inheritance) studies [34]. Linkage analyses need to be fol-

lowed by case-control association analyses for any genes
in the area of interest that have a plausible link to disease
– established because of potential in pathogenesis, or dif-
ferential expression in the target tissue [35].

Areas of interest from linkage studies
The major linkage study in COPD is the Boston early-
onset COPD cohort [36-39], which performed genom-
ewide linkage analysis in 585 members of families with
early onset COPD, looking for linkage to pulmonary func-
tion test results. Areas of linkage were found for FEV1/FVC
on chromosome 2, chromosome 1 and chromosome 17.
The area on chromosome 2 was subsequently investigated
by the same group, identifying SERPINE2 as a potential
candidate gene. This area also contains the gene for the
IL8 receptor, which might contribute to COPD since IL8
is involved in neutrophil chemotaxis to the lung [40](a
critical process in delivery of destructive proteases). FEV1
linked to chromosomes 12 and 19 [38] in areas contain-
ing the genes for microsomal GST1 and TGFβ respectively.
Mid expiratory flow, which is reduced in small airway dis-
ease in COPD, linked to chromosomes 2 and 12, together
with a broader area on chromosome 19 [39].

Proteases and anti-proteases
There are three classes of protease that have been studied
in COPD – the serine proteases, which includes neu-
trophil elastase (NE)and proteinase 3, the cysteine pro-
teases, such as cathepsin-B, and the matrix
metalloproteases (MMP's) [41]. In general the serine pro-
teases are capable of degrading elastin and some forms of
collagen [41], whilst the MMP's have more of an effect on
collagen, gelatin and laminin [16]. Each enzyme is inhib-
ited by one or more anti-proteases, may inactivate other
anti-proteases, or activate pro-inflammatory cytokines,
such as TNFα, by interacting with proteinase activated
receptors (PARs) [42]. The proteases function to clear
debris and damaged tissue, but if their action is not effec-
tively controlled they may produce excessive lung dam-
age. The relationships between these enzymes, their
inhibitors and some inflammatory mediators are shown
in Table 1.

AATD
AAT is an antiprotease that irreversibly inhibits NE, cathe-
psin G and proteinase 3. The AAT-NE complex also binds
to receptors on neutrophils, thus stimulating further neu-
trophil migration, and amplifying inflammation. Its main
function is to protect the connective tissue from NE
released by activated neutrophils. There are four main var-
iants of AAT, traditionally classified by their speed of
movement during gel electrophoresis (F = fast, M =
medium, S = slow, Z = very slow) [43], which are inherited
in a co-dominant fashion. The PiM allele is the wild-type,
and is the most prevalent. The PiZ allele is a more com-
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mon deficiency variant in Northern Europeans, whilst the
PiS deficiency variant is more common in South-West
Europe [44]. AATD is classified by genotype and by the
plasma AAT level. The PiZ variant is associated with signif-
icant AAT deficiency, lung and liver disease, though there
is considerable disparity in clinical phenotype, which has
been reviewed elsewhere [45].

The gene for AAT is on chromosome 14, and is highly ple-
omorphic. In addition to the common variants described
here, there are over 100 SNP's catalogued in public data-
bases [46]. Combinations of such SNP's, which give rise to
six new haplotypes, have been associated with a higher
risk of developing COPD in subjects without AATD [47].
However, even in patients with the same AAT genotype
the phenotypes differ, suggesting that there may be other
genetic modifiers present. One way to prove that modifier
genes affect a complex disease is to show that traits related
to the disease aggregate in families. In AATD the evidence
so far is limited. Silverman et al showed some clustering
of spirometric parameters in 82 families with PiZ or MZ
genotypes, though this did not reach significance when
adjusted for smoking status [48].

Case-control genetic studies have not been carried out as
frequently in AATD as in usual COPD. One research paper
examined polymorphisms in the gene coding for
endothelial nitric oxide synthase (NOS) 3, and found a
significant correlation between a SNP and severity of lung
disease, defined by FEV1 [49]. NOS3 generates nitric
oxide and citrulline from the amino acid arginine, as do
the other isoforms of NOS [50]. The roles of nitric oxide
(NO) in the lung include regulation of vascular tone and
inhibition of inflammatory events, such as leukocyte

adhesion; this has been reviewed extensively elsewhere
[50]. It might therefore be expected that variation in the
pathways that generate NO would have an impact on lung
disease. In COPD, whether related to AATD or not, this
could conceivably be due to alterations in the inhibition
of inflammation. However the authors were unable to
show any functional variation in NOS3 with this SNP,
and concluded that it must lie in linkage disequilibrium
with the gene that caused the association. Other family
and case-control studies are underway and may begin to
clarify reasons for phenotypic heterogeneity in AATD.

MMP's
The actions of MMP's include degradation of collagen,
inactivation of AAT and activation of TNFα. Their action
is reduced by tissue inhibitors of metalloproteinases
(TIMP's). Studies using knockout mouse models have
supported a role for MMP's in COPD. Mice over-express-
ing MMP1 develop emphysema [51], whilst those defi-
cient in MMP12 are relatively protected [52]. Further
support comes from clinical studies showing increased
concentrations of MMP's in the bronchoalveolar lavage
fluid of COPD patients [53].

The most widely studied MMP gene polymorphism is in
the MMP9 gene, located on chromosome 20. A SNP in the
promoter region (C→T, position -1562), which increases
its activity has been described [54], and linked to COPD
in both Chinese [55] and Japanese populations [56]. The
Chinese cases were defined by airflow obstruction,
according to the GOLD criteria, whilst the Japanese cases
were defined by the degree of emphysema on CT scan.
This latter group found that airflow obstruction did not
correlate with presence of the T allele, though gas transfer

Table 1: Protease-antiprotease interactions

Proteinase Class Activity Active antiproteases

Neutrophil elastase Serine Degrades elastin, collagen type IV & laminin AAT
Inactivates TIMP SERPINA3
Activates MMP9 SLPI

Cathepsin G Serine Degrades elastin, collagen I, II, IV & laminin SERPINA3
Activates MMP9 SLPI

Proteinase 3 Serine Degrades elastin & collagen IV AAT
Activates TNFα

Cathepsin B Cysteine Degrades elastin Cystatin C
Inactivates secretory leukocyte proteinase inhibitor (SLPI)

MMP1 MMP Degrades collagens I-IV, VII, VIII, X, XI TIMP1-4
Inactivates AAT
Activates TNFα

MMP9 MMP Degrades collagen IV, V, X, XIV & elastin TIMP1-4
Inactivates AAT
Activates TNFα & TGFβ

MMP12 MMP Degrades collagen I, IV, elastin & fibrillin TIMP1-4
Inactivates AAT
Activates TNFα
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corrected for alveolar volume (KCO) did. A later study has
narrowed the emphysema phenotype linked to this poly-
morphism to upper zone predominant disease [57].

SNP's in MMP1 and MMP12 have also been studied in
COPD. An insertion in the promoter region of MMP1
(G→GG, position -1607) that increases its transcription
[58] by creating an extra transcription factor binding site
has been described. This SNP occurs in 30% of the general
population [58] and was negatively associated with rapid
decline of lung function (defined by FEV1) in one case-
control study[59]. This does not, however, have an expla-
nation from its function. It would be expected that the GG
variant would be positively associated if the higher level of
MMP1 transcription lead to more lung damage. A role for
polymorphisms of MMP12 was investigated by the same
group, but an association with declining lung function
was not seen [59]. A haplotype containing the MMP1
G→GG SNP, together with an MMP12 SNP that results in
a change in protein composition (Asn357Ser), was found
more commonly in the rapid declining group[59]. The
authors suggested that this may be because the gene actu-
ally responsible for rapid decline lies in linkage disequi-
librium with these two SNP's.

TIMP2
There are four TIMP's (TIMP1-4) that inhibit active forms
of MMP. Although all TIMP's are capable of inhibiting any
MMP their affinity for each MMP varies and TIMP2 has
been shown to have a greater affinity for MMP2 and
MMP9[60]. The contribution of various MMP's, TIMP1
and TIMP2 to emphysema have been investigated, and a
key role for the MMP2-TIMP2 system proposed [61]. Two
SNP's in TIMP2 are more common in Japanese subjects
with COPD. One in the promoter region (that may cause
reduced TIMP2 levels) and a second synonymous change
in exon 3 [62]. This result has not yet been reproduced in
other ethnic groups, and the functional consequences of
each SNP remain theoretical, rather than proven. This
should be an area for future research.

α-1 antichymotrypsin
α-1 antichymotrypsin (SERPINA3) inhibits cathepsin G
and mast cell chymase in a reversible fashion. Two SNPs
in SERPINA3, associated with low SERPINA3 levels, have
been associated with COPD in Swedish subjects [63,64],
though their cases were defined by a measure of airway
resistance, rather than standard spirometric parameters.
The positive results for these SNP's were not reproduced
in Japan in patients with airflow obstruction and low
FEV1 [65,66], though a non-synonymous mutation affect-
ing the signal peptide region was found more commonly
in the COPD group. All 3 of these mutations were exam-
ined in an Italian study of patients with airflow obstruc-
tion and were not found to be associated with disease,

though their cases included subjects with bronchiectasis
as well as COPD [66]. The variation in results between the
studies could be explained by the different diagnostic cri-
teria used by each group; it may be that the mutations are
linked to airway resistance, but not to airflow obstruction,
perhaps emphasising the heterogeneity of COPD.

Antioxidants
Oxidative stress results from an imbalance between exog-
enous, harmful, oxidants and endogenous, protective,
antioxidants[20]. This process, illustrated in Figure 2, can
damage components of the lung matrix (such as elastin),
injure the airway epithelium and enhance inflammation
in the lung via up-regulation of genes for pro-inflamma-
tory cytokines[20]. Cigarette smoke is a major source of
oxidants (mainly free radicals and nitric oxide). Oxygen
radicals are also released by inflammatory leukocytes,
which are known to accumulate in the lungs of smok-
ers[67], thus exacerbating the process of oxidative dam-
age. Antioxidant enzymes present in the airway include
glutathione-S-transferase, superoxide dismutase and cata-
lase[68], amongst others. Gene polymorphisms affecting
the function of such proteins might alter the amount of
oxidative stress and so have been examined for their link
to COPD.

Glutathione-S-transferases
The glutathione-S- transferase (GST) genes code for a fam-
ily of enzymes that detoxify some of the harmful contents
of tobacco smoke [69]. Polymorphisms in the genes are
known to have functional consequences, and have been
examined in COPD [70-72]. The two variants with the
most evidence supporting a role in the disease are GSTP1
and GSTM1.

GSTP1 contains two known SNP's, though only one is
known to have an effect on the catalytic activity of the
enzyme. This is an A→G change at nucleotide +313,
resulting in a single amino acid substitution (Ile105Val)
[73] shown to increase the metabolism of carcinogenic
aromatic epoxides [74]. Studies of the relationship of this
variant to lung disease have varied in their results. It
would be expected that the 105Ile variant would be asso-
ciated with higher levels of lung damage, since it is less
active against oxidants – this was confirmed by an associ-
ation with airflow obstruction in a Japanese population
[71]and replicated in a Caucasian population in the Lung
Health Study (LHS), where this polymorphism together
with a family history of COPD was linked to rapid decline
of FEV1 (OR = 2.20, p = 0.01)[70]. Conversely the same
group showed that the 105Val variant was associated with
low baseline lung function (OR = 1.69, p = 0.016) and
rapid decline in the higher baseline group (p = 0.017)
[72], whilst Gilliland [75]demonstrated reduced annual
growth rates for FEV1 and FVC in children homozygous
Page 5 of 14
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for the 105Val variant. The latter results are difficult to
explain on the basis of this gene's action alone, but might
be understandable if there are gene-smoking or gene-gene
interactions affecting the expression of the gene product.
No gene-smoking affects were seen in the LHS [72], but
there may be an additive effect of polymorphisms in
GSTP1 and other GST genes[70], suggesting that a conse-
quence might not be seen unless a change in several gene
products were present.

GSTM1 has 3 known alleles, one of which is a null allele,
such that homozygotes for the null allele have no detect-
able GSTM1 activity. This genotype has been associated
with emphysema [76] and chronic bronchitis [77], with
conflicting results concerning its role in lung cancer
[76,78]. In common with most other genetic studies in

COPD the positive results have been difficult to replicate
[28], though this may be because studies looked at differ-
ent subgroups of patients with COPD. The negative stud-
ies defined their cases by airflow obstruction [79] and
rapid decline in FEV1 [70], hence might not have picked
up a change in gene prevalence in chronic bronchitics.
This difference in case definition remains a common
theme in COPD genetics studies.

Superoxide dismutase
There are three superoxide genes, coding for scavengers of
reactive oxygen species (ROS) [68]. Extracellular superox-
ide dismutase (SOD3) is present at high concentrations in
areas of the lung containing large amounts of type 1 col-
lagen, especially around large airways and also adjacent to
alveoli [80]. It is thought to have a role in protecting the

Oxidative stress and its effectsFigure 2
Oxidative stress and its effects. Oxidants contained within cigarette smoke irritate epithelial cells (1), releasing activating 
cytokines that prompt the recruitment of neutrophils and the release of cell derived oxidants (2) and proteases (3). Antioxi-
dants inhibit oxidant mediated damage to the lung (4), but when an imbalance arises (perhaps because of gene polymorphisms) 
oxidative stress results (5). The consequences of oxidative stress include activation of macrophages (6), leading to the produc-
tion of more proteases, mucus hypersecretion, epithelial cell apoptosis, inflammation and inhibition of the action of antipro-
teases.
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lung, particularly during inflammation [81,82]. A SNP
(C→G substitution at +760) of SOD3 that increases
plasma enzyme levels has been examined in 2 studies
relating to COPD [68,83], and found to have a protective
effect. A case-control study was carried out in New Zea-
land, where the mutation was found more frequently in
resistant smokers than in those with COPD(OR = 4.3, p <
0.05) [68]. The second study was part of the Copenhagen
City Heart Study, which examined 9258 individuals in
both cross-sectional and prospective study designs [83].
This demonstrated a reduced risk of developing COPD in
smokers (OR = 0.4) and a reduced risk of hospital admis-
sion or death due to COPD (hazard ratio = 0.3) in those
carrying the mutation. Since this effect was not seen in
non-smokers, whose odds ratio of developing COPD
when they carried the mutation was 1.5, it suggests a gene-
smoking interaction, though this could not be statistically
proven.

Microsomal epoxide hydrolase
Microsomal epoxide hydrolase (EPHX1) is expressed in
bronchial epithelial cells and metabolises highly reactive
epoxide intermediates in cigarette smoke [84,85]. There
are 2 known SNP's in this gene that affect enzyme activity
by a single amino acid substitution. The first SNP is in
exon 3 (Tyr113His), the second in exon 4 results in a fur-
ther change in protein constitution (His139Arg). In both
cases the His variant is associated with lower levels of
enzyme activity [86,87]. Both polymorphisms only
account for a modest change in activity level [87], so it
may be that there is also variation in the gene's regulatory
regions [88].

Patients carrying both His variants were at the highest risk
of developing COPD (OR = 4.1, p < 0.001) and emphy-
sema (OR = 5, p < 0.001) in a Scottish population[89].
This result was replicated in those with more advanced
COPD in Japan (OR = 2.9, p = 0.02)[90] despite the dif-
fering frequency of genotypes between the two racial
groups. The LHS demonstrated a relationship with rapid
decline in lung function (FEV1) for the same haplotype,
though this was only statistically significant for those with
a family history of COPD [91]. The His139 variant alone
was associated with a spirometric diagnosis of COPD in
the Boston early-onset COPD cohort [28].

The contribution of this gene to the heterogeneity of
COPD has been examined in more detail in the National
Emphysema Treatment Trial (NETT) Genetics Ancillary
Study [92]. The authors studied a number of polymor-
phisms and looked for correlation between genotype and
functional capacity phenotypes in two separate patient
groups, hypothesising that there is a genetic basis to the
observed phenotypes. The exon 3 SNP (Tyr113His) was
associated with poor exercise capacity, whilst the exon 4

SNP (His139Arg) was connected to relatively greater gas
transfer (DLCO). This study was powered to detect a mod-
erate effect of each genotype on overall phenotype, so
taken with the previous positive studies it seems likely
that these polymorphisms contribute to the COPD phe-
notype. Their link to specific subgroups of COPD patients
will need further study.

Heme oxygenase-1
Heme oxygenase-1 (HMOX1) is an enzyme important in
heme metabolism, which catalyses the oxidative cleavage
of heme, resulting in the release of carbon monoxide, bil-
verdin and iron [93]. Bilverdin is then broken down into
bilirubin, which scavenges local ROS; thus HMOX1 con-
tributes to the generation of antioxidants. It is present at
higher concentrations in the lungs of smokers than non-
smokers, suggesting up-regulation in these circumstances
[94], presumably because of a response to increased ROS.

A microsatellite (GT)n repeat in the 5' region of HMOX1
has been described that seems to alter the level of tran-
scription when under thermal stress [95]. When the mic-
rosatellite is longer, it is not induced as effectively by ROS
[96]. This suggests that in the presence of a long GT repeat
(for instance n ≥ 30) smokers would not be able to protect
their lungs from the damage induced by ROS in smoke,
and thus would be more susceptible to emphysema. Two
clinical studies have shown a link between this HMOX1
polymorphism and COPD. A Japanese case-control study
showed that patients with 30 or more GT repeats in the
microsatellite region were more likely to have emphy-
sema, diagnosed by CT scan[96]. A larger study in France
showed that 33 or more GT repeats was associated with
airflow obstruction and more rapid decline of lung func-
tion, particularly in smokers [97]. They were able to show
a significant gene-smoking interaction (p = 0.0006 for
FEV1/FVC decline). This effect on decline was not, how-
ever, reproduced in the LHS [70].

Inflammation and inflammatory mediators
It is generally accepted that COPD is associated with an
abnormal inflammatory response [1]. This extends
beyond the lung to systemic manifestations [98]. Many
different mediators have been implicated in pathogenesis
[99] and their roles are summarised in Figure 3.

TNFα
TNFα mediated inflammation is thought to play a key role
in both the respiratory [100] and systemic features of
COPD [98]. A SNP in the promoter region of the TNFα
gene (G→A at position -308) directly affects gene regula-
tion, and is associated with high TNFα production [101].
This polymorphism has been studied in several COPD
related phenotypes, with differing results. An initial case-
control study in Taiwan examined subjects with chronic
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bronchitis, hypothesising that this was linked to increased
airway inflammation [102]. They found an increased
prevalence of the polymorphism in cases relative to con-
trols (p < 0.01, OR = 11.1). It has also been linked to air-
flow obstruction without chronic bronchitis, and severity
of emphysema in Japanese subjects [103,104]. Studies in
Caucasians have not been able to reproduce these results
[28,91] which might be explained by variation in geno-
type frequencies between races (data available from Hap-
Map[27]), or by linkage dysequilibirum with HLA alleles,
seen previously in the Caucasian population [105].

TGFβ
TGFβ1 regulates extra-cellular matrix production, cell
growth and differentiation, tissue repair and some
immune responses [106]. Mice who are unable to activate
latent TGFβ develop emphysema via alterations of
MMP12, suggesting that disordered activation relates to
the pathogenesis of COPD [107]. A linkage analysis in the
Boston early-onset COPD study showed association
between an area of chromosome 19 containing the TGFβ1

gene and FEV1[108]. Three SNP's in this gene had a signif-
icant association with severe COPD in the NETT cohort
[108]. This association was replicated for two of the SNP's
by Hersh et al[92], who linked them both to subjective
measures of dyspnoea, though not objective measures of
exercise capacity. This apparent discordance may be
important when defining phenotypes within COPD.

The two SNP's identified by Hersh et al both have an effect
on TGFβ1 levels. The first is a C→T change at position -
509, in the promoter region, which enhances promoter
function, thus increasing levels of TGFβ [109]. The second
is a C→T change at position 613, which leads to an amino
acid substitution (Leu→Pro) and higher production of
TGFβ1 [110]. If both of these polymorphisms are impli-
cated in COPD, it suggests that TGFβ may have a protec-
tive role. A case-control study examining the latter SNP in
COPD subjects, resistant smokers and healthy controls
concurred, finding that the Pro allele was less common in
COPD subjects relative to resistant smokers (OR = 0.59, p
= 0.01) and controls (OR = 0.62, p = 0.005). Further

Inflammatory mediators in COPDFigure 3
Inflammatory mediators in COPD. There are many pro-inflammatory mediators involved in COPD, some of which are 
illustrated here. Cigarette smoke activates macrophages (1) to release TNFα, LTB4, IL8 and other neutrophil chemotactic fac-
tors (2), as well as proteases (3). TNFα promotes further IL8 release from other cells in the respiratory tract by NFκβ medi-
ated effects on gene transcription (4). This increases local neutrophilic inflammation (5), and hence the release of proteases. 
Epithelial cells also stimulate fibroblasts via TGFβ, leading to fibrosis (6). TNF = tumour necrosis factor alpha, LTB4 = leukot-
riene B4, IL8 = interleukin 8, GRO = growth related oncogene, TGF = transforming growth factor, NF = nuclear factor
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research on the role of TGFβ in COPD may help to clarify
if this association has credibility in relevant pathogenic
processes.

Vitamin D binding protein
Vitamin D binding protein, also known as Gc globulin, is
a precursor of macrophage activating factor (MAF) [111]
and enhances the neutrophil chemotactic properties of C5
derived peptides [112]. The latter function is prevented by
neutrophil elastase inhibitors [113], suggesting a relation-
ship between the protease-antiprotease pathway and
inflammation. This would fit well with a role for vitamin
D binding protein in the pathogenesis of COPD.

A number of studies have looked for links between poly-
morphisms in this gene (GC) and COPD. Two non-syn-
onymous SNP's have been identified, which represent the
GC2 and GC1S alleles. The GC2 allele has been found to
be protective in studies of Caucasian subjects [114,115],
consistent with the fact that only 10% of this form can be
converted to MAF [116]. No role has been proven for this
allele in neutrophil chemotaxis [114]. The GC1S allele has
not been shown to have a significant association with
COPD [28]. In Japanese subjects the GC1F allele has been
linked to an increased risk of developing airflow obstruc-
tion, emphysema and a rapid decline of FEV1 [117,118].
Caucasian patients homozygous for this allele were at
increased risk of developing COPD in one study [115] but
not in another [114]. Neither could the link to rapid
decline be reproduced in this racial group [91]. The differ-
ence in allele frequency between racial groups may
explain why studies in Caucasians (who have a lower fre-
quency of the 1F allele) have been unable to detect an
association, as they would have required greater patient
numbers to be adequately powered. An alternative expla-
nation is that there is racial variation in gene associations
with COPD.

IL13
Studies in transgenic mice have shown that if IL13 is over
expressed, it results in cathepsin and matrix metallopro-
teinase dependent emphysema with mucus metaplasia
[119]. A polymorphism in the promoter region (C→T,
position -1055) is associated with increased IL13 produc-
tion [120], with the T genotype being more common in
COPD patients [121]. In mice IL13 induced emphysema
is characterised by excessive pulmonary mucus produc-
tion, so further studies looking for the prevalence of this
polymorphism in the subgroup of COPD patients with
chronic bronchitis might be worthwhile.

Gene products without an identified role in pathogenesis
Surfactant proteins
The surfactant proteins are hydrophobic proteins that
contribute to regulation of surface tension in the alveoli.

Components of surfactant also have a role in host defence
and control of inflammation. Alterations of surfactant
might therefore be a factor in COPD, as suggested by
mathematical models of emphysema [122] although this
has yet to be studied in vivo. A SNP in the gene coding for
surfactant protein B (SFTPB), which causes a single amino
acid substitution (Thr131Ile), has been associated with
COPD in the Boston Early-onset COPD cohort [28], and
in a case-control study in Mexico [123]. In the NETT
cohort this was also seen when gene-environment interac-
tion was taken into account, where it was associated with
dyspnoea score and exercise capacity[92]. In the Mexican
study a number of SNP's and microsatellites were exam-
ined, with mutations in SFTPB (or microsatellite markers
linked to it) being the most closely associated with COPD.

SERPINE2
The SERPINE2 gene was identified as having a potential
role in COPD by a novel method. Firstly linkage of airflow
obstruction to an area on chromosome 2 in the Boston
early-onset COPD cohort [37,38], followed by integration
of these results with knowledge of genes expressed during
murine lung development, together with human lung
microarray datasets from control subjects and those with
severe COPD [35]. Multiple SNP's in this gene were exam-
ined in patients from the NETT cohort, with several being
significantly associated [35]. A subsequent large case-con-
trol study did not, however, find any association with
COPD in European patients [124] and questioned the
validity of some of the results reported in the original
study.

SERPINE2 has not been studied in COPD. It is known to
be an inhibitor of trypsin-like serine proteases, but not
neutrophil elastase [125], which might have indicated a
role in the protease-antiprotease pathways. Its major func-
tion is in coagulation and fibrinolysis [126]. Although
enhanced prothrombotic markers have been linked to
decline of FEV1 in one small study in COPD [127] this has
not been widely investigated.

The future
There are several areas in which methodology of genetic
studies is advancing. Animal model genetics may help in
clarifying some aspects of pathogenesis. One study has
been performed which showed differences in inflamma-
tory cell and cytokine profiles between murine strains
after exposure to smoke[128]. If this type of study were
followed by quantitative trait locus analysis it may help to
identify candidate genes for further study in humans.
Genome-wide association analysis may now be per-
formed looking for up to 500000 SNP's at any one time to
identify regions in linkage disequilibrium (LD) with fea-
tures of COPD. This approach does, however, have limita-
tions. Firstly, the SNP's should be as independent as
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possible from one another, to avoid the complication of
LD between them. If this is not the case statistical correc-
tions for multiple testing will not be valid, as the variables
would be related. This means that haplotype tagged SNP's
should be used, but even with these, the number needed
to identify all common variants across the genome is
uncertain with estimates ranging from 180000 to 600000
[129]. Secondly, statistical adjustments will be needed to
account for multiple testing. Software to help with analy-
sis of large genetic datasets is available from industry[130]
and academia[131] and is necessary to handle the huge
amounts of data that a genome-wide study would gener-
ate. Thirdly the potential costs of such studies could be
prohibitive. Finally, the number of areas being investi-
gated will raise the potential for false positive results, so
confirmation of any positive results in multiple independ-
ent populations should be sought.

As more genes are identified we may be able to character-
ise patients with COPD more accurately and target thera-
pies to those subgroups most likely to benefit.
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