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Abstract

Background: Peroxisome proliferator-activated receptor-gamma (PPARYy) is a ligand-activated transcription factor that
exerts multiple biological effects. Growing evidence suggests that PPARy plays an important role in inflammation;
however, the effects of this transcription factor on the inflammation caused by smoking are unclear.

Methods: We measured the expression of inflammatory cytokines (leukotriene B4, LTB4 and interleukin 8, IL-8), PPARy
and toll-like receptors (TLR2 and TLR4) in alveolar macrophages (AMs) harvested from rats exposed to cigarette smoke
(CS) for 3 months in vivo. Some of the rats were pre-treated with rosiglitazone (PPARy agonist, 3 mg/kg/day, ip), rosiglitazone
(3 mg/kg/day, ip) + BADGE (bisphenol A diglycidyl ether, a PPARy antagonist, 30 mg/kg/day, ig), or BADGE alone (30 mg/kg/
day, ig). We also measured the expression of PPARy, TLR2, TLR4 and nuclear factor-kappaB (NF-kB) in AMs gained from
normal rats, which exposed to 5% CSE (cigarette smoke extract) for 12hrs, respectively pretreated with PBS, rosiglitazone
(30 uM), rosiglitazone (30 uM) + BADGE (100 uM), 15d-PGJ2 (PPARy agonist, 5 uM), 15d-PGJ2 (5 uM) + BADGE (100 uM),

or BADGE (100 uM) alone for 30 min in vitro.

through the TLR4 signaling pathway.

a role in inflammatory diseases such as COPD.

Nuclear factor-kappa B

Results: /n vivo, rosiglitazone counteracted CS-induced LTB4 and IL-8 release and PPARy downregulation, markedly
lowering the expression of TLR4 and TLR2. In vitro, both rosiglitazone and 15d-PGJ2 inhibited CS-induced inflammation

Conclusions: These results suggest that PPARy agonists regulate inflalmmation in alveolar macrophages and may play
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Background

Chronic obstructive pulmonary disease (COPD) is a
chronic inflammatory disease of the airways that is charac-
terized by progressive limitations in airflow. Cigarette
smoking is one of the most important risk factors for
COPD and persistent airway inflammation [1]. Eliminating
the inflammation caused by cigarette smoke (CS) is a goal
of COPD treatments. Peroxisome proliferator-activated re-
ceptor gamma (PPARY), a member of the nuclear hormone
receptor superfamily [2], has been identified in lung tissue
and the cells associated with inflammation in the lung
[3-5]. Therefore, PPARY agonists may be the next choice
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for COPD treatment. Recent studies have shown that
PPARYy expression is reduced in the skeletal muscles, air-
ways, and alveolar macrophages (AMs) of individuals suf-
fering from chronic pulmonary diseases. Recently, the
studies have shown increased PPARy expression in the
bronchial epithelial cells of asthma patients, but decreased
PPARYy expression in allergic inflammation and acute lung
injury induced by LPS [6-8]. Moreover, thiazolidinediones
exert anti-inflammatory effects by activating PPARy and
downregulating nuclear factor-kB (NF-kB) [9,10]. These re-
sults have led to increasing interest in PPARy and its in-
volvement in a variety of disease states, including COPD.
While PPARY agonists exhibit anti-inflammatory effects,
the effect of these molecules in CS-induced chronic inflam-
mation is largely unknown. AM-mediated inflammation
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Table 1 Primers for gene-specific reverse transcription
and real-time polymerase chain reaction (in vivo test and
in vitro test)

Gene Forward primer Reverse primer

PPARy  ATTCTGGCCCACCAACTTCGG  TGGAAGCCTGATGCTTTATCCCCA

TLR2 ~ GTCCATGTCCTGGTTGACTGG ~ GATACCACAGCCCATGGAAAT
TLR4  GAGCCGGAAAGTTATTGTGG ~ AGCAAGGACTTCTCCACTTTCT
B-actin GCCAACCGTGAAAAGATG CCAGGATAGAGCCACCAAT

plays a critical role in the development of COPD [11,12],
and the engagement of Toll-like receptors (TLRs) can trig-
ger AMs to produce inflammatory mediators [13]. Some
anti-inflammatory mediators reduce airway inflammation
through the TLR2/TLR4 pathway [14], but little is known
about the interaction between the TLR2/TLR4 pathway
and the anti-inflammatory PPARy pathway. Given these
considerations, we sought new insight into the role of
PPARY agonists in preventing chronic airway inflammation
and impairing the AM response to CS. To gain a better un-
derstanding of the PPARy mechanism of action in AMs, we
also investigated the effects of PPARy agonists on the ex-
pression of TLR2, TLR4 and NF-kB. Additionally, we inves-
tigated whether BADGE, a PPARy antagonist, attenuates
the protective effect of PPARY agonists.

Methods

Animals and experimental design

All of the experiments were conducted in accordance with
ethical committee guidelines. As shown as Additional file 1:
Figure S1, male Wistar rats (Laboratory Animal Center,
China Medical University) with a weight range of 170-220 g
were randomly placed into one of five groups of 12 rats:
sham, CS, PPARy agonist rosiglitazone (ROSI), PPARy an-
tagonist BADGE (BADGE), and ROSI + BADGE (RB). The
rats were sacrificed by exsanguination before excision of the
lungs at the end the 12th week. The right upper lobes were
removed and stored at —80°C.

Tissue preparation and morphometric analyses

The middle lobes of the right rat lungs, which were
not lavaged, were embedded in paraffin blocks, and sect-
ioned at 4-pm thickness for conventional HE staining. The

Table 2 BAL Fluid cytology of rats of each group
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measure of lung tissue morphology was determined by light
microscopy at a magnification of x 200. At least two non-
consecutive slides per block were analysed for the follow-
ing: (i) mean linear intercept (MLI), which was a measure
of interalveolar wall distance, defined by the total length of
the cross-line divided, by the numbers of alveolar wall inter-
secting the test lines; (ii) mean alveolar number (MAN),
which was an indicator of alveolar density calculated by
counting the numbers of alveoli in each field.

Isolation and culture of alveolar macrophages

The left lungs were infused with 2 ml PBS for 4 times. The
bronchoalveolar lavage fluid (BALF) was centrifuged for 10
min at 1000 r/min and 4°C. The pellets obtained from the
BALF were washed twice with cold Phosphate Buffered Sa-
line (PBS) and resuspended in PBS at 1 x 106 cells/ml. The
cells were then incubated in 6-well plates in 2 ml RPMI-
1640 medium with 10% fetal calf serum (FCS). All of the
nonadherent cells were removed by washing with PBS. We
used a previously described modified H&E staining method
[15] to identify alveolar macrophages (AMs) based on
morphology. The purity of the cell suspension was >95%.

Phagocytosis and viability of alveolar macrophages

AMs were harvested from the BALF of different groups,
and 2 x 10° AMs/well were cultured in RPMI-1640 for 3
hrs or 24 hrs. Phagocytosis was measured with the neutral
red uptake method described in previous article [16]. All of
the nonadherent cells were removed by washing with PBS.
The adherent cells were incubated in 100 puL of RPMI-1640
and 100 pL of neutral red (0.072%) reagent for 4 hrs. The
plates were then washed to remove the excess dye and blot-
ted dry. The incorporated dye was re-suspended in ethanol
(50%) containing glacial acetic acid (1%). Subsequently, the
absorbance at OD490 was read using a spectrophotometer.
The absorbance (A) was translated into a phagocytosis ratio
to make comparisons: phagocytosis ratio = test A/normal
control A x 100%.

For the metabolic activity assays in vivo, AMs gained
from each group were cultured in 96-well plates at a
density of 1x 10> cells/well. AMs were stimulated with
5% CSE in RPMI-1640 with 10% FCS for 4 hrs in a
humidified atmosphere of 5% CO, and 37°C. After

Group Sum (x 106/L) Lymphocytes % Macrophages % Neutrophils %
Sham 38+144 38+163 885+943 291+£1.92
CS only-exposed 134 +£329% 9.6 £ 345% 66.8 + 10.66** 204 £ 944**
ROSI-treated 9.3 + 2.66™ ## 6.7 +2.20% 76.9 + 6.34** 11.5+3.14%%4
BADGE-treated 134 +£337** 9.07 +3.16%* 685+ 10.16* 20.5 + 8.66**
RB-treated 11.5 £ 206" ## 7.8 £2.69** 69.1 +7.06%* 199 £ 4.16**

Data represent the mean = SD (n = 6). *P < 0.05 and **P < 0.01 compared with the sham group; #P < 0.05 and ##P < 0.01 compared with the CS only-exposed group.
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Figure 1 Phagocytosis by alveolar macrophages from each
group. Macrophages were harvested from the BAL fluid of different
groups and were cultured in media for 3 and 24 hrs. The results are
presented as mean + SD (n=6). *P < 0.05 and **P < 0.01 compared
with the sham group; #P < 0.05 and ##P < 0.01 compared with the
CS only-exposed group.

treatment, the medium was discarded and 200 pL of
DMEM containing 20 pL of MTT (methylthiazolyldi-
phenyl-tetrazolium bromide, 5 mg/mL, pH = 7.4) reagent
was added to each well. The cells were incubated for 4
hrs at 37°C. The medium was again discarded, DMSO
was added to each well, and the MTT activity was mea-
sured at an optical density of 570 nm. The absorbance
(A) was translated into a viability ratio to make compari-
sons: viability ratio = test A/normal control A x 100%.

For the metabolic activity assays in vitro, AMs gained
from normal rats were stimulated with 1% CSE (cigarette
smoke extract), 5% CSE and 10% CSE individually for 6
hrs. The cells were pretreated with PBS, ROSI (30 uM),
ROSI (30 pM) + BADGE (100 uM) (BADGE was adminis-
tered 30 min before ROSI), 15-deoxy-Aprostaglandin J2
(15d-PG]J2, a natural ligand of PPARY, 5 pM) or 15d-PGJ2
(5 uM) + BADGE (100 pM), (Sigma-Aldrich Corporation,
St. Louis, MO, USA) for 30 min before being treated with
different concentration of CSE.

Immunofluorescence staining of TLR2 and TLR4 in AMs

The sections was incubated with 5% BSA in PBS at room
temperature for 60 min, and then incubated with primary
rabbit anti-rat TLR4 and anti-rat TLR2 antibodies (1:300,
Santa Cruz, CA, USA) at 4°C overnight. The primary anti-
body was detected with biotinylated anti-rabbit Ig at a
1:200 dilution. Bound antibody was visualized with ABC
peroxidase. Images were obtained with a confocal micro-
scope (Olympus, Japan). The images were quantified by
analyzing the sum of the staining with Metamorph DP10
(Olympus, Japan). The negative controls that received PBS
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were run in parallel. The endogenous peroxidase activity of
the AMs treated with cigarette smoke extract in vitro was
detected using the same protocol described above.

Stimulation of AMs with CSE and the culture of AMs with
ROSI, BADGE and 15dPGJ2

The CSE was prepared as follows: 2 filtered cigarettes
(3R4F), each described by the manufacturer as contain-
ing 0.73 mg of nicotine, 9.4 mg of tar, and 12.0 mg of
CO, were bubbled through 20 ml serum free RPMI-1640
medium with a mechanical vacaum pump. The extract
was filtered through a 0.45-um filter (Millipore, Bedford,
MA, USA) to remove bacteria and particles. CSE con-
centration was evaluated by measuring the optical dens-
ity at 502 nm, and diluted to O.D. = 0.17 +0.03. This
solution was considered 10% CSE.

The AMs harvested from the normal rats. The normal
AMs were stimulated with 1% CSE, 5% CSE and 10%
CSE individually for 12 hrs, after which we analyzed the
changes in TLR2, TLR4 and PPARy expression, the re-
lease of LTB4 and IL-8 into the cell culture supernatant
and the viability of the AMs. The cells pretreated with
ROSI (30 pM), ROSI (30 puM)+BADGE (100 pM)
(BADGE was administered 30 min before ROSI), 15d-
PGJ2 (5 uM), 15d-PGJ2 (5 uM) + BADGE (100 pM), or
PBS for 30 min before being treated with 5% CSE for
12 hrs. We further investigated the above-mentioned pa-
rameters in the presence or absence the NF-«xB inhibitor
PDTC (10 pmol/L) (Sigma-Aldrich Corporation, St.
Louis, MO, USA). In addition, We detected the secre-
tions of LTB4 and IL-8 into the cell culture supernatant,
when the cells co-treated with anti-mouse specific
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Figure 2 The AMs metabolic viability of each group. Macrophages
were harvested from BAL fluid of different groups and were treated
with 5% CSE for 4 hrs. The results are presented as mean + SD (n=6).
*P <005 and **P < 0.01 compared with the sham group; #P < 0.05 and
##P < 0.01 compared with the CS only-exposed group.
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Figure 3 The metabolic viability test in vitro. AMs gained from normal rats were stimulated with 1% CSE (a), 5% CSE (b) and 10% CSE (c)
individually for 4 hrs. The AMs in response to different drug pretreatment interventions. The results are presented as mean + SD (n = 3). *P < 0.05
and **P < 0.01 compared with the control group; #P < 0.05 and ##P < 0.01 compared with the CSE group.
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antibody for TLR4 (eBioscience, San Diego, CA, USA)
and 5% CSE.

Real-time PCR analysis for measurement of TLR2, TLR4
and PPARy

Total RNA was prepared from AMs, using Trizol according
to the manufacturer’s instructions. PCR was carried out
with the One-Step qRT-PCR kit (TaKaRa Co, Dalian,
China) performed on an ABI PRISM 7500 instrument
(ABI, Foster City, CA, USA.), following the manufacturer’s
instructions. Primers for PPARy, TLR2, TLR4 and p-actin
using gene-specific primers (Table 1). The PCR parameters
were initial denaturation at 94°C for 2 min, followed by 40
cycles of 94°C for 30 s and 72°C for 60s. Gene expression
was quantified using a comparative critical threshold (CT)
method as described previously [17].

Flow cytometric analysis of the surface expression of
TLR2 and TLR4 in AMs

Frozen AMs were washed with PBS and pelleted by centri-
fugation (800 rpm for 5 min at 4°C). The samples were re-
suspended at 1 x 10° cells/2 ml RPMI-1640 medium, after
which a fluorescein isothiocyanate (FITC)-conjugated anti-
rat TLR2 mAb and a TLR4 mAb were added to the cells
for 60 min on ice, as instructed by the manufacturer. The

cells were then analyzed with FACS and Cell Quest
software.

ELISA for measurement of IL-8 and LTB4 in Bal fluid and
culture supernatants

The expressions of interleukin-8 (IL-8) and leukotriene
B4 (LTB4) in BAL fluid and culture supernatants were
determined using the QuantiGlo ET-1 Immunoassay
System (BD Biosciences, Bedford, MA), according to the
manufacturer’s protocol. BCA (bicinchoninic acid) pro-
tein assay was used to correct the homogenate superna-
tants of 50 mg lung tissues in the different groups as
measured by enzyme-linked immuno sorbent (ELISA).

Western blot analysis for PPARy, TLR4, NF-kB

20 pg of isolated total protein was subjected to electrophor-
esis on a 10% polyacrylamide (PAGE) gel and transferred
onto a nitrocellulose membrane by electroblotting. The
membrane was blocked for 1 hrs at room temperature with
blocking solution. The blot was then incubated overnight at
4°C with rabbit anti- PPARY, anti-TLR4, anti-I-kB or anti-
P65 antibody (1:500; Santa Cruz Biotechnology, Santa Cruz,
CA, USA). After three washing steps, the membrane
was incubated with secondary antibody (1:2000 dilution)
for 2 hrs at room temperature. Bound complex was de-
tected using enhanced chemiluminescence (Amersham
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Figure 4 The concentrations of IL-8 (a) and LTB4 (b) in BAL fluid
in different groups were measured by ELISA. The results are
expressed as the mean £+ SD (n=6). *P < 0.05 and **P < 0.01 compared
with the sham group; #P < 0.05 and ##P < 0.01 compared with the CS
only-exposed group.

Biosciences, NJ, USA). Densitometric techniques were per-
formed to quantify the protein band densities (Metamorph/
Evolution MP 5.0/B x 51), which were expressed as mean
relative densitometric units.

Results

ROSI attenuated CS induced histological changes

CS exposure induced airway inflammation accompan-
ied by focal emphysema. First, the airway wall may
have been thickened by inflammatory cell infiltrates
or structural changes. Second, the airway lumen was
occluded by mucous secretions. Third, alveolar attach-
ments became disrupted as a result of emphysema.
The sham group displayed no discernible histological
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Figure 5 Cell Supernatants were harvested to measure LTB4 (a)
and IL-8 (b) by ELISA. The results are expressed as the mean + SD

(n=13). *P < 0.05 and **P < 0.01 compared with the sham group;

#P < 0.05 and ##P < 0.01 compared with the CSE group.

changes. The ROSI exhibited a protective effect on
emphysematous changes and airway inflammation indu-
ced by CS exposure. And these effects were partially atte-
nuated by BADGE. Moreover, there was no difference
between CS group and BADGE groups. (Additional file 1:
Figure S2, Figure S3 and Table S1).

ROSI reduced the number of inflammatory cells present
in the BALF after CS exposure

As shown in Table 2, CS generally increased the counts
of total cells, neutrophil %, lymphocytes % and the num-
ber of AMs, and decreased AMs % count. Compared
to CS group, ROSI- treatment induced the reductions
of the counts of total cells and neutrophiles %. ROSI-
treatment tended to attenuate the reduction of AMs %
induced by CS exposure, however, none of differences
were statistically significant (P =0.06 > 0.05). There was
no significant difference between the BADGE- treated
and the CS only groups.
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Effects of PPARy ligands on the phagocytosis and viability
of AMs

In vivo, the AMs from the groups exposed to CS exhibited
decreased phagocytosis (Figure 1) and viability (Figure 2).
The AM-mediated phagocytosis at 3 hrs and 24 hrs showed
similar changes: the ROSI-treated group showed an in-
crease in phagocytosis and metabolic viability compared
with the CS group, while BADGE partially blocked the
ROSI-induced recovery in both phagocytosis and cell viabil-
ity. The effects of the combined ROSI plus BADGE treat-
ment on phagocytosis and cell viability were similar to the
effects of treatment with BADGE alone.

Likewise, the AMs in the primary culture presented
similar results in vitro. Both 15d-PGJ2 and ROSI at-
tenuated the decrease in cell viability induced by 1%,
5% and 10% CSE. And pre-treatment with BADGE
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counteracted the protective effect of 15d-PGJ2 and
ROSI in vitro (Figure 3).

PPARy ligands decreased CS-induced inflammatory
cytokine production

In vivo, CS exposure increased focal emphysema as well
as IL-8 and LTB4 levels (Figure 4) in the BAL fluid com-
pared to the sham group. Treatment with ROSI de-
creased the secrections of IL-8 and LTB4 induced by CS,
and co-treatment with BADGE weakened above effects
of ROSI on cytokines (LTB4 and IL-8).

In vitro test, similar to the results in vivo, 5% CSE
exposure increased significantly the IL-8 and LTB4 se-
cretions by AMs. ROSI and 15d-PGJ2 attenuated the
CSE-induced releases of LTB4 and IL-8 (Figure 5).

|||||||||||||||||||I| ||||||||||||||ii| ||||||||||||||i||
[}

1024

RB group
—— BADGE group
:‘ —— ROSI group

Events

sham group

Mean fluorescent intensity (MFI)

107 10°

Empty

10’

Figure 6 Expression of TLR4 in AMs gained from each group. a: Immunofluorescence of AMs from each group of rats with antibodies to
TLR4 (green). Representative TLR4 expression was shown in the negative control group (a), the sham (b), CS (c), ROSI (d), RB (e) groups and
BADGE (f). Shown are representative images of five rats in each group; b:
in each group. c: representative flow cytometry histogram showing surface protein expression of TLR4 in AMs. The data are representative of six
rats in each group. The results are presented as mean + SD. *P < 0.05 and ** P <0.01 compared with the sham group; #P < 0.05 and ##P < 0.01

compared with the CS group.
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Involvement of TLR4 in CS-induced inflammatory
cytokine production

We investigated whether TLR4 were involved in CS-
induced increases of inflammatory cytokines. We found
that CS exposure increased TLR4 expression (Figures 6, 7,
8 and 9) as well as IL-8 and LTB4 levels in vivo and
in vitro. And pretreatment with neutralizing TLR4 antibody
(10 ug/ml) deduced the releases of IL-8 and LTB4 induced
by 5% CSE (Figure 10). The effect of neutralizing TLR4
antibody on cytokines was similar to that of 15d-PGJ2 or
ROSI. Compared to treatment with 15d-PGJ2 or ROSI alone,
there was a trend toward a reduction of LTB4 (695.6 + 52.84
vs 671.1 £ 162.22, 802.4 + 88.76 vs 754.9 + 101.27) and IL-8
(296.7 £30.38 vs 294.9 +43.30, 3034 +38.68 vs 269.6 +
59.10) in presence of neutralizing TLR4 antibody, but none
of differences were statistical significance.

PPARYy ligands attenuated the expression of TLR4 at
message and protein levels as well as cell surface

level in AMs

We found that CS downregulated PPARy expression
while upregulated TLR2 and TLR4 expression in AMs
in vivo. Compared to CS exposure, treatment with ROSI
increased the expressions of PPARy, but decreased the
expression of TLR2 and TLR4 in vivo (Figures 6, 11
and 12). Similar to the in vivo study, 5% and 10% CSE
decreased mRNA and protein expressions of PPARy,
while increased mRNA, protein expressions and surface
levels of TLR4 in vitro (Figures 7 and 8). Pretreatment
with either ROSI or 15d-PGJ2 attenuated the mRNA
and surface levels of TLR4 (but not TLR2) induced by
5% CSE (Figure 9 and Additional file 1: Figure S4), and
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Figure 7 The expressions of mRNA of TLR2, TLR4 and PPARy in
AMs. AMs extracted from normal rats and were treated with different
concentrations of CSE for 12 hrs in vitro. The results are expressed as
the mean = SD (n = 3). The mRNA was determined by real-time PCR.
*P <005 and **P < 0.01 compared with the control group.
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the effects of the PPARYy agonists were blocked by treat-
ment with BADGE in vitro.

We next investigated whether NF-kB were involved in
PPARy mediated inhibition of TLR4. CS enhanced IxBa
degradation and increased P65, TLR4 in AMs in vivo and
in vitro. And pretreatment with PPARY ligands (ROSI or
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Figure 8 The protein expressions of TLR2, TLR4 and PPARy in
AMs. AMs extracted from normal rats and were treated with different
concentrations of CSE for 12 hrs in vitro. The protein expression was
determined by western blotting. a: Representative Western blot of TLR2,
TLR4, PPARy and actin. Image analysis of PPARy (b), TLR4 (c) and TLR2
(d) determined by densitometry. The results are expressed as the

mean + SD (n=3). *P <005 and **P < 001 compared with the control group.
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15d-PGJ2) decreased IkBa degradation, and inhibited TLR4
expressions induced by CS (Figures 13 and 14). We also
found that NF-kB inhibitor PDTC reversed the increases of
TLR4 induced by 5% CSE (Figure 15).

Discussion

Cigarette smoking is a major factor influencing ongoing
inflammation in the airways and lung parenchyma, with
the severity of airflow limitation being correlated with
the degree of pulmonary inflammation. Cigarette smoke
causes airway inflammation by activating macrophages,

neutrophils, and T lymphocytes. As the first line of
defense against inhaled constituents, AMs are directly
involved in the secretion of cytokines, including IL-8
and LTB4, and the degradation of the extracellular
matrix, and can enhance emphysema [18-20]. AMs are
thought to be the main orchestrators of the chronic in-
flammatory response and tissue destruction observed in
COPD patients [21]. Similarly, our studies observed that
exposure to cigarette smoke induced emphysema (data
shown in the Additional file 1), while increased the total
cells number counts and number of AMs in BAL fluid,
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Figure 10 Cell Supernatants were harvested to measure IL-8 (a)
and LTB4 (b) by ELISA. The results are expressed as the mean + SD
(n=4).*P <005 and **P <001 compared with the sham group; #P < 0.05
and ##P < 001 compared with the 5% CSE group.

decreased AMs phagocytosis and AMs viability, and in-
creased IL-8 and LTB4 releases by AMs in vivo and
in vitro. Thus, AMs were thought to be a main compo-
nent of the inflammatory response to cigarette smoke.
The nuclear hormone receptor PPARy plays an im-
portant role in a diverse range of biological processes,
including the prevention of acute inflammation. Peroxi-
some proliferator-activated receptors (PPARs) exert anti-
inflammatory effects in several cell types, such as
smooth muscle cells, endothelial cells, and macrophages.
Several studies have demonstrated that the in vivo
administration of PPARy ligands inhibited adjuvant-
induced arthritis, colitis, and atherosclerosis in animal
models [22-24], raising the possibility that PPARy might
be a critical component of the inflammatory process.
Strong expression of PPARy was seen in freshly isolated
human AMs. It had been shown in mouse and human
that PPARy deletion from AMs was associated with
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resolution of inflammation and airway immunity [25],
and PPAR-y ligands upregulated phagocytosis of AMs
[26,27]. The findings above suggested that it may be an
protective function of PPAR-y agonists in promoting in-
flammation resolution in AMs.

Some researchs showed that PPARYy expression levels
was reduced in lungs of patients with moderate and severe
COPD [28], in macrophages gained from BALF of COPD
patients when stimulated with IFN-y [29], and in the skel-
etal muscle of COPD patients [30], whereas it was in-
creased in the lungs of rats which treated with CS+
Lipopolysaccharides (LPS) and patients with mild COPD.
Conversely, proportion of macrophages staining for PPAR-
Y protein in tissue was similar in COPD patients [26]. In
the present study, we investigated biological actions of
PPAR-y on cigarette smoke induced pulmonary inflamma-
tion in AMs. We observed that CS decreased PPARY ex-
pression in AMs in vivo and in vitro. Here, we also found
that the administration of PPARy ligands (ROSI or 15d-
PGJ2) attenuated the CS-induced inflammation in AMs
in vivo and in vitro: compared to CS-treatment, the de-
creases in pro-inflammatory cytokines, the reductions in
obvious morphological changes caused by increases in an
emphysema-like phenotype and totol cell number in BAL
fluid, and the increases in the phagocytosis and viability of
AMs. Our findings demonstrated that PPARy had anti-
inflammatory effects on CS-induced inflammation, and it
might be participated in the pathogenesis of COPD.

TLR-mediated signaling might play a crucial role in CD-
induced inflammatory production [31-33]. In addition,
some report suggested that TLR2 and TLR4 genes are as-
sociated with (changes in) numbers of inflammatory cells
as well as with decline of lung function [34]. Our results
showed that the surface protein expression of TLR4, but
not of TLR2, was increased in AMs as a response to CS,
accompanied with increased inflammatory cytokins secre-
tion in vivo and in vitro, confirming the results of several
reports that have demonstrated changes in the expression
of TLR4 in the epithelial cells and monocytes of COPD
patients [35-37]. In the present study, we used neutralizing
antibody for TLR4 to investigate the role of TLR4 in
CS-induced inflammation in AMs. We found that CS up-
regulated both TLR4 expression and IL-8 and LTB4 re-
leases in a dose-dependent manner. And neutralizing TLR4
antibody partially suppressed the inflammatory cytokines
induced by 5% CSE. These observations indicated that
TLR4-mediated inflammatory signal was implicated in the
CS-related inflammatory pathogenesis.

The precise mechanism by which PPARy exerts anti-
inflammatory effects in AMs is poorly understood. We
explored the PPARYy signaling pathway and searched for
a relationship with the TLR4 signaling pathway in vivo
and in vitro. Therefore, we further investigated the ef-
fects of two different PPARy ligands, 15d-PGJ2 and
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ROSI, on the expression of TLR4 in vitro. We found that
treatment with the PPARy ligands reversed the CS-
induced increase in TLR4 expression, confirming the re-
sults of other studies that investigated colon epithelial
cells [38]. In this study, the effects of PPARy ligands on
TLR4 and cytokines secretions could be partially attenu-
ated by treatment with PPARy antagonist (BADGE).
These data suggested that the effects of 15d-PGJ2 and
ROSI on the upregulations of TLR4, IL-8 and LTB4 in-
duced by CS were partially PPARy-dependent. Modula-
tion of IL-8 and LTB4 production of PPARYy ligands was
also studied in the presence of TLR4 inhibitor. Our data
showed that neutralizing TLR4 antibody significant
inhibited the cytokin production, but could not enhance
the effects of PPARy ligands on cytokine release. We
speculated the reasons of this phenomenon as followed:
The finite effect of CSE on TLR4 expression might in-
duce ceiling phenomenon. Thus the effect of PPARy li-
gands on TLR4 did not stack with other TLR4 inhibitor

increasing effects. The founding provided additional evi-
dence for the role of the PPARy-TLR4 pathway in
inflammation.

Previous research has indicated that CS induces the re-
lease of pro-inflammatory cytokines in the monocyte-
macrophage MonoMac6 cell line by activating NF-xB
[21], and NF-kB plays a crucial role in regulating many
proinflammatory mediators, including TLR4 [39]. We in-
vestigated the expression of TLR4 in the presence or ab-
sence of the NF-«B inhibitor PDTC in vitro. We found
that PDTC could significantly reduce TLR4 protein ex-
pression induced by CS, possibly via some direct inhibi-
tory effect of blockage of NF-kB on TLR4 expression.
Thus, the inhibition of NF-kB by PDTC verified the im-
portance of the NF-kB-TLR4 pathway in CS-induced in-
flammation. PPARy have been shown to interact directly
with intracellular proteins and regulate signaling pathway
through modifying protein function, including the inhib-
ition of IkBa degradation and the reduction of RelA (p65)
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nuclear translocation. The current in vitro experiment
showed that both 15d-PGJ2 and ROSI treatment delayed
CS-induced IkBa degradation and increased P65 expres-
sion in AMs. Based on these reports and our study, it was
possible that PPARy ligands (15d-PGJ2 and ROSI) may as-
sociate with certain signaling molecules (NF-«B) in the
TLR4 signaling pathway. However, the exact mechanism
need further study.

Some of the limitations of our study should be acknowl-
edged. First, the study utilized AMs from Wistar rats. It is
not known whether the same results can be observed in
human cells, but these findings suggest that animal model
therapeutic trials for smoke-induced lesions might better
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Figure 13 Western blot analysis of IkBa degradation and P65
expression in AMs. The data are representative of 6 rats in each
group. The cells were harvested from each group. Four more
experiments gave similar results. *P < 0.05 and **P < 0.01 compared
with the sham group. #P < 0.05, ##P < 0.01, compared with the

CS group.

predict which drugs will be effective in treating COPD if
the trials include an intervention arm that starts well into
the exposure period. In addition, AMs are the only cells in
the myeloid lineage that contain liver-type fatty acid bind-
ing protein (L-FABP) [40]. L-FABP is necessary for the nu-
clear signaling of PPARy [41]. A previous study has shown
that AMs constitutively express high levels of PPAR-y.
Therefore, we investigated the function of PPARy in AMs.
AMs are known to vary from other cells, including PMs,
making it difficult to ascertain whether the protective role
of PPARYy is limited to AMs or not. Second, our study em-
phasized the expression of only one PPAR subtype, despite
the anti-inflammatory effect of the other subtypes. Third,
We used rosiglitazone at the lower doses that are effective
in animal models [42-44]. Although, a previous study
found that only higher doses of the PPARy ligands could
affect viability and systemic side effects. Our study will fur-
ther investigate the relationship between the dose of the
PPARYy ligands and the side effects; Finally, inflammation
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is a complicated, interconnected network, and our study
only investigated IL-8 and LTB4 from a vast array of other
cytokines.

Conclusions

We proved that PPARy ligands inhibits CS-induced
inflammation through a PPARy-dependent mechanism
that functions downstream of TLR4 and activates NF-
kb transcriptional activity. Further investigation into
the mechanisms by which PPARy regulates AM func-
tion will improve our understanding of the role of
PPARy in chronic airway inflammation.
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Figure 15 The effect of PDTC on the PPARy-mediated inhibition
of TLR4 in vitro (n=3). a The AMs in response to 15d-PGJ2 and
PDTC pretreatment interventions. b The AMs in response to ROSI
and PDTC pretreatment interventions. *P < 0.05 and **P < 0.01 compared
with the CS only-exposed group; #P < 0.05 and ##P < 0.01 compared

with the PPARy ligands (15d-PGJ2 and ROSI) group.

Additional file

Additional file 1: Figure S1. Prime-boost protocols for the animal
experiments. Male Wistar rats were randomized into five groups of 12
animals each: sham; cigarette smoking (CS) only-exposed; rosiglitazone
(ROSI)-treated; BADGE-treated; and RB-treated. The rats were sacrificed 1
week after the last smoke exposure. Figure S2. Photomicrographs of
HE-stained lung tissue from sham (a), CS only-exposed (b), ROSI-treated (c),
BADGE-treated (d), and RB-treated (e). HE staining; original magnification x 100.

1
Figure S3. Photomicrographs of HE-stained lung tissue from sham (a),
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CS only-exposed (b), ROSI-treated (c), BADGE-treated (d), and RB-treated (e).
HE staining; original magnification x 400. Figure S4. The effect of 5% CSE
on TLR2 expression in vitro. The results are expressed as the mean +
SD (n=4). Figure 10a and Figure 10b: representative flow cytometry
histogram showing TLR2 expression on AMs treated with 5% CSE for 12 hrs.
Representative flow cytometry histogram showing TLR2 expression on AMs.
Figure 10c: the expressions of mMRNA of TLR2 in AMs. The mRNA was
determined by real-time PCR. *P <0.05 and **P <0.01 compared with
the CSE-exposed group. Table S1. Morphometric results (mean linear
intercept [MLI] and mean alveolar numbers [MAN]) in different groups.
Table S2. Pulmonary function in CS group and Sham group.
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