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Abstract

Background: Recent reports have shown that there are developmental changes in the ventilatory
response to hypercapnia in the rat. These are characterized by an initial large response to carbon
dioxide immediately after birth followed by a decline with a trough at one week of age, followed
by a return in sensitivity. A second abnormality is seen at postnatal day 5 (P5) rats in that they
cannot maintain the increase in frequency for 5 min of hypercapnia. In mice lacking GAD65 the
release of GABA during sustained synaptic activation is reduced. We hypothesized that this
developmental pattern would be present in the mouse which is also less mature at birth and that
GABA mediates this relative respiratory depression.

Methods: In awake C57BL/6) and GAD65-/- mice the ventilatory response to 5% carbon dioxide
(CO2) was examined at P2, P4, P6, P7, P12.5, P14.5 and P21.5, using body plethysmography.

Results: Minute ventilation (VE) relative to baseline during hypercapnia from P2 through P7 was
generally less than from P12.5 onwards, but there was no trough as in the rat. Breaking VE down
into its two components showed that tidal volume remained elevated for the 5 min of exposure to
5% CO2. At P6, but not at other ages, respiratory frequency declined with time and at 5 min was
less that at 2 and 3 min. GAD65-/- animals at P6 showed a sustained increase in respiratory rate
for the five mins exposure to CO2.

Conclusion: These results show, that in contrast to the rat, mice do not show a decline in minute
ventilatory response to CO?2 at one week of age. Similiar to the rat at P5, mice at P6 are unable to
sustain an increase in CO2 induced respiratory frequency and GADé65 contributes to this fall off.

Introduction minute volume (Vi) induced by 5% CO, declined from
The postnatal period is characterized by relative respira-  ~65% at P2 to ~10% at P8. Thereafter it gradually
tory instability. Three recent reports have shown that in  increased to ~70% at P18.5. These authors also deter-
the rat the ventilatory response to carbon dioxide (CO,) mined the slope of minute ventilation at 1% CO,
declines at P6-P7 compared to earlier and later postnatal ~ increases between 1 and 5% and found a fall from 240 ml/
ages. Stunden et al [1] found that the percent increase in ~ min/kg/% CO, at P1 to 27 ml/min/kg/% CO, at about P8,
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with a subsequent increase to 67 ml/min/kg/% CO, at
P21. The increases in V; were due to an increase in tidal
volume with little change in respiratory frequency. Simi-
larly Serra et al [2] showed that 7% CO, resulted in a 25%
increase in V; in animals studied between P1 and P3. In
these rats at P6-P7, however, hypercapnia failed to
increase Vi. In the same animals V increased ~25% at
P12-P13 and almost 100% at P18-P19. The components
of minute ventilation, tidal volume and frequency were
not seperately reported. Abu-Shaweesh and co-authors [3]
examined rats between P5 and P41-42. In 5% CO, V,
increased ~40% at P5 then rose to a plateau of ~100% at
P22-23. In the younger rats only tidal volume increased
while in those at P22 - P23 both frequency and tidal vol-
ume increased. These authors showed a second altered
response to CO, in the younger animals. At P5 rats dif-
fered from those at other ages in that they were unable to
sustain their respiratory rate increased during a 5 min
exposure. These later authors found that the GABAA
receptor blocker bicuculline prevented the lengthening of
expiratory time (T;) which characterized the decline in
respiratory rate during hypercapnia. The actions of bicuc-
ulline are not confined to GABAA receptors as this agent
also inhibits small-conductance calcium-activated potas-
sium channels [4]. In addition when administered sys-
temically bicuculline induces an increase in respiratory
drive under basal conditions. Thus inspiratory time (TI)
and Ty are shortened [3] and peak phrenic nerve activity is
increased about 3 fold [5]. Therefore it is not clear that the
bicuculline effects are due to blocking the GABA inhibi-
tion which occurs in hypercapnia or to a generalized stim-
ulation of respiratory activity.

GABA is synthesized by two GAD isoforms, GAD65 and
GADG67. Their subcellular localization has suggested that
each may have a distinct function. GADG5 is localized to
axon terminals where it is bound to the synaptic vesicle
membrane. GADG67 is distributed in the cytosol through-
out the cell [6,7]. Electrophysiological studies (see Discus-
sion for details) have shown that mice lacking GADG65
release GABA in a normal fashion under basal conditions.
During sustained stimulation, however, the probability of
release of the inhibitory neurotransmitter is significantly
reduced [8].

The present studies were undertaken to determine if: 1)
mice show a similar decline in CO, sensitivity in the first
postnatal week as is seen in rats; and 2) mice lacking
GADG5 are ale to sustain an increase in respiratory rate
during an acute exposure to elevated CO,.

Materials and methods

Animals

These experiments were performed in accord with The
Guide for the Care and Use of Laboratory Animals (NIH).

http://respiratory-research.com/content/5/1/3

The protocol was approved by the Oregon Health and Sci-
ence University Institutional Animal Care and Use Com-
mittee. GADG5-/- breeding pairs were a kind gift from
Professor Kunihiko Obata, National Institute for Physio-
logical Sciences, Aichi, Japan. These animals are on a
C57BL/6] background [9].

Study design

The body plethysmograph method used to measure respi-
ratory rate, tidal volume, TI and Ty was the same as previ-
ously described [10]. The chamber was warmed to 32.5-
33.5°C for mice between P2 and P15 and to 30.5-31.5°C
for those at P21-P22. At an ambient temperature of 33°C
P6 mice maintain their body temperature [11]. Respira-
tory variables were recorded during a five minute baseline
period in which warmed humidified 100% O, was passed
through a cylinder which fit loosely over the head of the
plethysmograph chamber. This was followed by a five
minute period of 5% CO,/95% O, and then return to
100% O, for five min. Respiratory frequency and tidal vol-
ume were averaged for each minute of the fifteen minute
protocol. IT and T were obtained from thirty to fifty con-
secutive breaths in each minute.

Previous developmental studies of ventilatory response to
CO, in rats, as summarized in figure 10 of Stunden et al
[1], show a decline from P1 reaching a trough at P6.5 to
P8 with clear resumption of significant increases at P14. In
order to evaluate this pattern in mice studies were carried
out at P2, P4, P6, P7, P12.5, P14.5 and P21.5.

Statistical analysis

Results are reported as mean and standard error. Mice
were grouped at P12-P13, P14-P15 and P21-P22 and are
designated as P12.5, P14.5 and P21.5. 13 to 16 mice were
studied at P2, P4, P6, P7 and P13.5 days. 10 animals were
studied at P12.5 and P21.5 days. One way repeated meas-
ures analysis of variance (ANOVA) followed by student-
Newman-Keuls test was used to compare differences
between baseline and each of the five minutes of hyper-
capnia; between the relative increase in minute ventila-
tion in different age groups and between the changes in
respiratory frequency at 2 min and 5 min in different age
groups. Two way repeated measures ANOVA with time of
exposure to CO, and mouse strain as the two factors was
used to compare wild type to GAD65-/- animals. All tests
were performed using Sigma Stat 2.03 Software (SPSS,
Chicago, IL).

Results

Exposure to 5% CO, increased minute ventilation in
C57BL/6] (wild type) mice at all postnatal ages (figure 1).
Minute ventilation increased above baseline by 0.5 min
after the onset of hypercapnia (see for example Fig. 3).
Therefore we chose the value at 2 min to determine the
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Minute ventilation (Vi) at 2 min of exposure to 5% CO, rela-
tive to baseline (baseline = 100%). Values are mean * S.E. V¢
at P2 significantly less than at P12.5 through P21.5 (p < 0.05)

changes in Vj relative to baseline. Vi at 2 min in P2 mice
(124 + 5% of control) was less than that seen at P12.5,
P14.5 and P21.5 (176 + 7%, 181 + 11% and 173 + 7%
respectively; P values of 0.008, 0.001 and 0.024 respec-
tively). The relative increase at P4 (137 + 5%) was less
than that at P14.5 (p = 0.046). The increases in both res-
piratory frequency (Table 1) and tidal volume (Table 2)
were less at P2 than at older postnatal ages. The smaller
relative Vi at P7 (139 + 5%) compared to P6 (155 + 10%)
and was not significant (p = 0.179) (Fig. 1). The value at
P7 was different from those at P12.5 and 14.5 (p = 0.033
an 0.008) and approached significance compared to
P21.5 (p = 0.06). The number of animals in figure 1 is the
same as that shown in Table 1 and gave a power of 0.90
with alpha = 0.050.

In order to determine if the responses to hypercapnia for
frequency and tidal volume were sustained the values at 5
min were compared to those at 2 min (Tables 1 and 2). At
P6 respiratory frequency in the fifth min declined to a
level significantly less than that at 2 or 3 min (Table 1, Fig.
2). At all other developmental stages the increase in respi-
ratory frequency was sustained. The increase in tidal vol-
ume did not decline at any postnatal age (Table 2). The
increase in respiratory frequency from baseline at 2 min
was less at P7 (23 + 5) than at P14.5 (53 £+ 9) and P21.5
(67 £ 6) (p=0.037 and 0.002). The value at P7, however,
was not different from that at P4 (44 + 3) and P6 (49 + 8)
(p=0.122 and 0.124). The power was 0.927 in this anal-
ysis. There were no significant differences between age
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groups in the increases in frequency at 5 min compared to
baseline (p = 0.117).

In order to evaluate the contribution of GABA to the time
dependent fall off in respiratory frequency during hyper-
capnia at P6, mice deficient in GAD65 were studied at this
postnatal age. GAD65-/- animals had baseline respiratory
patterns similar to wild type: frequency (180 + 7 vs. 178 +
10 bpm), tidal volume (15.0 + 1.3 vs. 14.2 + 1.0 pl),
inspiratory time (56 + 2 vs. 64 + 3 msec); and expiratory
time (297 + 14 vs. 280 + 15 msec). Their increase in
minute ventilation at 2 min in 5% CO, (2.7 +0.2t0 4.3 +
0.4 ml/min) was of a similar magnitude as that in wild
type (2.5 £ 0.2 to 3.8 + 0.3 ml/min). In contrast to WT ani-
mals GAD65-/- mice had a sustained increase in frequency
for the duration of the 5 min hypercapnic exposure (Figs.
2 and 3). In both the 4th and 5% min respiratory rate in
GADG5-/- animals exceeded that in WT (Fig. 3). Compar-
ison of respiratory pattern in the 5% min showed that
GADG65-/- mice had a shorter inspiratory time (47 + 2 vs.
59 + 3 msec) than WT (p = 0.024) and a non-significantly
different expiratory time (204 + 7 vs. 238 + 16 msec (p =
0.162).

Discussion

There are two findings from this group of studies: 1)
C57BL/6] mice show a developmental pattern in their
ventilatory response to hypercapnia characterized by a
smaller relative increases in minute volume from P2 to P7
compared to older ages. In contrast to the rat there is no
trough at P6 and P7 compared to earlier ages. 2) At P6 this
strain of mouse is unable to sustain the increase in respi-
ratory frequency in hypercapnia, as seen in the rat at P5 3.
GADG5 contributes to this as mice deficient in this
enzyme do sustain their frequency.

In contrast to studies in rats, CO, sensitivity in mice does
not start from a high value immediately after birth and go
through a trough at one week of age. Stunden et al 1 have
combined data from five series of experiments in their fig-
ure 10. It is shown that in postnatal rats minute volume
increases more that 60% above baseline at P1-P2, then
declines to ~20% at P6.5-P8, and returns to ~80% at
P18.5. For C57BL/6] mice there was no significant decline
in relative Vpat P6 or P7. Relative minute ventilation from
P12.5 onwards was above most values at earlier ages.
Mice, however, do show one of the abnormal responses to
hypercapnia seen in neonatal rats. At P6 there was, as in
the rat [1], a decline in respiratory frequency such that at
5 min rate was less than that at 2 or 3 min. In mice lacking
GADG5 this decline in frequency was not seen. In adult
rats injections of a GABA synthesis inhibitor into the pos-
terior hypothalamus augmented both the respiratory fre-
quency and integrated diaphragmatic EMG activity
responses to 5% CO, [12].
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control 5% CO, 2 min 5% CO, 5 min

1s

Figure 2

Respiratory pattern during exposure to 5% CO, at Pé. Upper traces: respiratory pattern in a WT mouse (inspiration is
upwards) during control and at 2 and 5 min of exposure to CO,. Lower traces: pattern in a GAD65-/- mouse at same times.
The larger variability in breath-to breath amplitude seen in the 5t min in WT was observed in 8 of I3 WT animals at Pé. It was
not seen in GAD65-/- mice.

Table I: Respiratory frequency response to hypercapnia

Postnatal age (days) N Respiratory frequency (bpm)
Baseline 2 min 5 min
P2 16 144 7 163 £ 6 164 +8
P4 15 203+7 247 £ 7 246 £ 11
Pé 13 178 £ 10 227 + 15 202 £ I5*
P7 16 194 £5 217 7 2356
P12.5 10 195+ 10 238+ 10 23215
P14.5 16 19417 246 £ 9 247 + 8
P21.5 10 176 £ 10 242 + || 243+ 10

Values are mean * S.E.; bpm, breaths per min; N, number of animals; * significantly different from value at 2 min, p = 0.023

GABA is synthesized from glutamate by two GAD iso-  that in the brain these two enzymes may serve separate
forms designated by their relative molecular sizes, GAD65  functions. Immunohistochemistry has shown that GAD
and GADG7. The two decarboxylases are encoded by sep- 67 is primarily localized to neuronal cell bodies while

arate genes [13]. A number of observations have suggested = GADG65 has a relatively higher presence in axonal
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Table 2: Tidal volume response to hypercapnia

http://respiratory-research.com/content/5/1/3

Postnatal age (days)

P2
P4
P6
P7

P12.5

P14.5

P21.5

N Tidal volume (ul)
Baseline 2 min
16 104 £ 0.2 11.3+£0.5
15 120 + 0.4 14.0 + 0.6
13 142+ 1.0 16.9 £ 0.9
16 147 £ 0.5 184+ 0.8
10 25025 39.3+32
16 45.0 £ 3.1 642 +58
10 573 +6.2 693 %59

Values are mean * S.E.; N, number of animals
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Figure 3

Respiratory frequency during 5 min exposure to 5% CO,.
Upper panel wild type (WT) mice at P6, lower panel GAD65-
/- animals at Pé. Values are mean * S.E. | = significantly differ-
ent from control, (P between 0.044 and < 0.001). 2 = signifi-
cantly different from value at 2 and at 3 min (p = 0.023 and
0.025) 3 = significantly different from corresponding min. in
GADé65-/- (p = 0.049 at 4 min and 0.017 at 5 min)

terminals [6,7]. This differential cellular localization is
also supported by fractionation experiments which found
that cytosol is relatively enriched in GAD67 while GAD65
is seen more prominently in synaptosomes [13]. GAD67,

however, is not excluded from nerve terminals. Studies
utilizing GADG5-/- mice have shown that GADG7 is
present in nerve terminals [14] where it co-localizes with
the synaptic vesicle marker SV2 [15]. A significant amount
of GAD in the brain exists as inactive apoenzyme, which
is not associated with the necessary cofactor pyridoxal 5-
phosphate [13,16]. GADG67 is present primarily as the
active holoenzyme while GADG65 accounts for the major-
ity of the apoenzyme. It has been suggested that this
GADG5 inducibility may allow stimulated neurons to pro-
duce greater amounts of GABA as needed.

Electrophysiological studies directly demonstrate that
GADG5 plays an important role in GABA release during
neuronal stimulation. The basal frequency of spontane-
ous inhibitory postsynaptic currents (IPSCs) in both reti-
nal ganglionic cells and CA1 hippocampal neurons was
not different in GADG65-/- mice compared to WT [8].
When retinal cells were depolarized from -70 to 0 MV,
however, IPSC frequency increased almost 7 fold in WT
but did not change in cells from GAD65-/- mice. Similarly
a number of indices showed that GABA release was
increased by high frequency stimulation of CA1 neurons
from WT animals but not in slices from GADG65-/-. It was
these observations that prompted the present studies to
determine if the absence of GADG65 prevented the depres-
sive phase of carbon dioxide stimulation in young mice.
To our knowledge GABA content in the brainstem has not
been reported in GAD65-/- mice. In cerebral cortex, stria-
tum, hippocampus and cerebellum no differences in
GABA levels were found between GAD65-/- and WT adult
mice [9,17]. The observation that baseline respiratory fre-
quency and tidal volume are not affected by loss of
GADG5 is consistent with the fact that resting GABA
concentrations are normal in the medullary respiratory
centers of GADG5 deficient mice.

In addition to being an essential component of the
depressed CO, sensitivity at P6-P8, GABA may play a role
in the absence of such depression at earlier postnatal ages.
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In contrast to the hyperpolarizing effect seen in mature
neurons, the GABAA-receptor mediated response is often
depolarizing during early development [18]. GABA's
actions are hyperpolarizing when the chloride
equilibrium potential (E.) is negative to the resting
membrane potential and depolarizing when E, is posi-
tive. Ei in turn is dictated by intracellular chloride con-
centrations. In rat hippocampal pyramidal neurons the
primary chloride extruding transporter, K+/Cl- (KCC2)
mRNA is hardly detectable at PO, appears at P5 and
reaches near adult levels at P9 [19]. The change in mem-
brane potential in response to the GABA agonist, musci-
mol, paralleled this developmental pattern for KCC2. At
P0-P4 the agonist caused depolarization and at P13-P30
hyperpolarization was seen [19]. This maturation pattern
has also been seen in respiratory related neurons. Ritter
and Zhang [20] used the perforated patch approach to
record from pre-Botzinger complex neurons in mice.
From a resting membrane potential of -60 mV muscimol
depolarized these neurons at P2 and caused hyperpolari-
zation at P8. Thus GABA released during hypercapnia in
the early postnatal period may be excitatory to respiratory
neurons and inhibitory at later developmental stages. The
return of CO, sensitivity beyond P8 may be related to a
decline in GAD enzymes. mRNA for both GAD65 and
GADG67 in rat cervical spinal cord decline significantly
between P7 and P14 [21].

Conclusions

The present studies show that as in contrast to the rat,
C57BL/6] mice do not have a fall in ventilatory response
carbon dioxide to at one week of age, rather they increase
their response from P12.5 onwards. In mice at P6 there is
a failure to sustain the increase in respiratory frequency
during a five min exposure to carbon dioxide. This may be
due to the developmental switch in GABAa receptor medi-
ated response from depolarizing to hyperpolarizing at a
time when GAD enzymes are still elevated, as mice defi-
cient in GADG5 did not display a time dependent fall in
respiratory frequency during CO, exposure.

Abbreviations
ANOVA = analysis of variance

CO, = carbon dioxide

GABA = y-aminobutyric acid

GAD = glutamic acid decarboxylase
kDa = kilodalton

P = postnatal

Ty = expiratory time
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TI = inspiratory time

ul = microliter

Vg = minute ventilation
VT = tidal volume

WT = wild type
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