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complex lung disorder
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Abstract

complex disorder such as COPD.

Next generation sequencing

Transposable elements (TEs) are a class of mobile genetic elements (MGEs) that were long regarded as junk DNA,
which make up approximately 45% of the genome. Although most of these elements are rendered inactive by
mutations and other gene silencing mechanisms, TEs such as long interspersed nuclear elements (LINEs) are still
active and translocate within the genome. During transposition, they may create lesions in the genome, thereby
acting as epigenetic modifiers. Approximately 65 disease-causing LINE insertion events have been reported thus far;
however, any possible role of TEs in complex disorders is not well established. Chronic obstructive pulmonary
disease (COPD) is one such complex disease that is primarily caused by cigarette smoking. Although the exact
molecular mechanism underlying COPD remains unclear, oxidative stress is thought to be the main factor in the
pathogenesis of COPD. In this review, we explore the potential role of oxidative stress in epigenetic activation of
TEs such as LINEs and the subsequent cascade of molecular damage. Recent advancements in sequencing and
computation have eased the identification of mobile elements. Therefore, a comparative study on the activity of
these elements and markers for genome instability would give more insight on the relationship between MGEs and
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A) Transposable elements and their mobility
Transposable elements (TEs) account for nearly half
(approximately 45%) of the human genome, which is in
contrast to the functional genes that constitute a smaller
proportion (approximately 5%) of the human genome
[1]. Based on the mechanism of transposition, TEs are
classified as class 2 elements or DNA transposons (‘cut
and paste’ mechanism of DNA intermediates) and class
1 elements or retrotransposons (‘copy and paste’ me-
chanism of RNA intermediates) [1,2]. Of these, retro-
transposons are the most important TEs because they
can amplify and increase the host genome size. This
ability to move enables class 1 elements to strongly
affect genome evolution. Retrotransposons are further
subdivided into long terminal repeat (LTR) elements and
non-LTR elements.
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Long interspersed nuclear elements (LINEs) are non-
LTR elements that lack LTRs at their ends. Most LINEs
belong to the LINE-1 (or L1) family and are the only
TEs capable of transposing autonomously, which cons-
titute approximately 17% of the human genome [1,3].
Although majority of L1s are rendered inactive as mo-
lecular fossils by 5° truncations and inversions [4], there
are still approximately 80-100 active retrotransposition-
competent Lls (RC-L1s). An active L1 is approxi-
mately 6 kb in length, containing a 5-UTR, 2 open
reading frames (ORF1 and ORF2) and a 3'-UTR with
the characteristic poly (A) tail (Figure 1a) [3,5]. L1
elements either have cis or trans preference [6]. Pro-
teins coded by Lls with cis preference (ORFlp and
OREF2p) act on other L1 RNAs to aid nuclear import
and integration into the genome (Figures 1b, 2a) [7].
Proteins coded by L1s with trans preference assists in
the translocation of other non-autonomous elements
such as short interspersed nuclear elements (SINEs)
(Figure 1a) [6].
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Figure 1 a) List of mobile elements, structure and its distribution in the human genome. Reference sequence (HGR) and their structure
along with examples (ltalicized) Abbreviations: IR (Inverted repeats); LTR (Long Terminal Repeat); Gag (Group-specific antigen); Pol (Polymerase);
Env (Envelope protein); UTR (Untranslated region); EN (Endonuclease); RT (Reverse transcriptase); C (Cysteine — rich domain); ORF (Open reading
frame); A, (Poly (A) tail); A & B (Sequences of RNA pol Il promoter); Ins (Insertional sequence); TSD (Target site duplication); VNTR (Variable
number of tandem repeats); SINE-R (domain derived from previous translocation). Figure 1b) Mobile element insertion by Target Primed Reverse
Transcription (TPRT) method. i) Endonuclease (EN) coded by transposons cleaves the first DNA strand of the target site; ii) Cleavage of the
second DNA strand; iii) L1 RNA anneals to the nick site; iv) Reverse transcription is initiated by retrotransposons coded reverse transcriptase (RT);
v) Integration; vi) DNA synthesis resulting in the new insert with target site duplications at the flanks of newly integrated region.

B) Transposition and genome instability

Genome integrity is a crucial determinant in passing
down genetic information from one generation to an-
other. TE-associated genetic alterations such as aberrant
mRNA splicing, introduction of premature stop codon
and transcriptional disruptions threaten this integrity.
Double-stranded breaks (DSBs) generated by TEs [8]
produce tracts of non-allelic sequences that can derange
major homology-based repair system (homologous re-
combination repair, HRR). This in turn can result in
large-scale insertion/deletions (INDELS), inversions and
chromosomal rearrangements through non-allelic hom-
ologous recombination (NAHR) [9]. Thus far, more than
25 insertion-mediated disorders have been reported [10].
Furthermore, TEs play a crucial role in the genesis of
structural variations such as microsatellites repeats [11].
For instance, before integration, L1s and SINEs undergo
3" extension to generate a 3'-A-rich tail [3,5], which
directs further integration of TEs [12]. These newly in-
tegrated retrotransposons can readily mutate to pro-
microsatellite sequences and turn in to highly unstable
structures by processes such as polymerase slippage [13],
resulting in microsatellite instability (MSI). Such an as-
sociation has been reported in microsatellite-initiating
mobile elements (mini-me) of dipteran taxa [14] that

carry pro-microsatellite sequences. After the insertion of
mini-me into the genome, slippage-associated mutation
introduces variation in these loci to generate micro-
satellites. The mechanism observed in dipteran genomes
seems to be common among eukaryotes where elements
with cryptic repeats tend to decay into microsatellites
through insertion-mediated mutations [14].
Microsatellites exhibit high mutation rate compared to
point mutations, which makes them a potent regulator
of gene expression [15]. MSI, a type of genomic ins-
tability, is a modulator in several malignant and benign
diseases caused by the instability in tandem repeats
(2—6 bp) of microsatellites [16]. MSI is studied by amp-
lifying microsatellites that are proximal to a putative
gene and examining the shift in electrophoretic pattern
caused by the addition or deletion of repetitive units
[17]. Genetic studies on MSI have already shown its im-
plications as acquired mutations in benign lung condi-
tions [18] and as a potential marker for asthma, chronic
obstructive pulmonary disease (COPD) and idiopathic
pulmonary fibrosis [17,19,20]. Epithelial cells lining the
trachea, bronchi and bronchioles of the lungs are prone
to such mutations [21]. These mutations can persist
even after smoking cessation, possibly explaining the
non-intractable inflammation condition in ex-smokers.
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Figure 2 a. Life cycle of L1 retrotransposon. i) Transcription; L1 life cycle starts with the transcription of active L1 in the genome by
recruitment of transcription factors, followed by polyadenylation and splicing to form L1 RNA, which is nuclear exported. ii) Translation;

Active LTRNA codes for the ORF1 and ORF2 protein that binds with other retrotranscription competent L1 (RC-L1) RNA to form L1RNP
(Ribonucleoprotein) complex, which is nuclear imported for retrotransposition. iii) Insertional events; results in DSBs by the activity of L1 ORF2
endonuclease followed by, iv) integration; lesions created by L10RF2 activity is repaired and integrated in to the genome by TPRT. v) Heavy
metals and other smoke particles can interact with L1 lifecycle either at the early stages by altering the methylation profile (epigenetic alteration)
resulting in active L1 or at the late repair stages by impairing repair pathway resulting in somatic mutation accumulation (Granulated cells).

b. Effect of somatic mutation accumulation on disease onset and exacerbation. Mutated somatic cells are recognized by the host system as
foreign cells and are presented by antigen presenting cells (APCs) triggering a cascade of pathways involving T helper cells (Th) and cytotoxic

T cells (Tc), which migrates to the infected site and releases various transmitters inducing cell death. Failure in effective efferocytosis results in
aberrant remodeling of the structure and the characteristic onset of COPD. Mutant cells can interact with transcription factors to increase
the release of cytokines and the consequent recruitment of inflammatory cells thereby destabilizing the immune balance and manifest
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Studies on bronchial epithelium of smokers [22] further
validate this theory of epithelium cells as the prime cells
of MSI activity. Furthermore, MSI is significantly associ-
ated with exacerbation frequency in patients with COPD
[23]. COPD exacerbation is caused by the acute worsen-
ing of respiratory symptoms along with physiological de-
teriorations. Because its frequency is related to disease
severity [24], the possible role of MSI in regulating this
frequency should be an interesting avenue to study.

C) Transposable elements and complex lung
disorder

COPD is a complex lung disorder and is the leading
cause of morbidity and mortality. The 2011 WHO es-
timates indicate that 64 million people have COPD;
moreover, COPD is reported to cause 3 million deaths
worldwide, making it the fifth leading cause of death
worldwide [25]. COPD manifests as co-occurrence of
conditions such as chronic bronchitis (inflammation of
the bronchi) and emphysema (alveolar wall destruction)

[26]. Cigarette smoking is the most common cause of
COPD and is associated with inflammation, high cell
turnover and oxidative stress, leading to proteolytic
damage of the lungs. Nearly all smokers develop inflam-
mation, but only a fraction (10%-15%) develop COPD
and even fewer (1%—3%) develop lung cancer [21]. This
peculiar distribution urges one to postulate that acquired
(somatic) mutations may be a prerequisite in the pa-
thobiology of COPD. Estimates show that genetic alte-
rations accounts for up to 50% of COPD cases [27].
Marked variability in the development of airflow ob-
struction among smokers [28], familial aggregation of
pulmonary function in monozygotic and dizygotic twins
[29], and differences in clinical outcome compared with
controls in first-degree relatives [30] are some of the
facts that support the claim of genetic factors in COPD
development. In addition, linkage and candidate gene
association studies have identified an array of genetic
determinants in the pathogenesis of COPD [26]. Al-
though there are reports on genomic instability events
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in complex disorders such as COPD and cancer [15,31],
the association of these events with TE activity remains
obscure. Therefore, it is possible that TEs such as L1s
may play a vital role in disease phenotype by introdu-
cing somatic mutations and thereby affecting genome
integrity.

TEs can be acquired as somatic mutations over a life-
time; presence of L1 activity in tumour cells but not in
the surrounding healthy cells supports this hypothesis
[32]. Propagation of TEs in the somatic line is facilitated
by their expansion in germ cells or in the embryonic
stage. In addition, retrotransposition events occurring in
germ cells greatly increase the chance of TE propagation
to further generations [33]. For instance, family studies
on ocular disease show that mothers of patients exhibit
both somatic and germline mosaicism for L1 insertion
in the disease gene, suggesting the possibility of retro-
transposition during embryogenesis [34]. Retrotrans-
position events occurring during developmental stages
can create somatic mosaicism. Kano et al. (2009) studied
such occurrences where L1 RNA was found in embry-
onic cells and adult tissues such as the lung [35]. Further
quantitative analysis showed that frequency of retro-
transposition was higher in somatic tissues as in repro-
ductive cells. A recent study supports this claim because
in this study, the level of L1 RNA in the oesophagus and
lung was same as that in HeLa cells [36]. Ever increasing
results from molecular studies on transgenic models em-
phasise the risk of such genetic alterations in the devel-
opment of organs. It is possible that active L1-mediated
retrotransposition can disrupt the genes that regulate
lung growth in early life, resulting in developmental de-
formity. This may further lead to lung damage by host
machinery (protease/anti-protease imbalance) or by en-
vironmental factors (cigarette smoking, pollutants). For
instance, it is already known that epigenetic changes
during lung development play a vital role in the develop-
ment of bronchopulmonary dysplasia (BPD) [37] and
that any associated lower lung functions can ultimately
result in the development of COPD [38].

D) Epigenetics of transposable elements

The study of heritable non-coding variations is a hot
topic, particularly in cancer biology. DNA methylation is
one such epigenetic regulator that plays a decisive role
in developmental biology and pathobiology by processes
such as X-chromosome inactivation and retrotrans-
cription silencing [39]. Approximately one-third of the
DNA methylation occurs in mobile elements such as
Alu and L1s [40], thus making them inactive and surro-
gate markers of global methylation analysis. These sites
can be hypomethylated by environmental influences,
leading to genome instability and altered gene expres-
sion [41]. Reports on the association between global

Page 4 of 8

hypomethylation and genomic instability [20] suggest
that L1s that are hypomethylated in airway epithelial
cells are associated with higher levels of microsatellite
instability. A recent study supports this hypothesis by
showing the association between hypomethylation of L1
elements and faster rate of decline in lung function mea-
sures such as FEV1 and FVC [42]. Because lung function
tests are a major determining factor for diagnosing lung
disorders and measuring their severity, the impact of
hypomethylation on lung function is intriguing. Other
environmental factors such as wood smoke exposure
may also contribute in this type of association [43].
Environmental factors are a known source of oxida-
tive stress, and any associated epigenetic alterations at
the microsatellite level manifests as acquired muta-
tions, resulting in MSI incidence [44]. Such instability
events have already been studied in COPD patients
by examining the by-product of oxidant-DNA damage
[8-hydroxydeoxyguanosine (8-OHdG) marker] [31].

E) Oxidative stress and hypomethylation

In recent years, there has been an interest in studying
the effects of oxidative stress on epigenetic gene regula-
tion by DNA methylation. Oxidative stress caused by
oxidant/anti-oxidant imbalance plays a central role in
the pathogenesis of COPD [45]. Oxidant release results
in the inactivation of anti-proteases, neutrophil seques-
tration and gene expression of pro-inflammatory cyto-
kines. Cigarette smoke is an exogenous source of such
oxidants that contain a high proportion of free radicals,
both in tar and gaseous phase. The smoke interacts with
the epithelial lining fluid to form cigarette smoke con-
densate, which in turn produces more reactive oxygen
species [46]. In addition, under stress, inflammatory cells
(neutrophils and macrophages) can act as endogenous
source of oxidants, which in turn damage the compo-
nents of lung matrix (emphysema) by proteolytic clea-
vage [45].

Under oxidative conditions, GC-rich sites are highly
susceptible, and guanine with the lowest redox potential
[47] oxidizes to guanyl neutral radical. These neutral
radicals react with superoxides from cigarette smoke to
form 8-OHdG [48]. 8-OHdG, a stable oxidation product,
inhibits the binding capacity of DNA methyltransferase,
resulting in the demethylation of guanine [49] and cy-
tosine residues [50]. Furthermore, 8-OHdG can cause
transversions (G > T) that reduce methylation hotspots
(CpG dinucleotides), leading to more hypomethylation
[51]. Because the susceptibility to oxidative stress de-
pends on the base composition, clusters of GC-rich CpG
dinucleotides can serve as major targets. For instance,
the L1 mRNA is bicistronic (ORF1 and ORF2) in nature,
with 5'-UTR having a high GC content (approximately
60%) [52,53]. In one study on bladder cancer, patients
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with increased oxidative stress exhibited hypomethy-
lation of L1 elements [54]. Similarly, global methylation
analysis on lung adenocarcinoma samples showed hy-
pomethylation of L1s that resulted in increased mobility
and subsequent gene disruption [20]. Oxidative stress-
induced demethylation can be a result of environmental
factors such as smoke exposure, ageing, UV radiation
and lifestyle factors. For instance, prenatal exposure to
tobacco smoke is significantly associated with global
(L1s and Alu) demethylation in adulthood [55]. In ad-
dition, cigarette smoking along with the inhalation of
traffic particles decreases the methylation of L1 in
blood DNA [56]. All these studies point to oxidative
stress and its role in the methylation pattern of TEs.
Under oxidative stress, these sites can undergo hypo-
methylation, resulting in the activation and transpo-
sition of Lls (Figure 2a); this can lead to deleterious
structural alterations in the genome (mutant cells) [41]
followed by a cascade of signalling events (Figure 2b).
Such events can bring in cell death and/or inflammatory
response with a continuous cycle of inflammation leading
to continued decline of lung function. All these studies
clearly suggest that these are not isolated events in
the development of COPD and that oxidative stress
mediated epigenetic changes plays a central role in
the pathogenesis.

F) Identification of transposable element activity
in the genome

Marked variability in the distribution of active TEs
between individuals is a direct consequence of their ac-
tivity in somatic tissues and low selection pressure en-
countered by these elements. It enables them to evolve
rapidly at different sites that make their identification in
the genome arduous. Over the last 2 decades, new ap-
proaches have been applied for identifying mobile ele-
ments. Earlier studies mostly used previous knowledge
of mutant genes in characterizing the mobile elements
by cloning and sequencing [11,57], which was further
refined by the advent of tools such as PCR [58]. The
sheer complexity and vast distribution of these elements
makes their identification a mammoth task, with massive
data pouring in from new applications such as next-
generation sequencing (NGS).

A few of these methods such as de novo discovery and
homology-based methods are briefly discussed. The al-
gorithm for detecting inserts in de novo method usually
involves reading shotgun sequence reads and matching
the repeat sequences, followed by clustering the matched
pairs to give a consensus sequence of a TE family [59].
Unlike the de novo sequencing method, homology-based
approach uses previous knowledge of TE sequences,
such as sequence similarity, in identifying similar class
TEs with a low copy number. Figure 3 discusses the
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main theme of computational study in repetitive ele-
ments; putative L1 insertions are identified by compar-
ing clusters of consensus alignment from the same
sequence reads. A sequence pair read that is aligned to
the reference genome is concordant; hence, discordant
alignment that does not match paired-end expectations
could represent novel structural variant (SV) sites [60].
Recent studies enhanced the sensitivity and specificity of
this procedure by using refined versions of the algorithm
that targets the diploid nature of the genome [61]. As a
valuable addition to the sequence paired-end read align-
ment, Ewing et al. (2010) used the orientation and struc-
tural characteristics of the reads to identify 1016 novel
L1 insertions [62].

Research interest in SVs has increased exponentially
over the past decade, and with the advent of screening
technologies, approximately 5000 insertions have been
reported thus far [63]. Because most reported inser-
tions are scattered across other databases leading to
redundancy, a compiled non-redundant list is emi-
nent. Database of Retrotransposition Insertion Poly-
morphism (DbRIP) represents a comprehensive list of
human genome variations (SINE, Alu and LINE). Da-
ta from published journals are collected and compiled
into a non-redundant list of RIPs. The design of the
database is based on simple genome browser style
with graphical visualization of RIP for easy navigation
and information retrieval. Classification of reported
RIPs is based on class, family and subfamily, inclu-
ding data on the size of insertion, chromosomal po-
sition, disease association and PCR conditions with
expected amplicon sizes and reference(s). Such a tool,
with effective documentation, gives a much clearer
picture of RIPs in the line of SNPs and CNVs. Now,
with the advent of next-generation platform and or-
ganized data, it is possible to study the role of these
elements in shaping the genome structure and their
functional impact.

G) Summary and concluding remarks

At least 4 principal mechanisms, inflammation, prote-
ase-anti-protease imbalance, oxidative stress and apop-
tosis, have been identified in the pathogenesis of COPD.
Of these, the oxidative stress plays a pivotal role in
COPD pathogenesis because it directly injures the res-
piratory tract and regulates other mechanisms.

Oxidative stress elicits inflammatory response and
inhibits the DNA repair system in a dose-dependent
manner that may be altered at the microsatellite level,
resulting in genome instability. The vast distribution and
complexity of mobile genetic elements in the genome
makes another strong argument in genomic instability.
In addition to acting as insertional mutagens, alterations
such as deletions, inversion and duplication can be
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attributed to the translocation of these active mobile ele-
ments. Studies on lung barrier epithelial cells have
proven the effect of airway inflammation and oxidative
stress on genome instability. Upon exposure to cigarette
smoke, barrier epithelial cells undergo epigenetic alte-
rations that can trigger mobile elements such as Lls,
thereby influencing multiple molecular pathways that
enhance inflammatory signals. Novel L1 sites can be

identified by performing whole genome analysis of epi-
thelial cell DNA from smokers (COPD), ex-smokers (no
COPD) and healthy controls against a reference genome.
Such new L1 insertions can be compared against the
profiles of microsatellite markers in patient samples to
study the relationship between mobile genetic elements
and genome instability and their potential role in a com-
plex disorder such as COPD.
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