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Abstract

Background: OSA increases atrial fibrillation (AF) risk and is associated with poor AF treatment outcomes. However,
a causal association is not firmly established and the mechanisms involved are poorly understood. The aims of this
work were to determine whether chronic obstructive sleep apnea (OSA) induces an atrial pro-arrhythmogenic
substrate and to explore whether mesenchymal stem cells (MSC) are able to prevent it in a rat model of OSA.

Methods: A custom-made setup was used to mimic recurrent OSA-like airway obstructions in rats. OSA-rats (n = 16)
were subjected to 15-second obstructions, 60 apneas/hour, 6 hours/day during 21 consecutive days. Sham rats
(n = 14) were placed in the setup but no obstructions were applied. In a second series of rats, MSC were
administered to OSA-rats and saline to Sham-rats. Myocardial collagen deposit was evaluated in Picrosirius-red
stained samples. mRNA expression of genes involved in collagen turnover, inflammation and oxidative stress were
quantified by real time PCR. MMP-2 protein levels were quantified by Western Blot.

Results: A 43% greater interstitial collagen fraction was observed in the atria, but not in the ventricles, of OSA-rats
compared to Sham-rats (Sham 8.32 ± 0.46% vs OSA 11.90 ± 0.59%, P < 0.01). Angiotensin-I Converting Enzyme (ACE)
and Interleukin 6 (IL-6) expression were significantly increased in both atria, while Matrix Metalloproteinase-2
(MMP-2) expression was decreased. MSC administration blunted OSA-induced atrial fibrosis (Sham + Saline 8.39 ±
0.56% vs OSA +MSC 9.57 ± 0.31%, P = 0.11), as well as changes in MMP-2 and IL-6 expression. Interleukin 1-β (IL-1β)
plasma concentration correlated to atrial but not ventricular fibrosis. Notably, a 2.5-fold increase in IL-1β plasma
levels was observed in the OSA group, which was prevented in rats receiving MSC.

Conclusions: OSA induces selective atrial fibrosis in a chronic murine model, which can be mediated in part by the
systemic and local inflammation and by decreased collagen-degradation. MSCs transplantation prevents atrial
fibrosis, suggesting that these stem cells could counterbalance inflammation in OSA.
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Figure 1 Experimental obstructive sleep apnea (OSA) setup.
Diagram of the experimental setup to noninvasively apply recurrent
airway obstructions in the rat. See text for explanation.
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Background
Patients with obstructive sleep apnea (OSA) show both a
high prevalence [1] and incidence [2] of atrial fibrillation
(AF). In addition, OSA has been associated with a
greater risk of AF recurrence after cardioversion [3] and
catheter ablation [4,5] and a worse response to antiar-
rhythmic drugs [6]. Despite the clear association bet-
ween OSA and AF, it is not firmly established whether
this association is causal or mediated by other comor-
bidities often present in OSA-patients, such as obesity
or hypertension [7].
Atrial structural remodeling, particularly fibrosis, is a

main component in the substrate predisposing to AF [8].
Atrial fibrosis predicts disease progression and treatment
outcomes [9]. It is known from murine models that ex-
posure to recurrent airway obstructions promotes early
myocardial inflammation leading to myocardial apop-
tosis at mid-term [10]. However, it remains unknown
whether chronic exposure to recurrent apneas can reach
to develop atrial fibrosis, thus explaining the higher
prevalence and incidence of AF observed in OSA pa-
tients. In addition, cell-based therapies emerge as an at-
tractive alternative to classic pharmacological treatments
for the prevention of such remodeling, thereby reducing
AF occurrence and progression. Among the options
available for cell therapy, bone marrow mesenchymal
stem cells (MSC) appear as a promising source of stem
cells because of their multi-lineage potential, anti-
inflammatory effects [11,12], ability to escape detection
by the host immune system, and a relative ease of
expansion in culture [13,14]. Recent studies have shown
that MSCs attenuate cardiac fibrosis in a variety of ex-
perimental settings [15-17]. Although the knowledge on
the therapeutic role of MSC in OSA models is very
limited [18], there is evidence that stem cells possess
anti-inflammatory properties that mitigate the early in-
flammatory response [11].
The aim of our study was 1) to describe OSA-induced

atrial remodeling in a chronic murine model, 2) to
analyze the putative mechanisms involved and 3) to in-
vestigate whether MSC have the potential to prevent
such remodeling in the same OSA model.

Methods
Experimental sleep apnea model
This study conformed to European Community (Directive
86/609/EEC) and Spanish guidelines for the use of experi-
mental animals and was approved by the Animal Research
Ethics Committee of the University of Barcelona.
A chronic model of OSA previously validated by our

group was used [19]. The model was designed to apply
recurrent airway obstructions with an OSA pattern.
Briefly, it was based on a custom-made setup consisting
of 2 chambers (to fit the body and head) separated by a
latex neck collar (Figure 1). The head chamber had a
conical shape and was built small enough to contain the
minimum possible air volume when the rat was in place.
The rat breathed room air through an orifice at the ver-
tex of the conical head chamber. A valve was placed at
the entrance of the head chamber, allowing for the clo-
sure of the orifice. The valve was electronically con-
trolled to produce intermittent obstructions mimicking
those that characterize OSA, resulting in increased
breathing efforts, oxygen desaturations and intermittent
hypercapnia. To ensure the development of obstructive
apneas, the head chamber was connected to air flow,
pressure and CO2 transducers; pulse oximetry was mea-
sured at the rat tail. These parameters were continuously
monitored by an experimented researcher who certified
effective apneas (i.e., no air flow, pressure swings, in-
creased CO2 and decreased pulse oximetry).
The first part of the study was carried out in 30 Sprague–

Dawley male rats (250–300 g and 8 weeks old at the be-
ginning of the experiment) randomized into 2 groups:
OSA and Sham. OSA-rats (n = 16) were subjected to 15-
second obstructions at a rate of 60 per hour, 6 hours per
day during 21 consecutive days. Sham-rats (n = 14) were
placed in the setup during the same period of time
(21 days, 6 hours per day), but no obstructions were ap-
plied. Rats in both groups were progressively adapted to
the experimental setting by increasing the time within the
OSA/Sham device at a rate of 1 hour each day, up to 6 h
at the end of the first week. Rats were housed in a con-
trolled environment (12/12-hour light/dark cycle) and fed
rodent chow and tap water ad libitum.

Mesenchymal stem cells infusion
To evaluate the effect of MSC in OSA-induced structural
remodeling, 8 rats undergoing the previously described
OSA protocol were infused with MSC (OSA+MSC
group). Seven Sham rats receiving saline vehicle (Sham +
S group) were used as controls in this experiment.
MSC were obtained by culturing well-characterized

Lewis rat marrow stromal cells kindly provided by the



Table 1 TaqMan one-gene expression assays

Gene Abbreviation TaqMan
reference

Angiotensin-I Converting Enzyme ACE1 Rn00561094_m1

Transforming Growth Factor-β1 TGF-β1 Rn00572010_m1

Lysyl Oxidase LOX Rn01491829_m1

Matrix Metallopeptidase-2 MMP-2 Rn01538170_m1

Matrix Metallopeptidase-3 MMP-3 Rn00591740_m1

Matrix Metallopeptidase-9 MMP-9 Rn00579162_m1

Matrix Metallopeptidase-10 MMP-10 Rn00591678_m1

Tissue Inhibitor of Metallopeptidase-1 TIMP1 Rn00587558-m1

Tissue Inhibitor of Metallopeptidase-2 TIMP2 Rn00573232_m1

Nitric Oxide Synthase III NOS3 Rn02132634_s1

Interleukin-6 IL-6 Rn01410330_m1
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Tulane Center for Gene Therapy (New Orleans, LA,
USA). The cells were cultured in MEM-alpha medium
with glutamine and without ribonucleosides or deoxyribo-
nucleosides (GIBCO, Gaithersburg, MD, USA), supple-
mented with 20% fetal bovine serum (HyClone Cell
Culture, Cultek, Madrid, Spain), 1% antibiotic–anti-
mycotic (containing 10,000 U/mL Penicillin G sodium;
10,000 μg/mL Streptomycin sulphate; 25 μg/mL Ampho-
tericin B as Fungizone [GIBCO, Gaithersburg, MD, USA])
and 2% l-glutamine (GIBCO, Gaithersburg, MD, USA).
The cells were grown at 37°C, 5% CO2, 100% humidity.
Subconfluent cells were dissociated with 0.25% trypsin
and 1 mM Ethylene Diamine Tetraacetic Acid (EDTA) in
Hanks’ Balanced Salt Solution (GIBCO, Gaithersburg,
MD, USA) and subcultured at low density in new culture
flasks. To prepare the injection, MSC were trypsinized
and 5 × 106 cells were suspended in 500 μL of Phosphate
Buffered Saline (GIBCO, Gaithersburg, MD, USA). This
cell preparation was slowly delivered (30 seconds) to the
rat through the penile vein the first day of apneas applica-
tion and every 4 days thereafter. Rats were anaesthetized
with short-acting inhaled isoflourane (2%) before and du-
ring every injection.
All rats in the four experimental groups (Sham, Sham+ S,

OSA, OSA +MSC) were carefully inspected daily to mo-
nitor animal well-being. No rats showed any signs of stress
or MSC-related side effects and thus, no rats needed to be
excluded from the analysis.

Sample collection and RNA isolation
Once anesthetized with intraperitoneal urethane 10%
(1 g/kg), animals were sacrificed by exsanguination
through carotid artery cannulation. Blood samples were
collected in EDTA tubes and centrifuged for 15 minutes
at 3000 rpm. Plasma was collected and frozen at -80°C.
Hearts were quickly removed and weighted, and tissue

samples were obtained from the left ventricle (LV) free
wall, right ventricle (RV) free wall, and both atrial ap-
pendages: right atrium (RA) and left atrium (LA). Sam-
ples were snap-frozen in liquid nitrogen for posterior
molecular biology analysis. For histological studies,
transversal sections from the midventricular and basal
(including both atria) regions of the heart were obtained,
fixed in formol 3% for 24 hours and embedded in
paraffin.
Total RNA was isolated from the 4 cardiac chambers.

Myocardial tissue was first homogenized with Trizol®
reagent (Life Technologies) and further purified with
chloroform (C-2432, Sigma-Aldrich). Final RNA was ob-
tained with silica columns (RNA Aqueous kit, Ambion)
according to the manufacturer's protocol. The integrity
of the resulting RNA was assessed in formaldehyde-
denaturing agarose gels. A reverse transcription protocol
with random primers was applied to 1 μg of total RNA
for cDNA synthesis with the addition of RNAse inhibi-
tors (High capacity cDNA RT kit, Life Technologies,
CA, USA) with a MJ Research PTC 200 thermal cycler
(MJ Research, MA, USA).

Real time polymerase chain reaction (real time PCR)
Messenger RNA (mRNA) expression of selected key-
player genes in the collagen synthesis and degradation ba-
lance was measured in the four cardiac chambers. Genes
involved in collagen-synthesis promotion (ACE, TGF-β1),
collagen maturation and cross-linking (LOX), and de-
gradation (MMP-2, MMP-3, MMP-9, MMP-10, TIMP-1,
TIMP-2), as well as oxidative stress (eNOS) and in-
flammation (IL-6) were quantified. mRNA expression was
assayed with a real-time PCR 7900 thermal cycler (AB,
Applied Biosystems, CA, USA) using TaqMan Universal
PCR Master Mix with AmpErase UNG. Specific TaqMan
single-gene expression assays are shown in Table 1. All
mRNA quantification results are shown relative to a
cDNA pool with sequential dilutions and units are given
as ng-equivalents of cDNA (ng-equ).

Protein isolation and analysis by western blot
Myocardial proteins were extracted from each heart cavity
in all experimental groups. Samples were submerged in
0.5 mL of ice-cold protein lysis buffer containing: RIPA
buffer (R0278, Sigma), 1 mM phenylmethanesulfonyl
fluoride (P7626, Sigma), 1 mM sodium orthovanadate
(S6508, Sigma), 1 mM Pefabloc (11429868001, Roche) and
complete Mini Protease Inhibitor Cocktail (11836153001,
Roche). Samples were homogenized with an Omni TH
homogenizer (Omni International Inc.). After 1 hour of
rotation at 4°C, samples were centrifuged at 10.000 g at
4°C for 30 minutes. The upper phase was collected and
the total protein concentration was quantified with the
Pierce BCA protein Assay method (23227, Thermo
Scientific, Pierce) relative to a BSA standard curve. Forty
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μg of total protein extract were loaded with a reducing
buffer (2.5% of β-mercaptoethanol) to NuPage® 4–12%
Bis-Tris Gel (NP0322). A western blot was performed with
the Novex® gels methodology (Invitrogen). Proteins were
transferred to a nitrocellulose membrane using a blot gel
transfer (IB3010-01) and the iBlot® Dry Blotting System.
Proper transfer was checked by Ponceau staining. After
1 hour blockade of the membrane with phosphate buf-
fered saline solution (PBS, Fisher Scientific), 0.1% Tween
20 (P1379, Sigma-Aldrich) and 5% of skimmed milk, it
was incubated overnight at 4°C with the MMP-2 primary
antibody (ab37150, Abcam) diluted 1/500. Afterwards, the
membrane was incubated during 1 hour with an HRP-
Goat anti rabbit secondary antibody diluted 1/1000
(31460 Thermo Scientific). Final detection of the MMP-2
protein bands was accomplished with the ECL kit Super-
signal West Pico Chemioluminescent Substrate (34080,
Thermo Scientific).
Bands around 60 KDa for MMP-2 (in antibody and

ECL incubated membranes) and around 40 KDa (in
Ponceau-stained membranes) were quantified (ImageJ,
NIH, Maryland, USA). Loading of each sample was nor-
malized with the Ponceau band around 40 KDa. Results
are given in arbitrary units (A.U.) as the ratio between
the normalized densities of each sample divided by the
normalized density of a standard loaded in each gel.

Plasma cytokines
Systemic inflammation-related cytokines -proinflammatory
and profibrotic Interleukin-1 beta (IL-1β), and anti-in-
flammatory Interleukin-10 (IL-10)- were measured in
plasma obtained at sacrifice with Quantikine ELISA assays
RLB00 and R1000, respectively (R&D Systems, MN, USA).

CD90 immunofluorescence
A CD90 immunofluorescence assay was performed in
myocardial parafine-embedded sections from rats injected
with MSC, and in MSC cultured in 30-40% confluent
chamber slides (positive control). Cultured MSC were
fixed with 4% paraformaldehyde. Antigenic retrieval was
achieved with a sodium citrate 10 mM bath at 80°C
during 40 min. After blockade of unspecific unions, sam-
ples were incubated overnight with Anti-Rat CD90, FITC
conjugated antibody (MR5001, Caltag, Invitrogen) diluted
1/200. Sudan Black was used to mask auto-fluorescence.
Both myocardial sections and chambers were added a
DAPI-containing mounting media and covered. The same
staining protocol excluding Anti-CD90 antibody addition
was used as a negative control for both groups.

Myocardial fibrosis quantification
Mid-ventricular and atrial sections of paraffin-embedded
tissue, 4 microns thick, were stained with Picrosirius-red
as previously described [20]. Four random pictures (40×)
from RV and LV free wall, and 6 random pictures (100×)
from the atria were taken from each sample with an
Olympus BX51 microscope and an Olympus DP50
camera (Olympus Corporation, Japan).
To estimate hypertrophy of the cardiac chambers, RV

free wall, interventricular septum (IVS) and LV free wall
thickness were measured in transversal sections at mid-
ventricular level. The interstitial collagen fraction was
assessed with a semiautomatic color-threshold detection
software (AnalySIS®, Soft Imaging System, Germany).
Right and left atrial collagen fraction were quantified to-
gether. Epicardial, endocardial, and perivascular fibrosis
were excluded from the analysis. All measures were car-
ried out blind by a single investigator.

Statistical analysis
All variables followed a normal distribution (Shapiro-
Wilks test) and are expressed as mean ± standard error
of the mean (SEM). Grubbs test was used to exclude ex-
treme outliers (maximum one per group). Comparisons
between 2 groups were carried out with a non-paired
Student’s t-test. A Pearson product–moment correlation
coefficient was computed to assess the relationship bet-
ween the plasmatic IL-1β levels and the myocardial col-
lagen fraction. Statistical calculations were performed
with SPSS v16.0 (SPSS Institute Inc, Cary, NC, USA). A
p-value <0.05 was considered for significance.

Results
Obstructive sleep apnea induces atrial fibrosis
Histological analysis
The 3-week OSA protocol did not induce global or
specific-chamber hypertrophy in rats. No significant dif-
ferences between both groups were found in heart weight
(Sham 1.21 ± 0.02 g. vs OSA 1.14 ± 0.03 g, P = 0.08), RV
free wall thickness (Sham 938 ± 55 μm vs OSA 876 ±
65 μm, P = 0.49), IVS thickness (Sham 2234 ± 162 μm vs
OSA 2069 ± 190 μm, P = 0.54) or LV free wall thickness
(Sham 2427 ± 178 μm vs OSA 2300 ± 190 μm, P = 0.64).
We evaluated myocardial fibrosis in histological prepa-

rations. Figure 2A shows representative photomicrographs
of Picrosirius-red stained LV, RV and atrial sections from
Sham and OSA rats. OSA induced a significant 43%
higher atrial interstitial collagen deposition as compared
to the sham group (Figure 2B). Increased fibrosis deposi-
tion was diffuse and homogenous, with no patchy fibrotic
infiltrates in any of the analyzed samples. No differences
in collagen deposit density were observed between OSA
and Sham groups in RV and LV free wall.

mRNA expression and protein synthesis
To study the mechanisms of myocardial fibrosis, we
quantified mRNA expression of genes involved in myo-
cardial collagen turnover, inflammation and oxidative



Figure 2 Fibrosis assessment in OSA and Sham rats.
A. Representative Picrosirius-stained photomicrographs of atrial, right
ventricle (RV) and left ventricle (LV) sections from Sham (n = 14) and
OSA (n = 16) rats. Atria and ventricular samples were stained in different
days, and pictures obtained at different magnifications, so results from
atria and ventricles should not be compared. B. Quantification of
collagen fraction in the atria, RV and LV. (Mean ± SEM, *P < 0.05).
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stress in the 4 cardiac chambers of sham and OSA-rats.
ACE expression was significantly greater in the RA, RV
and LV, and was close to significance (p = 0.055) in the
LA, of OSA-rats compared with Sham-rats (Figure 3A).
Expression of collagen promoters TGF-β1 and LOX was
unaltered (Figure 4D, F). Regarding collagen degra-
dation, MMP-2 expression was significantly decreased in
both atria, but not in the ventricles (Figure 3B). No
significant changes were found in any other metallopro-
teinase or metalloproteinase inhibitor (Figure 4A-C).
MMP-3 and MMP-10 levels were undetectable and are
not shown. Finally, IL-6 expression was significantly
higher in both atria and in the LV of the OSA group,
but showed no differences in the RV (Figure 3C).
As a potential regulator of myocardial fibrosis in our

model, protein levels of MMP-2 were analyzed in the
four cardiac chambers. Representative blots and quanti-
fication are shown in Figure 3E. MMP-2 protein levels
were lower in left atria from OSA-rats than in left atria
from Sham-rats (p = 0.03), and showed borderline sig-
nificance for the right atrium (p = 0.06). No differences
were found between Sham and OSA groups in the left
and right ventricles.
Plasma cytokines
OSA-induced changes in systemic inflammation were
studied in plasma samples. A remarkable 2.5-fold increase
in pro-inflammatory IL-1β plasma levels was observed in
the OSA group compared to the sham group (Figure 3D).
IL-1β plasma levels positively correlated to atrial (r = 0.404,
p = 0.037, Figure 5A), but not ventricular (p = 0.21,
Figure 5B) collagen fraction. Conversely, no differences
were found in IL-10 plasma levels between both groups
(Sham 11.25 ± 2.96 pg/mL vs OSA 7.85 ± 1.41 pg/mL,
P = 0.26). Plasma IL-10 did not correlate to either atrial or
ventricular collagen fraction (results not shown, p = 0.209
and p = 0.373, respectively).

Mesenchymal stem cells prevent sleep apnea-induced
atrial fibrosis
Histological analysis
As in the first set of rats, no differences between OSA +
MSC and Sham + S groups were found in heart weight
nor in the ventricular collagen fraction. OSA-induced
atrial fibrosis was prevented by the administration of
MSC; OSA +MSC and Sham + S groups showed a simi-
lar atrial collagen fraction (Figure 6).

CD90 immunofluorescence
We used the sensitive MSC-marker CD90 to study their
presence in the myocardium of OSA + MSC rats. Figure 7
shows representative microphotographies of a positive
control (cultured MSC in A-B) and sample of interest (LA
from OSA + MSC rats in C-D). After thoroughly explor-
ing the myocardium samples, no CD90 positive cells were
found in the atria or ventricles of five OSA + MSC rats
myocardial tissue-sections.

mRNA expression and protein synthesis
Beneficial effects of MSC infusion in the atria of OSA rats
were not accompanied by regression of changes in ACE
mRNA expression. ACE mRNA expression remained
higher in the RA and LA of OSA +MSC rats compared
with Sham+ S rats (Figure 8A). Conversely, MSC blunted
OSA-induced atrial MMP-2 downregulation; MMP-2 ex-
pression was similar in OSA +MSC and Sham+ S groups
(Figure 8B). IL-6 OSA-induced increase was reverted after
MSC-infusion (Figure 8C). No differences were observed
in the expression of the other genes analyzed in the atria,
though changes of uncertain significance were found for
MMP-2 (Figure 8B), eNOS and TGF-β1 in the LV
(Figure 9).
Results for MMP-2 mRNA expression in the atria were

confirmed in protein levels quantification (Figure 8E).
No differences were found in MMP-2 protein levels be-
tween Sham + S and OSA +MSC rats in the left or right
atria. Contrary to mRNA expression, no differences were



Figure 3 Fibrosis mechanisms assessment in OSA and Sham rats. (A) ACE, (B) MMP-2 and (C) IL-6 mRNA expression (ng-equ) in the four
cardiac chambers of Sham (n = 14) and OSA (n = 16) rats (Mean ± SEM, *P < 0.05). D. Plasmatic concentration (pg/mL) of IL-1β in Sham and OSA
(Mean ± SEM, *P < 0.05). E. MMP-2 protein levels quantification. Representative MMP-2 blots (upper panel), Ponceau-stained membranes (middle
panel) and normalized quantification (lower panel) (Mean ± SEM, *P < 0.05). n = 4-6/group. Left lane is a molecular-weight marker lane; the picture
was obtained with visible light. Dashed line means non-contiguous lane. A.U.: Arbitrary Units.
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seen in MMP-2 protein levels in the LV (Sham + S vs
OSA +MSC).

Plasma cytokines
Figure 8D shows mean IL-1β levels in the Sham + S and
OSA + MSC groups. OSA-induced increase in IL-1β
plasma levels was blunted in the OSA group receiving
MSC.

Discussion
In the present work, we have demonstrated for the first
time that chronic exposure of rats to recurrent apneas
can promote atrial fibrosis, an established substrate for
AF. This process seems to be mainly mediated through
an increased local and systemic inflammation and a re-
duced collagen-degradation. Also, our data revealed that
the OSA-induced fibrosis can be prevented by the infu-
sion of MSC.
The application of intermittent hypoxia by modifying

oxygen concentration in breathed gas, which is the most
widely used model in OSA, is able to induce systemic
inflammation. However, the setting employed in our
work, in addition to intermittent hypoxia, allowed the
application of increased negative intrathoracic-pressure
swings [19]. These increased inspiratory efforts could ag-
gravate the early local inflammatory response triggered
by intermittent hypoxia alone. In addition, both factors
could participate in the development of AF by different
mechanisms; i.e. intermittent hypoxia can elevate the
systemic blood pressure but also, increased intrathoracic
pressure swings can increase left ventricular transmural
pressure [21] and may lead to repetitive atrial stretch



Figure 4 mRNA expression in the OSA and Sham rats. (A) TIMP-1, (B) TIMP-2, (C) MMP-9, (D) LOX, (E) eNOS and (F) TGF-β1 mRNA expression
(ng-equ) in the four cardiac chambers of Sham (n = 14) and OSA (n = 16) rats (Mean ± SEM, *P < 0.05).
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which chronically could lead to left atrial enlargement
and fibrosis.
Previous experimental studies reported enhanced AF-

inducibility in acute OSA models, likely mediated by im-
balances in the autonomic system [22,23]. Iwasaki et al.
[24] suggested a role for transient LA distension in AF
substrate in an acute OSA model in obese rats. Few ex-
perimental works have studied the effects of OSA in car-
diac structure at the histological level. Simpson et al. [25]
showed that intermittent respiratory occlusions acutely in-
duce multifocal areas of necrosis in both ventricles, and
Chen et al. [26] described LV myocyte hypertrophy and
apoptosis in a chronic intermittent hypoxia model. Nei-
ther of these two works studied atrial remodeling. To the
best of our knowledge, our work is the first to describe the
development of an arrhythmogenic structural substrate in
the atria in a chronic OSA model.
Chamber-specific myocardial fibrosis (selective atrial fi-

brosis while preserving the ventricles) has been observed
in our and other experimental settings [20,27-29]. Various
mechanisms explain increased atrial susceptibility to fibro-
sis. Differential stretch and mechanical-loading properties
Figure 5 Correlation between plasma IL-1β and myocardial
fibrosis at the atrial (A) and ventricular (B) level. Dashed line
means 95% confidence interval.
between the atria and ventricles [30], differences in atrial-
and ventricular-fibroblast reactivity [31], and increased
fibrotic response to myocardial ACE activity in the atria
[32] have been reported and may contribute to atrial fi-
brotic susceptibility in our model.
Figure 6 Fibrosis assessment in OSA +MSC and Sham + S rats.
A. Picrosirius-stained photomicrographs of atrial sections, right ventricular
(RV) sections and left ventricular (LV) sections from Sham+ Saline (n = 7)
and OSA +MSC (n = 8) rats. Atria and ventricular samples were stained in
different days, and pictures obtained at different magnification, so results
from atria and ventricles should not be compared. B. Quantification of
collagen fraction in the atria, RV and LV measured in Picrosirius-red
stained samples (Mean ± SEM).



Figure 7 CD90 immunofluorescence myocardial stained
samples. A. Cultured MSC, positive control for CD90 (40x). 100x
augmentation in the upper box. Abundant CD90 deposits (some
marked with arrowhead) are present. B. Cultured MSC, negative
control (x40, no anti-CD90 antibody added). C. Sample of interest
(left atrium), CD90 stained. No positive cells are marked (x40).
D. Sample of interest, negative control (x40, no anti-CD90 antibody
added). Blue: nuclei (DAPI); green: CD90.
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The mechanisms by which OSA induces atrial fibrosis
are unknown. Our results are summarized in Figure 10
and yield mechanistic insights. Myocardial collagen con-
tent is critically dependent on the balance between syn-
thesis and degradation. In the present OSA-model, both
ACE upregulation [32] and MMP-2 downregulation [33]
could promote myocardial fibrosis. Nevertheless, further
data from our work suggest that MMP-2 is central in
OSA-induced atrial fibrosis, while the role of ACE is
negligible. First, ACE expression was increased in all car-
diac chambers in the OSA-group, but increased fibrosis
was only found in the atria. Remarkably, MMP-2 was se-
lectively downregulated in the atria. Second, TGF-β1, an
important fibrotic mediator and an ACE downstream
mediator, was not increased in OSA-rats. Results after
infusion of MSC further emphasize a critical role for
MMP2. OSA-rats in the MSC-treated group had an
atrial collagen fraction similar to the Sham + S group.
This finding was accompanied by a normalization in
MMP-2 synthesis, likely leading to a higher extracellular
matrix degradation activity and hence, reduced fibrosis.
Notably, although MSC infusion prevented atrial fibro-
sis, it was not able to prevent OSA-induced ACE-
increase, thus suggesting that increased ACE expression
by itself is not enough to sustain OSA-induced atrial
fibrosis.
The expression of the remaining collagen degradation

(MMP-3, MMP-9, MMP-10, TIMP-1, TIMP-2) and col-
lagen cross-linking (LOX) mediators were not affected
in our model.
Besides a profibrotic effect, a growing core of evidence
points to OSA as a pro-inflammatory disease [34]. Pre-
vious work by our group showed that OSA induces
a systemic inflammatory response in an acute animal
model. This response was characterized by a significant
increase in IL-1β plasmatic levels that was prevented by
MSC infusion [11]. The results of the present work con-
firm this finding in a chronic OSA model and show an
increase in the pro-inflammatory cytokine IL-6 in both
atria and the LV. Inflammation and fibrosis are closely
linked, with several interrelated metabolic pathways. For
example, IL-6 is involved in the development of myocar-
dial fibrosis in other experimental settings [35]. More-
over, plasma IL-1β selectively correlated to atrial fibrosis
intensity, further highlighting higher fibroblast reactivity
in the atria than in the LV [31]. Interestingly, both sys-
temic (IL-1β) and local (IL-6) inflammatory responses
were prevented by MSC infusion. Notably, a growing
core of evidence is suggesting that an anti-inflammatory
effect underlies beneficial effects of MSC [12,36].
Bone marrow MSC properties including pluripotency,

avoidance of detection by the host immune system, and
ease of expansion in culture make them an attractive op-
tion for cell therapy [13,14]. Several studies have shown
that MSC transplantation significantly decreases fibrosis
in the heart [16,17], lung [37], kidney [38], skin [39] and
liver [40]. Although the mechanisms whereby MSCs re-
duce tissue fibrosis remain unclear, previous studies sup-
port our finding that MSC-induced MMP-upregulation
might be a hallmark of their antifibrotic effect. In mice
skin, Wu et al. [39] demonstrated an antifibrotic effect
of bone marrow MSC that was partially mediated by an
increased MMP-2 collagen-degradation. Mias et al. [15]
showed that MSC injection reduced ventricular fibrosis
in a rat model of myocardial infarction by stimulating
MMP-2 and MMP-9 secretion in fibroblasts. Consistent
with a central role of MMP-2, MSC collagen-accumula-
tion prevention was lost in MMP-2 knock-out fibro-
blasts [15]. This effect is probably mediated by secreted
factors in a paracrine/endocrine mechanism [15,41]. Our
data evidenced lack of MSC engrafted in the myocar-
dium and support a systemic effect of MSC in this rat
OSA-model.
The development of atrial fibrosis in this OSA model

might have important clinical implications if confirmed in
humans. First, it demonstrates that pro-arrhythmogenic
remodeling can be directly caused by OSA and not limited
to remodeling induced by other comorbidities such as
hypertension, obesity, coronary artery disease, or diabetes,
all of which are very prevalent in OSA patients [21].
Accordingly, OSA screening might be important in AF-
patients in order to establish a cause for the arrhythmia.
Second, it may provide relevant prognostic information,
as both OSA and atrial fibrosis predict poor outcomes of



Figure 9 mRNA expression in the OSA +MSC and Sham + S rats. (A) TIMP-1, (B) TIMP-2, (C) MMP-9, (D) LOX, (E) eNOS and (F) TGF-β1 mRNA
expression (ng-equ) in the four cardiac chambers of Sham + Saline (n = 7) and OSA +MSC (n = 8) rats (Mean ± SEM *P < 0.05).

Figure 8 Assessment of fibrosis mechanisms in OSA +MSC vs Sham + S rats. (A) ACE, (B) MMP-2 and (C) IL-6 mRNA expression (ng-equ) in
the four cardiac chambers of Sham + Saline (n = 7) and OSA +MSC (n = 8) rats (Mean ± SEM *P < 0.05). D. Plasmatic concentration (pg/mL) of
IL-1β in Sham + Saline and OSA +MSC rats (Mean ± SEM *P < 0.05). E. MMP-2 protein levels quantification. Representative MMP-2 blots (upper
panel), Ponceau-stained membranes (middle panel) and normalized quantification (lower panel) (Mean ± SEM). n = 4-6/group. Left lane is a
molecular-weight marker lane; the picture was obtained with visible light. A.U.: Arbitrary Units.
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Figure 10 Proposed pathophysiology of OSA-induced atrial fibrosis and MSC mechanism of action. OSA acts as a pro-inflammatory stimulus
and inhibits MMP-2 synthesis, reducing collagen degradation and thus favoring collagen accumulation. MSC administration blunts inflammation and
normalizes MMP-2 synthesis, thereby increasing collagen degradation and preventing from collagen deposit. OSA also increases ACE expression, but its
role in fibrosis promotion is uncertain. Red lines represent inhibition, green lines represent activation. MSC: mesenchymal stem cells. OSA: obstructive
sleep apnea.
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AF treatments. Finally, as OSA is a treatable disorder,
early detection and treatment by means of CPAP or newer
therapies may slow AF substrate progression and improve
outcomes of antiarrhythmic drugs, electrical cardiover-
sion, or AF ablation. Our results also suggest that MSC
might have the potential to prevent the atrial profibrotic
remodeling induced by OSA, but its clinical implication in
humans needs to be demonstrated.

Limitations
Some limitations should be acknowledged and taken
into consideration when interpreting our results. First,
we lack of electrophysiological and AF inducibility stud-
ies and thus, increased inducibility cannot be ensured
from our results. However, we show that OSA induces
atrial fibrosis, a hallmark of AF and a well-known AF
promoter [8], at similar intensity to other reports sho-
wing increased inducibility [42]. Second, we assessed
protein levels for some genes, including collagen deposit,
inflammatory cytokines and MMP-2, but failed to obtain
blots for ACE. Third, we only assessed atrial fibrosis as
AF substrate; additional studies focusing on atrial dila-
tion or electrical remodeling are warranted.

Conclusions
In conclusion, our model demonstrates that OSA in-
duces the development of atrial fibrosis, an arrhyth-
mogenic substrate that might explain the association
between OSA and atrial fibrillation. Fibrosis might be
mediated by increased atrial expression of IL-6 and de-
creased atrial expression of MMP-2 with the subsequent
decline in collagen-degradation. This atrial fibrosis is
prevented by the intravenous administration of MSC,
which normalizes IL-6 and MMP-2 expression.
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