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Abstract

Background: The aim of this manuscript was to characterize airway ceramide profiles in a rodent model of
elastase-induced emphysema and to examine the effect of pharmacological intervention directed towards
ceramide metabolism.

Methods: Adult mice were anesthetized and treated with an intratracheal instillation of elastase. Lung function was
measured, broncho-alveolar lavage fluid collected and histological and morphometrical analysis of lung tissue
performed within 3 weeks after elastase injection, with and without sphingomyelinase inhibitors or serine
palmitoyltransferase inhibitor. Ceramides in broncho-alveolar lavage (BAL) fluid were quantified by tandem mass
spectrometry.

Results: BAL fluid showed a transient increase in total protein and IgM, and activated macrophages and
neutrophils. Ceramides were transiently upregulated at day 2 after elastase treatment. Histology showed persistent
patchy alveolar destruction at day 2 after elastase installation. Acid and neutral sphingomyelinase inhibitors had no
effect on BAL ceramide levels, lung function or histology. Addition of a serine palmitoyltransferase inhibitor
ameliorated lung function changes and reduced ceramides in BAL.

Conclusions: Ceramides were increased during the acute inflammatory phase of elastase-induced lung injury. Since
addition of a serine palmitoyltransferase inhibitor diminished the rise in ceramides and ameliorated lung function,
ceramides likely contributed to the early phase of alveolar destruction and are a potential therapeutic target in the
elastase model of lung emphysema.
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Background
Chronic Obstructive Pulmonary Disease (COPD) is a
common and increasing source of morbidity and mortal-
ity in the developed world [1] and is associated with a
large cost burden [2]. Pulmonary emphysema, an im-
portant component of COPD, is caused by permanent
destruction of alveoli, airflow obstruction and lung
hyperinflation, leading to a decreased lung function and
breathlessness. The pathogenesis is related to smoke ex-
posure, but why only a minority of all smokers develops
emphysema remains unclear. Reports suggest that in-
flammation is partly responsible. The inflammatory
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infiltrate seen in emphysema is similar to that found in in-
fection and correlates to the extent of emphysema [3],
while the degree of cell death correlates to the amount
of inflammation [4]. In humans, airway inflammation
persists for many years after smoking cessation [5].
Sphingolipids are important structural components of bio-
logical membranes and have recently been shown to serve
as messenger molecules in cell proliferation, apoptosis,
cell contact and adhesion, endothelial barrier function and
during inflammation [6-14]. Ceramide is the central mol-
ecule in the sphingolipid pathway [15] and is formed ei-
ther de novo from the condensation of palmitate with
serine via the activity of a serine palmitoyltransferase
(SPT), by the salvage pathway via sphingosine or by deg-
radation of sphingomyelin by sphingomyelinase (SMase)
[16]. Ceramide is degraded by ceramidase to sphingosine
which can be phosphorylated to sphingosine-1-phosphate
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(S1P) [17]. Ceramide and S1P form a rheostat [17,18]
whereby ceramide stimulates apoptosis and cell cycle arrest
while S1P stimulates cell survival and proliferation.
Sphingolipid metabolism has been shown to be altered in a
variety of diseases, including cystic fibrosis [19,20] and
asthma [21]. Ceramide has been shown to trigger apoptosis
in an experimental mouse model of emphysema [22], and
increased levels of apoptosis have been found in the lungs
of patients with severe cigarette-induced emphysema [23].
Increased ceramide levels have also been shown to influ-
ence surfactant production [24] and activity [25]. Since cer-
amide levels are increased in the lungs of patients with
smoke-induced emphysema [22] ceramide upregulation
might be an important pathogenetic element in emphy-
sema development. We investigated ceramide profiles in
the lungs and examined the effect of pharmacological inter-
ventions targeting SMases and SPT in an animal model of
elastase-induced emphysema.

Methods
Animals
Animals were obtained from Charles River (St. Constant,
Quebec, Canada) and animal studies were conducted
according to criteria established by the Canadian Council
for Animal Care and approved by the Animal Care and
Use Committee of the Hospital for Sick Children, Toronto,
ON, Canada. Female adult C57BL/6N mice, weighing be-
tween 22 and 25 grams, were used for all experiments.

Elastase-induced lung injury
Porcine pancreatic elastase (Type I, aqueous suspen-
sion, ≥4.0 units/mg protein, Calbiochem, EMD biosci-
ences, USA) was dissolved in sterile saline to create a
volume for tracheal instillation of 100 μl per mouse with a
concentration of 4.8 Units/100 g bodyweight. Animals
were anesthetized with 3% isoflurane and intraperitoneal
(ip) administration of 75 mg/kg ketamine (75 mg/kg) and
5 mg/kg xylazine (5 mg/kg). Following induction of
Ceramides
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Figure 1 Ceramide and dihydroceramide levels in BAL fluid during th
n=4 mice per group for days 1, 3 and 4, n=8 mice per group for days 8, 14
anesthesia, a 25 G intubation tube was inserted past the
vocal cords and 100 μl of elastase instilled into the trachea.
Control animals were treated similarly, but received sterile
saline instead of elastase. BAL was collected from mice at
t = 1, 2, 3, 4, 5, 8, 14 and 21 days after elastase instillation
to measure sphingolipids and inflammatory markers.

Lung function measurements
At day 21 following the instillation of elastase, the
Flexivent rodent ventilator (Scireq, Montreal, Canada) was
used to assess lung function as previously published [26].

Broncho-alveolar lavage
Lungs were infused through the endotracheal tube with
3x 600 μl sterile saline, followed by withdrawal [27,28].
The collected fluid was centrifuged at 1400g for 8 min.
The supernatant and remaining lung tissue was collected
in siliconized eppendorf tubes and stored at −80°C for
mass spectrometry analysis.

Histology of the lungs
Following lung function measurements, histology and
morphometry of the lungs was performed as previously
described [26].

Measurement of ceramides
Ceramide levels in BAL and remaining lung tissue were
measured by tandem mass spectrometry as previously
described [26]. The analysis was performed by the Ana-
lytical facility for Bioactive Molecules, The Hospital for
Sick Children, Toronto, Canada.

Ceramide inhibitor experiments
Desipramine (acid SMase inhibitor, 20 mg/kg bodyweight),
zoledronic acid (acid SMase inhibitor, 0.1 mg/kg
bodyweight), sphingolactone (neutral SMase inhibitor,
1mg/kg bodyweight) (Sigma–Aldrich, St. Louis, MO), and
myriocin (SPT inhibitor, 1mg/kg bodyweight) (Cayman
Dihydro Ceramides
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e first 21 days after elastase injection. Results represent a total of
, 21 and n=12 mice per group for days 0, 2 and 5. * = p<0.05.



Table 1 Ceramides after elastase injection
Ceramide Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 8 Day 14 Day 21

Ceramide 16:0 45.63 ± 33.52 32.04 ± 14.16 110.54 ± 57.84 * 48.52 ± 3.87 21.91 ± 6.73 52.84 ± 1.86 40.97 ± 21.74 46.66 ± 27.52 38.04 ± 20.54

Ceramide 18:0 2.47 ± 0.68 3.55 ± 1.71 5.50 ± 1.55* 2.97 ± 0.48 1.38 ± 0.23 1.86 ± 0.61 2.20 ± 1.18 2.11 ± 0.72 2.46 ± 1.58

Ceramide 20:0 1.39 ± 0.40 1.92 ± 0.77 4.25 ± 1.98* 1.86 ± 0.36 0.79 ± 0.16 1.14 ± 0.40 1.41 ± 0.79 1.30 ± 0.41 1.32 ± 0.83

Ceramide 22:0 9.60 ± 2.47 14.12 ± 7.82 29.75 ± 11.28* 16.31 ± 2.80 6.66 ± 2.30 9.00 ± 2.85 10.89 ± 5.74 10.13 ± 2.12 10.40 ± 5.40

Ceramide 24:0 34.83 ± 12.23 34.97 ± 20.00 112.76 ± 47.82* 44.75 ± 6.09 19.09 ± 6.43 36.70 ± 16.82 40.97 ± 20.87 37.58 ± 9.04 41.64 ± 19.19

Ceramide 24:1 24.89 ± 8.47 52.02 ± 37.77 95.90 ± 41.08* 60.25 ± 9.65* 23.04 ± 9.75 33.03 ± 12.09 32.90 ± 20.18 30.01 ± 8.14 31.41 ± 16.8

Dihydro
Ceramide 18:0

0.53 ± 0.24 2.01 ± 0.40* 1.49 ± 0.53 1.51 ± 0.44 0.75 ± 0.34 0.36 ± 0.10 0.48 ± 0.31 0.40 ± 0.16 0.33 ± 0.15

Dihydro
Ceramide 24:0

2.17 ± 0.68 4.64 ± 1.14 10.74 ± 4.32* 3.77 ± 1.95 1.72 ± 0.34 1.83 ± 0.85 2.21 ± 0.99 1.85 ± 0.49 1.83 ± 0.85

BAL fluid from 12 mice per group was collected and processed using LC-MS/MS. Data are expressed as Mean + SEM ng/ml BAL fluid. *p<0.05, when compared to
control animals at the same time-point.
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Chemicals, Ann Arbor, MI) were administered via ip injec-
tion 2 hours before elastase instillation and 6, 24, 48 and
72 hours after elastase instillation. Each sphingolipid in-
hibitor experiment consisted of 4 groups: 1) control mice,
2) control mice treated with an ip injection of vehicle, 3)
elastase-treated mice with an ip injection of vehicle only
and 4) elastase-treated mice with an ip injection of
sphingolipid inhibitor dissolved in the appropriate ve-
hicle. Half of the number of the mice in each group
was sacrificed at day 2 after elastase instillation to
measure sphingolipid levels and inflammatory markers
in BAL. The other mice underwent lung function mea-
surements at day 14 after elastase instillation before
histology and morphometry.

Immunofluorescent (IF) staining
IF was performed according to a previously published
protocol with slight modification [29]. Tissue sections were
de-waxed in xylene, rehydrated using decreasing ethanol
Table 2 Ceramides after Desipramine, Zoledronic Acid or Sph

Sphingolipid Control (n=5) Control +
Sph (n=9)

Control +
ZA (n=9)

Control +
Des (n=10)

Ceramide 16:0 23.39 ± 2.92 25.55 ± 1.23 26.07 ± 2.85 32.70 ± 3.12 *

Ceramide 18:0 2.61 ± 0.54 2.74 ± 0.30 2.83 ± 0.20 4.01 ± 0.70

Ceramide 20:0 1.30 ± 0.34 1.24 ± 0.12 1.32 ± 0.14 1.97 ± 0.27

Ceramide 22:0 7.95 ± 2.41 7.37 ± 0.70 9.75 ± 1.29 14.17 ± 1.89 *

Ceramide 24:0 33.63 ± 13.22 25.92 ± 2.66 42.31 ± 6.19 56.01 ± 6.39 *

Ceramide 24:1 19.09 ± 6.27 17.97 ± 0.90 22.81 ± 4.10 33.25 ± 4.01 *

Dihydro
Ceramide 18:0

0.32 ± 0.07 0.38 ± 0.23 0.39 ± 0.30 0.42 ± 0.08

Dihydro
Ceramide 24:0

1.57 ± 0.67 1.67 ± 0.75 2.02 ± 1.11 2.32 ± 1.78

BAL fluid was collected and processed using LCMS. Data are expressed as Mean + S
Sphingolactone. *p<0.05 when compared to Control. # p<0.05 when compared to E
(Elastase + Sph vs. Control + Sph, Elastase + ZA vs. Control + ZA, Elastase + Des vs.
series (100% to 70%), before being washed in 1xPBS/
0.03% (vol/vol) Triton-100-X. Tissue permeabilization
was achieved by boiling in 10 mM sodium citrate (pH
6) for 15 minutes at 95°C, and cooled for 30 minutes
in room temperature. Nonspecific antibody binding
was blocked by incubation with a solution contain-
ing 10% (vol/ vol) normal donkey serum (Jackson
ImmunoResearch, Cedarlane Laboratories, Burlington,
Ontario) and 1% (vol/vol) bovine serum albumin in
PBS at room temperature for 1 hour. The sections
were washed and incubated for 1 hour with 1:100
diluted anti-ceramide monoclonal IgM antibodies
(Glycobiotech, Borstel, Germany). The slides were
washed again and stained for 30 min with a 1:200 di-
luted Cy3-labeled donkey anti-mouse IgM (Jackson
ImmunoResearch,). After rinsing, the samples were
mounted with 4,6-diamidino-2-phenylindole (DAPI)
mounting medium (Vector, Burlington (ON)) and ana-
lyzed on a Leica fluorescence microscope.
ingolactone treatment

Elastase (n=5) Elastase +
Sph (n=9)

Elastase +
ZA (n=9)

Elastase +
Des (n=10)

48.38 ± 4.46 * 53.07 ± 12.34 *$ 44.47 ± 11.93 *$ 63.15 ± 13.15 *#$

4.88 ± 0.60 * 5.66 ± 1.62 *$ 4.43 ± 0.97 *$ 7.45 ± 1.32 *#$

2.56 ± 0.37 * 2.86 ± 0.78 *$ 2.44 ± 0.37 *$ 4.07 ± 0.82 *#$

20.01 ± 4.39 * 20.43 ± 5.74 *$ 19.80 ± 4.73 *$ 33.90 ± 7.71 *#$

86.39 ± 22.72 * 71.40 ± 16.60 *$ 84.40 ± 16.74 *$ 145.10 ± 41.79 *#$

68.45 ± 19.42 * 64.66 ± 16.75 *$ 70.20 ± 16.85 *$ 113.70 ± 26.87 *#$

0.88 ± 0.21 * 1.02 ± 0.35 *$ 0.86 ± 0.20 *$ 1.76 ± 0.24 *#$

6.54 ± 1.78 * 6.28 ± 2.49 *$ 6.29 ± 1.52 *$ 13.11 ± 5.03 *#$

EM in ng/ml BAL fluid. Des = Desimaprimine, ZA = Zoledronic Acid, Sph =
lastase. $p<0.05 when compared to control group with the same inhibitor
Control + Des).



Ceramides

Con
tro

l

Con
tro

l +
 M

yr
ioc

in

Elas
ta

se

Elas
ta

se
 +

 M
yr

ioc
in

Con
tro

l

Con
tro

l +
 M

yr
ioc

in

Elas
ta

se

Elas
ta

se
 +

 M
yr

ioc
in

0

50

100

150

200

250

*

#

ng
 / 

m
l o

f B
A

L 
flu

id

Dihydro Ceramides

0

2

4

6

8

10 * #

ng
 / 

m
l o

f B
A

L 
flu

id

Figure 2 Ceramide and dihydroceramide levels in BAL fluid at day 2 after elastase injection and myriocin treatment. Results represent a
total of n=5 mice for control, n=9 mice for control + myriocin, n=9 mice for elastase and n=10 mice for elastase + myriocin group. * = p<0.05
when compared to Control. # p=<0.05 when compared to elastase.
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Western blotting
Lung tissues were lysed, protein content measured and
aliquots (50 ug protein) were separated on 4-12% Bis-
Tris precast polyacrylamide gels (Invitrogen, Cat.
NP0322BOX) and transferred to PVDF membranes.
After blocking with 5% (w/v) skim milk in TBST (20
mM Tris, 137 mM NaCl, 0.1% Tween 20) membranes
were incubated with either goat anti-acid ceramidase
antibody (1:500 dilution; T-20 Santa Cruz Biotechnology,
CA), rabbit anti-acid sphingomyelinase (1:2000 dilu-
tion; H-181 Santa Cruz Biotehcnology, CA) or goat
anti-neutral ceramidase (1:500 dilution; S-20 Santa
Cruz Biotechnology) overnight in 4°C. The next day
the membranes were washed TBST and incubated
with either horseradish peroxidase–conjugated donkey
anti-goat (1:20.000 dilution) or goat anti-rabbit (1:20.000
dilution) in 5% (w/v) skim milk in TBST at RT for 1–2
hrs. After several washes with TBST, protein bands were
visualized using an enhanced chemiluminescence detec-
tion kit. Band densities were quantified using Scion Image
software (Version 1.6, National Institutes of Health,
Table 3 Ceramides after Myriocin treatment

Sphingolipid Control (n=5) Control + Myrioc

Ceramide 16:0 30.01 ± 6.65 22.23 ± 7.95

Ceramide 18:0 3.13 ± 0.58 2.86 ± 0.75

Ceramide 20:0 1.94 ± 0.47 1.93 ± 0.43

Ceramide 22:0 7.97 ± 1.67 7.99 ± 3.42

Ceramide 24:0 37.34 ± 9.00 33.24 ± 13.50

Ceramide 24:1 24.66 ± 7.60 17.33 ± 8.02

Dihydro Ceramide 18:0 0.38 ± 0.21 0.37 ± 0.20

Dihydro Ceramide 24:0 1.97 ± 1.18 1.83 ± 0.65

BAL fluid was collected and processed using LCMS. Data are expressed as Mean + S
compared to Elastase + Myriocin.
Bethesda, MD, USA). Equal protein loading was con-
firmed by immunoblotting for β-actin of same membrane.

Statistics
All values are presented as mean ± standard error of the
mean assuming normal distribution (Sigmaplot 11 for
Windows). Differences were assessed by Student’s t test
or, for comparison of more than two groups, by two-way
analysis of variance followed by Holm-Sidak comparison
test. Significance was inferred where P<0.05.

Results
BAL analysis
A 4-fold increase in total ceramide and dihydroceramide
levels was found at day 2 after elastase instillation when
compared to saline-treated controls (Figure 1 and Table 1).
Ceramide levels were 20-fold greater than dihydroceramide
levels. Specifically, long chain and very long chain
ceramides (Cer16:0, Cer22:0, Cer24:0 and Cer24:1) were in-
creased. All ceramides and dihydroceramides returned to
baseline levels within 5 days after elastase treatment. No
in (n=9) Elastase (n=9) Elastase + Myriocin (n=10)

41.04 ± 18.77 21.69 ± 4.91[]

4.00 ± 1.89 2.61 ± 0.60[]

2.73 ± 1.18 2.02 ± 0.43

15.13 ± 7.96* 9.11 ± 3.02[]

77.75 ± 44.65* 39.72 ± 13.00[]

41.48 ± 20.83* 19.44 ± 6.27[]

0.70 ± 0.27* 0.44 ± 0.17[]

6.12 ± 3.94* 3.42 ± 2.21[]

EM in ng/ml BAL fluid. *p<0.05 when compared to Control. [] p<0.05 when
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difference in ceramide levels were noted in remaining lung
tissue samples (data not shown), therefore only BAL was
analysed in subsequent experiments. Neither desipramine,
zoledronic acid or sphingolactone treatment altered cer-
amide levels (Table 2), but myriocin treatment ameliorated
elastase-induced increases in multiple ceramides (Cer22:0,
Cer24:0, Cer24:1), and dihydroceramides (18:0 and 24:0)
(Figure 2, Table 3). Protein and IgM content (Figure 3A, C)
and cell counts (Figure 3B) in BAL were increased at day 1,
2 and 3 after elastase injection. Cytospins from the same
BAL fluid showed an increase in normal and activated
Protein
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Figure 3 Biochemical measurements in BAL fluid. Protein levels (A) and
(C) measured by ELISA. Cytospin slides (D) and haemotoxilin-eosin stained
400x magnification) and elastase-treated mice at 2 days after elastase injec
after elastase injection (E3 at 200x magnification, F3 at 400x magnification)
Graphs represent an n=4 for each group. * = p<0.05.
“foamy” macrophages, and neutrophils, which normalized
by day 5 after elastase injection (Figure 3D). Neither desip-
ramine, zoledronic acid nor sphingolactone treatment had
any effect on the above mentioned parameters. Myriocin
treatment decreased BAL protein levels, shifted the neutro-
phil/macrophage balance towards neutrophils (Figure 4),
but had no significant effect on IgM.

Enzyme expression
Western blot analysis of enzymes partaking in ceramide
metabolism showed decreased acid ceramidase levels
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Figure 4 Protein levels (A), IgM content (B), neutrophil (C) and macrophage (D) percentages in BAL fluid at day 2 after elastase
instillation and myriocin treatment.
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during the first 5 days after the elastase treatment,
reaching significance at day 3 and 5. Neutral ceramidase
levels were only significantly downregulated at day 1
after elastase injection. Acid sphingomyelinase levels
were only significantly upregulated at day 3 after elastase
instillation (Figure 5).

Lung function
Flexivent lung function measurements of elastase-
treated mice showed significant reductions in resistance
and tissue-specific elastance and an increase in dynamic
compliance compared to controls (Figure 6, Table 4).
Neither desipramine, zoledronic acid nor sphingolactone
had any effect on lung function in elastase-treated ani-
mals compared to vehicle-treated elastase-exposed mice
(Table 4). Elastase-treated mice receiving myriocin
showed a significant decrease in compliance and increase
in tissue elastasticity compared to control elastase-
exposed mice (even with a limited number of mice).
Myriocin also prevented the decrease in resistance,
normally seen in elastase-treated mice, compared to
vehicle-treated elastase-exposed mice (Figure 6, Table 5).

Histology and morphometry
Histological analysis of the lung at day 2 following elas-
tase injection revealed the presence of erythrocytes in
the alveolar spaces and massive influx of neutrophils
and macrophages (Figure 3E). Alveolar enlargement
was present from day 2 onwards. Erythrocytes and most
of the inflammatory cells were cleared by day 5 after
elastase injection. Immunofluorescent staining for cer-
amide showed increased positive reactivity in the epi-
thelial lining and inflammatory cells in elastase-treated
mice 2 days after elastase injection compared to con-
trols (Figure 7). Three weeks after elastase installation
we observed a patchy pattern of alveolar destruction
leading to enlarged airspaces. This was reflected in a
significant increase in mean linear intercept and de-
crease in alveolar number. Mice treated with SMase in-
hibitors or STP inhibitor showed no significant signs of
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histological recovery compared to elastase-treated con-
trols (Table 6).

Discussion
In this study we showed that intratracheal elastase
caused a transient inflammatory response with influx of
erythrocytes and inflammatory cells in the alveolar
spaces, combined with an increase in multiple ceramide
and dihydroceramide species in BAL fluid which
peaked at day 1 and 2 and returned to control levels 3
days after elastase instillation. Ceramide expression was
primarily localized to the epithelium and to inflamma-
tory cells. Sphingomyelinase inhibitors did not prevent
or reduce the effects of intratracheal elastase. In con-
trast, SPT inhibition reduced sphingolipid and protein
levels and ameliorated lung function changes after elas-
tase instillation.
Apoptosis of alveolar cells has been shown to play a
crucial role in the development of emphysema [30-32].
Petrache et al. showed that direct intratracheal instilla-
tion of a synthetic short chain ceramide caused
emphysema-like defects [33] and observed increased
ceramide levels in the lungs of individuals with
cigarette smoke-induced emphysema [33]. Our study
shows for the first time that ceramide levels are in-
creased in the first few days following the intratracheal
instillation of elastase in mice. Earlier studies have de-
scribed an increase in apoptosis in the elastase-induced
emphysema model [34-37]. Long chain ceramides
(Cer16:0, Cer18:0) have been shown in cancer cells to
exhibit anti-proliferative and pro-apoptotic effects [38].
Our study shows that long chain ceramides are in-
creased a few days after elastase instillation and we
speculate that they were responsible for triggering
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apoptosis. Long chain ceramides have also been shown
to increase the permeability of the lung endothelium
after cigarette-smoke [39] and thereby enhance endo-
thelial leakage leading to edema formation [40]. In our
model we found evidence of significant edema forma-
tion at day 2 and 3 after elastase, as measured by
Table 4 Invasive lung function measurements after desimapr

Parameter Unit Control (n=9) Elastase (n=10) E
d

Resistance (R) cmH2O/mL 0.67 ± 0.07 0.52 ± 0.03* 0

Compliance (C) mL/cmH2O 0.032 ± 0.004 0.052 ± 0.004* 0

Airway Resistance (Rn) cmH2O/mL 0.32 ± 0.03 0.23 ± 0.03* 0

Tissue Elasticity (H) cmH2O/mL 32.4 ± 4.2 16.9 ± 2.3* 1

Total lung capacity (A) mL 0.70 ± 0.05 0.78 ± 0.04 0

Inspiratory Capacity (B)
from zero pressure

mL 1.14 ± 0.09 1.30 ± 0.11* 1

Static Compliance (Cst) mL/cmH2O 0.078 ± 0.008 0.094 ± 0.009* 0

During invasive lung function measurements, an average for each individual mouse
measurements for each parameter. * p<0.05 when compared to Control.
increased IgM and protein levels in the BAL fluid. Our
observation of long chain ceramides being increased at
those time-points is suggestive of a causal role of
ceramides in our model. The elastase-induced emphy-
sema model does not mimic the low-grade, long-term
inflammatory pathophysiology of smoke-induced pulmonary
imine, zoledronic acid and sphingolactone treatment

lastase +
esimaprimine (n=5)

Elastase + zoledronic
acid (n=4)

Elastase +
sphingolactone (n=4)

.47 ± 0.02 * 0.49 ± 0.01* 0.54 ± 0.05*

.066 ± 0.007* 0.067 ± 0.011* 0.054 ± 0.007*

.22 ± 0.02* 0.25 ± 0.01* 0.21 ± 0.02*

3.2 ± 1.3* 13.9 ± 2.8* 15.5 ± 2.7*

.88 ± 0.02 0.89 ± 0.07 0.77 ± 0.03

.47 ± 0.028* 1.57 ± 0.19* 1.29 ± 0.09*

.108 ± 0.002* 0.115 ± 0.014* 0.094 ± 0.008*

was calculated from 4 accepted (coefficient of determination: COD>0.95)



Table 5 Invasive lung function measurements after Myriocin treatment

Parameter Unit Control (n=6) Control + Myriocin (n=5) Elastase (n=3) Elastase + Myriocin (n=3)

Resistance cmH2O/mL 0.44 ± 0.03 0.43 ± 0.03 0.37 ± 0.01* 0.41 ± 0.03

Compliance mL/cmH2O 0.056 ± 0.005 0.055 ± 0.002 0.082 ± 0.005* 0.063 ± 0.005# []

Airway Resistance cmH2O/mL 0.22 ± 0.01 0.22 ± 0.02 0.16 ± 0.03* 0.18 ± 0.01#

Tissue Elasticity cmH2O/mL 17.3 ± 1.5 17.3 ± 0.8 9.9 ± 1.1* 14.0 ± 1.4# []

Total lung capacity mL 0.93 ± 0.05 0.95 ± 0.03 0.99 ± 0.05 0.93 ± 0.03

Inspiratory Capacity from zero pressure mL 1.47 ± 0.08 1.49 ± 0.07 1.42 ± 0.06 1.36 ± 0.11

Static Compliance mL/cmH2O 0.105 ± 0.006 0.106 ± 0.005 0.104 ± 0.004 0.097 ± 0.009

During invasive lung function measurements, an average for each individual mouse was calculated from 4 accepted (coefficient of determination: COD>0.95)
measurements for each parameter. * p<0.05 when compared to Control. # p<0.05 when compared to Control + Myriocin. [] p<0.05 when compared to Elastase.
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emphysema in patients [41]. However, it is an excellent
model to accurately reproduce the histological damage
seen in emphysematous lungs and to evaluate the effect
of interventions. The short developmental time of the
model when compared to genetic or cigarette smoke
models makes it easier to do perform multiple experi-
ments in a relatively short time period.
Staining of lung sections from patients with cystic fi-

brosis or lung emphysema for ceramides showed that
ceramide formation is increased in the airway epithelium
[20]. By immunofluorescent staining we indeed found
increased ceramides in the airway epithelium, in agree-
ment with the increased ceramide levels in BAL which
A C

B

Figure 7 Immunofluorescent images of ceramide expression. Control
mice 2 days after elastase injection (C at 100x magnification, D at 400x ma
autofluorescence (green).
mainly contains products from epithelial cells. We also
found positive immunofluorescence signals for ceramide
in alveolar macrophages, which could be due to uptake
of apoptotic alveolar epithelial cells, or internal ceramide
production [42], triggered by the inflammatory response
after elastase.
Sphingomyelinase inhibition has been examined in a

variety of animal models. In a model of cystic fibrosis,
acid sphingomyelinase inhibitors (desipramine and ami-
triptyline) and glycosphingolipid inhibitors (Miglustat)
decreased pulmonary inflammation [14,43]. In spinal
cord injury an inhibitor of acid sphingomyelinase (NB6)
and an inhibitor of de novo synthesis of ceramide
D

(A at 100x magnification, B at 400x magnification), elastase-treated
gnification). Ceramide (red), cell nuclei (DAPI blue) and



Table 6 Morphometry after elastase instillation and inhibitor treatment

Parameter Unit Control
(n=10)

Elastase
(n=10)

Elastase +
desimaprimine
(n=4)

Elastase +
zoledronic
acid (n=4)

Elastase +
sphingolactone
(n=4)

Elastase +
Myriocin
(n=6)

Mean Linear Intercept μm 42.2 (40.8-43.2) 141.8 (133.3-152.0) 119.8 (105.8-147.4) 137.0 (108.1-170.8) 129.5 (114.8-158.3) 126.5 (85.6-164.4)

Tissue-vs-Air ratio count 19.9 ± 2.0 15.3 ± 2.8* 13.7 ± 1.3* 15.7 ± 2.4* 15.9 ± 2.1* 18.5 ± 3.1

During invasive lung function measurements, an average for each individual mouse was calculated from 4 accepted (coefficient of determination: COD>0.95)
measurements for each parameter. * p<0.05 when compared to Control.
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(Fumonisin B1) reduced spinal cell apoptosis and inflam-
mation after injury, and improved motor function [44].
Zoledronic acid has been shown to specifically inhibit
acid sphingomyelinase [45]. Sphingolactone has previ-
ously shown to ameliorate LPS-induced acute lung in-
jury in mice by inhibiting neutral sphingomyelinase,
thereby decreasing ceramide levels In the present study,
treatment with myriocin (SPT inhibitor) produced a
marked reduction in overall sphingolipid levels, which
suggests that de-novo ceramide synthesis was responsible
for their increase. The de novo pathway was also impli-
cated in VEGF-inhibition-induced emphysema, demon-
strating the importance of de novo ceramide generation
in the process of alveolar destruction [33]. This is further
corroborated by the observation that neither acid- nor
neutral sphingomyelinase inhibitors were able to block
the increase in ceramides. Inadequate dosing of these
inhibitors seems unlikely since similar doses have been
used successfully in other animal models [46-48]. Since
inhibition of synthesis of very long acyl chain (C22-
C24) ceramides in Cer synthase 2 knockout mice has
been shown to elevate C16-ceramide and sphinganine
levels [49], it is possible that inhibition of one specific
step in the complex ceramide pathway leads to unin-
tended alterations in individual ceramide metabolites.
In the present study, desipramine exhibited an unex-
pected effect, namely upregulation of very long chain
ceramides in both vehicle and elastase-treated mice.
However, zoledronic acid, another inhibitor of acid
sphingomyelinase, did not have this effect. Desipramine
has previously been described to not only inhibit
ASMase, but also acid ceramidase and other lysosomal en-
zymes [45,50]. This non-specific inhibitory effect could ac-
count for the different effect on sphingolipid levels
compared to zoledronic acid. Acid sphingomyelinase pro-
tein levels were transiently upregulated after elastase in-
stillation, suggesting that it may have contributed to the
transient increase in ceramides. However, the contribution
must have been minimal as we found no effect of acid
sphingomyelinase inhibitors. The increased ceramide
levels after elastase instillation could also be due to re-
duced degradation by ceramidases. A major role in the
transient rise in ceramides, however, is unlikely since cer-
amide returned to normal 5 days after elastase instillation
while acid ceramidase levels were still decreasing. The ini-
tial decrease of neutral ceramidase after elastase instilla-
tion may have contributed to the early increase in
ceramide levels but neutral ceramidase levels were already
increased and normalized at the time (day 2) ceramide
levels peaked. Thus, contribution of neutral ceramidase to
the elevation in ceramides after elastase treatment is most
likely minimal.
Blocking the de-novo pathway of ceramide synthesis by

myriocin had a positive effect on lung function but no
effect on histology. A possible explanation for this
structure-function discrepancy is that ceramides reduce
surfactant synthesis, due to downregulation of Thyroid
Transcription Factor-1 (TTF-1), and this may affect lung
function without a measurable morphological alteration
[24,51]. However, our observation of no changes in satu-
rated phosphatidylcholine content in BAL of elastase-
treated and control mice (data not shown) makes this
explanation less likely. Clinical studies in humans also
show that structural abnormalities of the lungs and air-
ways are at best weakly correlated with changes in lung
function, and this is especially true for localized or in-
homogeneous structural abnormalities, as seen in our
model [52,53]. Alternatively, the morphometric method-
ology may be insufficiently sensitive to demonstrate rela-
tively small changes that might underlie significant
functional improvement, or more sensitive approaches
to the analysis of lung structure might be needed. Such
approaches may include, but are not limited to, micro
CT and advanced functional MRI imaging techniques.
It could be argued that desipramine, being a tricyclic

antidepressant, and zoledronic acid, a biphosphonate, have
limited specificity to influence ceramide metabolism. De-
sipramine is known to inhibit the re-uptake of norepin-
ephrine and to a lesser extent serotonin [54]; however,
both catecholamines are unlikely to affect ceramide levels
in BAL. Zoledronic acid binds and blocks farnesyl diphos-
phate synthase in the HMG-CoA reductase pathway,
preventing the formation of metabolites essential for sub-
cellular protein trafficking [55]. As a bisphosphonate it
may bind to calcium in bone, thereby preventing the func-
tioning of osteoclasts, the only bone-resorbing cells in the
body [56]. Again, it is very unlikely that these additional
actions of zoledronic acid interfered with our ceramide
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outcomes. Importantly, we showed that neither desipra-
mine nor zoledronic acid influenced BAL ceramide levels,
which argues against a significant contribution of SMases
in the production of ceramides in our elastase model [57].
In conclusion, we demonstrated the involvement of

ceramides and dihydroceramides in elastase-induced
emphysema. Our findings suggest an important role for
ceramides in the acute phase of elastase-induced emphy-
sema. Further experiments should be undertaken to bet-
ter evaluate the preventive and therapeutic potencies of
ceramide inhibition in this emphysema model, and ul-
timately in humans with COPD and emphysema.
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