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Abstract

Background: Although a large body of literature is available that describes the effects of smoking, asthma and COPD
on lung function, most studies are restricted to a small age range and to one factor. As a consequence, available
results are incomplete and often difficult to compare, also due to the ways the effects are expressed. Furthermore,
current approaches consider one type of measurement only or several types separately.

Methods: We propose a probabilistic model that expresses the effects as number of years added to chronological
age or, in other words, that estimates the biological age of the lungs. Using biological age as a measure of the effects
has the advantage of facilitating the understanding of their severity and comparison of results. In our model,
chronological age and other factors affecting the health status of the lungs generate biological age, which in turn
generates lung function measurements. This structure enables the use of multiple types of measurement to obtain a
more precise estimate of the effects and parameter sharing for characterization over large age ranges and of
co-occurrence of factors with little data. We treat the parameters that model smoking habits and lung diseases as
random variables to obtain uncertainty in the estimated effects.

Results: We use the model to investigate the effects of smoking, asthma and COPD on the TwinsUK Registry. Our
results suggest that the combination of smoking with lung disease(s) has higher effect than smoking or lung disease(s)
alone, and that, in smokers, co-occurrence of asthma and COPD is more detrimental than asthma or COPD alone.

Conclusions: The proposed model or other models based on a similar approach could be of help in improving the
understanding of factors affecting lung function by enabling characterizations over large age ranges and of
co-occurrence of factors with little data and the use of multiple types of measurement. The software implementing
the model can be downloaded at the first author’s webpage.

Keywords: Lung function, Biological ageing, Probabilistic model, Generative model, Posterior distributions, Smoking,
Asthma, COPD, FEV1, FVC

Introduction
Smoking, asthma and Chronic Obstructive Pulmonary
Disease (COPD) are the primary risk factors for lung
function impairment in adults. Their average effects on
the lungs are commonly estimated by measuring reduc-
tion in spirometric values with respect to a population of
healthy individuals [1-7]. Due to the difficulty of collect-
ing large sample size data spanning the entire adulthood,
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most studies are restricted to a small age range and to
one factor. As a consequence, overall ages and combined
effects are reported only in a few studies or are still miss-
ing and results from multiple studies are often difficult to
compare, also due to the ways the effects are expressed.
Furthermore, current approaches consider one type of
measurement only, or several types separately (mostly
Forced Expiratory Volume in 1 second (FEV1) or Forced
Vital Capacity (FVC)) – a combined analysis of several
types of measurement could potentially provide a more
precise quantification of the effects.

© 2013 Chiappa et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
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In this paper we address these issues by taking the view-
point that reduced pulmonary function corresponds to
premature ageing of the lungs: we propose a model that
expresses average FEV1 and FVC reduction in individu-
als that smoke and/or have asthma and/or COPD in terms
of number of years that are added to the lungs, or, in
other words, we propose a model that estimates biological
ageing of the lungs.
Biological age has been studied mainly at the whole

body level (see [8-10] for recent references). At the res-
piratory system level, it was first introduced in [11] as a
potentially more powerful type of information than spiro-
metric values in motivating smokers to quit. Since then,
several studies have investigated this hypothesis [12,13],
using as biological age of a smoker the chronological age
of a non-smoker of same height, gender and average FEV1
obtained from predictive equations. This approach was
designed to estimate the specific effect of smoking on a
single individual rather than the average effect on an entire
population, which is the interest of this paper.
We propose a generative probabilistic approach that

explicitly represents biological age using an unobserved
random variable – an adjustment of chronological age
induced by factors that have an impact on the health sta-
tus of the respiratory system such as smoking habits, lung
diseases, environmental and genetic factors, etc. Our gen-
erative approach enables us to integrate multiple aspects
of the problem into a single consistent framework, which
allows the use of multiple types of measurement as well as
sharing of information and therefore estimation with little
data. The probabilistic approach enables us to deal with
uncertainty and noise in the data. Furthermore, it allows
us to treat the parameters that model smoking habits and
lung diseases as random variables and therefore to obtain
uncertainty in the estimated effects of such factors on the
lungs.
We evaluate our model on a subset of the TwinsUK

Registry [14]. The dataset contains FEV1 and FVC mea-
surements of several individuals along with information
about smoking habits, asthma, COPD, and height. By
examining the posterior distributions of the parameters
that model the combinations of smoking, asthma and
COPD, and the posterior distributions representing the
biological age associated to each combination, we are able
to make general and age-specific quantitative statements
about the effects of these factors.

Methods
The TwinsUK Registry is a cohort of about 12000 twins
aged 16 to 100 years from all over the United Kingdom
used to study heritability and genetics of age-related dis-
eases. It includes clinical, physiological, behavioural and
lifestyle data collected since 1992 either at visits to the
Department of Twin Research at King’s College London

or via self-administered questionnaires. For historical rea-
sons, it encompasses predominantly females in the age
range 45–65 years.
For the study, we considered female individuals with

spirometry data collected between 1992 and 2010 and
with recorded height. Males were excluded as their num-
ber was too small to enable reliable estimation of model
parameters.
The study was approved by the St. Thomas’ Hospi-

tal Research Ethics Committee, and all twins provided
signed informed consent, in accordance with the Helsinki
Declaration.

FEV1-FVCmeasurements
Spirometry tests (model 2150; Vitalograph; Buckingham,
England) were performed during visits (up to five for each
individual) to the department. During each test, three
FEV1-FVC measurements were recorded and the one
corresponding to maximum FEV1 was selected. The mea-
surements were included in the study if in normal range,
identified as between 0.5 and 7.0 litres based on [15,16].
More information can be found in [17].

Smoking status
We considered the subset of individuals that responded
consistently in different smoking-related questionnaires
between 1992 and 2010 (maximum of 13 questionnaires
and 52 types of question). For such individuals, only those
FEV1-FVC measurements for which one of the following
two conditions held were included in the study:

• The individual reported to have never smoked either
cigarettes, cigars or pipes in a questionnaire
completed in the same (or a subsequent) year in
which the measurement was recorded.

• The individual reported to be a smoker in a
questionnaire completed in the same year in which
the measurement was recorded.

As the same condition was satisfied for all retained
measurements from the same individual, an overall-
measurement non-smoker or smoker status could be
assigned to each individual.

Asthma and COPD status
We considered the subset of individuals that responded
consistently in different asthma-related questionnaires
between 1992 and 2010 (maximum of 8 questionnaires
and 4 types of question). Such individuals were classified
as non-asthmatic if they reported to have never suffered
from asthma and as asthmatic otherwise. Diagnosis by
a doctor was not always explicitly required. A similar
procedure was used to determine COPD status.

All possible combinations of smoking, asthma and
COPD status give rise to 8 groups (see Table 1 where H
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Table 1 FEV1-FVC grouping

Non-Smokers Smokers

No-Asthma Asthma No-Asthma Asthma

Group H Group A Group S Group SA

No-COPD # of Meas. Age Range # of Meas. Age Range # of Meas. Age Range # of Meas. Age Range

3742 18.3–82.8 111 19.0–76.5 428 19.0–77.8 17 27.6–74.3

Group C Group AC Group SC Group SAC

COPD # of Meas. Age Range # of Meas. Age Range # of Meas. Age Range # of Meas. Age Range

17 26.2–72.5 18 20.5–66.0 45 21.1–74.3 25 19.4–65.4

Subdivision of FEV1-FVC measurements into 8 groups corresponding to all possible combinations of smoking, asthma, and COPD status. For each group, we indicate
the number of available measurements and the age range of the associated individuals.

stands for healthy with respect to smoking, asthma and
COPD). Only individuals of known combined status, and
therefore group, were included in the study. In order to
eliminate potential bias in estimating the effects of smok-
ing, asthma and COPD due to correlation between twins
andmultiple visits, with the exception of Group H, we dis-
regarded at random one twin for twins belonging to the
same group and retained only the most recent FEV1-FVC
measurement for individuals with multiple visits. Group
H, which contains a considerable number of datapoints
and should therefore not be heavily affected by this corre-
lation, was excluded as accurate estimation of parameters
b (see (3)) requires a large amount of data.
These filtering steps are summarized in Table 2. The

final dataset encompassed 4403 FEV1-FVC measure-
ments taken from individuals in the age range 18.3–82.8
years (the age of an individual, calculated from birth date
and date of measurement, is expressed in decimals of year
by considering 365.25 days per year). The total number of
measurements and the age range of each group are indi-
cated in Table 2. The histogram representing the number
of FEV1-FVC measurements available at different ages is
given in Figure 1. The number of measurements available
for Group H at age ranges 18–44, 45–64 and 65–83 is
respectively 871, 2221 and 650.
Our classification does not take into account the degree

of severity of asthma, COPD and smoking. Therefore, the

estimated effects have to be interpreted as corresponding
to the most likely degree. We are also limited by our def-
inition of asthma and COPD, which potentially includes
individuals with a self-reported diagnosis. Finally, whilst
the definition of non-smoker and smoker is based on the
year in which the FEV1-FVCmeasurement was taken, this
is not the case for asthma and COPD, as we do not have
precise timing information about these diseases. We nev-
ertheless expect little error due to this as each individual
answered the questionnaires multiple times.

Definition of biological age
Before describing the proposedmodel in details, we define
biological age and highlight key points that guided us in
the construction of the model.
Figure 2 illustrates the concept of biological ageing for

smokers (Group S) relative to the reference population
of healthy individuals (Group H) based on FEV1. As we
can see from the measurements (Figure 2(a)), smokers
have on average lower FEV1 than healthy individuals. This
becomes clearer when looking at the measurement means
(Figure 2(b)), which are averages computed over an 11-
year sliding window to enforce smoothness over ages. For
example, smokers’ mean at age 60 (computed from age
interval 55–65) is equal to that of healthy individuals at
age 68. It is therefore reasonable to define smokers’ biolog-
ical age at chronological age 60 as approximately 68 years.

Table 2 Data filtering

Total # of FEV1-FVCmeasurements 11943

Less males 11280

Less individuals of unknown height 10885

Groups

H A C AC S SA SC SAC

Less individuals of unknown, inconsistent, etc., status 4735 3742 177 19 25 672 18 54 28

Less multiple visits 4489 3742 126 17 19 491 17 50 27

Less half twins (for twins in the same group) 4403 3742 111 17 18 428 17 45 25

Description of the filtering steps applied to the available FEV1-FVC measurements giving rise to the 4403 measurements used in the study.
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Figure 1 FEV1-FVCmeasurements. Histogram of the number of
FEV1-FVC measurements available at each age.

That is, biological age is defined to be the chronological
age of the healthy population corresponding to the same
lung function mean. This is the population level analogue
of the individual level definition introduced in [11-13].
A straightforward approach to estimating biological

ageing would be to compute differences in average FEV1
decline between healthy individuals and smokers by fit-
ting two separate lung function models (such a separate
approach was used for example in [1,18]), and subse-
quently deduce biological ageing from these differences.
We can use, for example, the model in [15] first proposed
in [19], which is considered an accurate predictor of lung
function in adults. In this model, the relationship between
the log of the nth lung function measurement, ln, chrono-
logical age, an, and height, hn, is given by the following
equation:

ln = b1 + b2an + b3(an)2 + b4 log hn , (1)

where b = {b1, b2, b3, b4} is a set of unknown model
parameters (modelling the log of the measurement, rather
than the measurement, makes the model linear in b and
therefore simplifies its estimation). By computing two
separate sets b, one for healthy individuals and one for
smokers, we can obtain the average FEV1 decline for the
two populations, as shown in Figure 2(c) for individu-
als of average height (1.62 metres). From such estimates
we can deduce smokers’ biological ageing, as shown in
Figure 2(d).
This simple approach has several limitations. It cannot

produce reliable estimates of b for the groups of small
size (all groups other than Groups H and S). A single
model of all groups in which some parameters are shared
among them would alleviate this problem. Linear regres-
sion models that include factors such as smoking and lung

disease as covariates, e.g. [20], have this property but are
limited to additive combinations of effects.
Furthermore, it is not clear how to consider multiple

types of measurement, such as FEV1 and FVC, to obtain
a more precise estimate of biological age. If two separate
models for FEV1 and FVC are fitted, the inferred bio-
logical ages need to be combined into a single estimate.
Simply taking the average (as investigated in [11]) is not
optimal as for example, for young ages for which differ-
ences between healthy individuals and smokers are absent
in FVC (see Figure 3), only FEV1 should be considered.
An approach that estimates biological age from simulta-
neous modelling of FEV1 and FVC would overcome this
difficulty.
Finally, a probabilistic approach would better deal with

noise in the data and would allow to obtain uncertainty
in the estimated biological ages, which is particularly
important when little amount of data is available.

A probabilistic model of biological age
Our approach to taking into account the observations
above is to define a probabilistic model with an explicit
unobserved random variable representing biological age.
This variable is an adjustment of chronological age due to
smoking habits, lung diseases, environmental and genetic
factors, etc., namely all factors that have an impact on
the health status of the respiratory system. Biological age
combined with other factors that do not affect the health
status of the respiratory system but heavily influence lung
function measurements, namely height and measurement
noise, generate FEV1 and FVC.
More specifically, our probabilistic model is defined by

the following equations:

ãn =ucnan + vcn + εn, εn ∼ N (0, σ 2
ã ),

ucn ∼ N (1, 10000), vcn ∼ N (0, 10000) , (2)

ln = b1 + b2ãn + b3(ãn)2 + b4 log hn + ηn,
ηn ∼ N (0,�l) . (3)

In these equations, ln is a two-dimensional column vec-
tor containing the log of the nth FEV1-FVC measurement
(n indexes the measurement rather than the individual,
as in Group H each individual can have more than one
measurement), an is the chronological age of the corre-
sponding individual, hn is the height, ãn is the biological
age, cn is a discrete variable representing the group to
which measurement n belongs (cn ∈ {1, . . . , 8} corre-
sponding to {Group H, Group A, Group C, Group AC,
Group S, Group SA, Group SC, Group SAC}), and σ 2

ã ,
bi (i = 1, . . . , 4) and �l are unknown deterministic
parameters.
Biological age ãn is generated as a group-dependent lin-

ear transformation of chronological age an, ucnan + vcn ,
with the addition of a Gaussian term εn. The term εn
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Figure 2 FEV1 of healthy individuals and smokers. (a): FEV1 measurements (in litres) of healthy individuals (Group H, blue) and smokers
(Group S, red). (b): Mean change of FEV1 for healthy individuals and smokers over ages. To enforce smoothness, each mean value is calculated over
an age interval of 11 years (the X-axis labels indicate the ages at the middle of the intervals). (c): Estimated average decline of FEV1 for healthy
individuals and smokers of average height (1.62 metres) using the model defined by (1). (d): Biological ageing of smokers relative to healthy
individuals inferred from (c) using as definition of biological age the chronological age of healthy individuals with equal lung function mean.

represents the modification to chronological age that is
specific to the nth measurement and not captured at the
group level, and therefore also includes all unmeasured
factors such as environmental and genetic factors.
Log-measurement ln is obtained as a nonlinear trans-

formation of biological age ãn and height hn (of the same

form as (1)), to which a Gaussian noise term ηn is added.
The term ηn is drawn from a two-dimensional Gaussian
with non-diagonal covariance matrix �l, which accounts
for the high correlation between FEV1 and FVC. The
parameters bi (i = 1, . . . , 4) are two-dimensional col-
umn vectors that model age-related decline of FEV1 and
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Figure 3 FVC of healthy individuals and smokers. (a): FVC measurements (in litres) of healthy individuals (Group H, blue) and smokers (Group S,
red). (b): Mean change of FVC for healthy individuals and smokers over ages. To enforce smoothness, each mean value is calculated over an age
interval of 11 years (the X-axis labels indicate the ages at the middle of the intervals).
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FVC. They are estimated from healthy individuals only
to ensure that they describe lung function decline in the
absence of smoking, asthma and COPD. These parame-
ters are common to all groups, which is crucial in enabling
the inclusion of groups with a small number of available
datapoints.
The generative process induced by themodel is depicted

in Figure 4, where empty nodes indicate unknown
quantities, whilst filled nodes indicate known quantities.
The linear transformation of chronological age con-

tains both a slope ucn and an intercept vcn . The slope ucn
determines the rate at which biological age changes with
chronological age. Only positive values of ucn are to be
expected as they indicate that biological age increaseswith
chronological age: ucn = 1 indicates an increase rate of
one year per year, whilst ucn > 1 (< 1) indicates an
increase rate higher (lower) than one year per year. For
example, Figure 2(d) implies u5 > 1. The intercept vcn
determines the value of biological age at birth.
Parameters bi (i = 1, . . . , 4), σ 2

ã and �l are treated
as deterministic quantities and their values are learned
as detailed in the Appendix. Parameters uj and vj (j =
1, . . . , 8) are treated as independent Gaussian random
variables. This enables us to obtain uncertainty in the esti-
mated effects of smoking, asthma and COPD. The large
variance makes the prior uninformative, which ensures
that the posterior variance, and therefore uncertainty in
the estimated effects, fully depends on the data.
In a probabilistic formulation, we can write the model as

p(ucn , vcn |μ,�) = N (μ = (1, 0)T,� = 10000I) ,

p(ãn|an, cn,ucn , vcn , σ 2
ã ) = N (ucnan + vcn , σ 2

ã ) ,

p(ln|ãn, hn, b,�l) = N (b1 + b2ãn + b3(ãn)2 + b4 log hn,�l) ,

where the symbol T indicates the transpose operator and I
is the identity matrix. To simplify the notation, in the rest
of the paper we omit conditioning on all quantities that
are not treated as random, namely μ, �, an, cn, σ 2

ã , h
n, b,

�l, and therefore denote the three basic Gaussian density
functions defining the model as p(ucn , vcn), p(ãn|ucn , vcn)
and p(ln|ãn).
Inference
In order to make deductions about the effects of smoking,
asthma andCOPD, we need to infer the posterior distribu-
tions of the group parameters given all N measurements,
p(uj, vj|l1, . . . , lN ) (j = 1, . . . , 8), and the posterior dis-
tributions describing the biological age of each group at
chronological age a, p(uja + vj|l1, . . . , lN ). An analysis of
p(uj, vj|l1, . . . , lN ) enables us tomake general (summarized
over all ages) statements about the groups: lack of or small
overlap of some of these distributions indicates funda-
mentally different biological ageing of the corresponding
groups. An analysis of p(uja + vj|l1, . . . , lN ) enables us to
make statements which are specific to age a.
As explained above, we treat uj and vj as a priori inde-

pendent random variables with Gaussian distributions.
The joint posterior distribution factorizes as

p(u1, . . . ,u8, v1, . . . , v8|l1, . . . , lN ) =
8∏

j=1
p(uj, vj|{ln|cn = j}) ,

where {ln|cn = j} denotes the subset of measurements
belonging to group j. The factors p(uj, vj|{ln|cn = j}) have
unknown analytical form, as the transformation from the
biological age to the measurements (3) is nonlinear. We
estimated them numerically and found that they are all
indistinguishable from Gaussian density functions. As a
consequence, we also found that p(uja+vj|{ln|cn = j}) are
Gaussian. A detailed explanation of how to estimate these
posterior distributions is given in the Appendix.

Results
In the next two sections we analyse the posterior distri-
butions p(uj, vj|{ln|cn = j}) and p(uja + vj|{ln|cn = j})
obtained when fitting the proposed model to our dataset.

Figure 4 Probabilistic model of biological age. Generative process induced by our model. The two plate sections indicate that the enclosed
structures are repeated for all 8 groups and Nmeasurements. Combined smoking, asthma and COPD status cn (through parameters ucn , vcn and the
addition of a noise term εn representing influence of smoking habits, lung disease, and unmeasured factors such as environmental and genetic
factors that are specific to the nth measurement) transforms chronological age an into biological age ãn . Biological age ãn and height hn generate
(through parameters b and the addition of a noise term ηn representing measurement noise) lung function measurement ln .
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Analysis of posterior distributions p(uj, vj|{ln|cn = j})
Figure 5(a) shows the contour plots of p(uj, vj|{ln|cn = j}):
each ellipse is centred at the mean and encloses 95% of the
distribution.
We can notice that the posterior distributions have

different spread, depending on the combined effect of
number and dispersion of measurements. For Group H
(continuous-blue ellipse), the high number of avail-
able measurements makes the distribution highly peaked
around u1 = 1, v1 = 0, despite the high dispersion at
each age (see Figure 2(a) and Figure 3(a)). This highlights
an important point about how to interpret the posterior
distributions: they provide us with a measure of uncer-
tainty on the estimated average biological ageing. Thus,
even if dispersion at each age is high, the model can still
be certain about the average biological age.
The major axes of the ellipses all have very similar

directions, expressing the fact that increasing the slope uj
requires decreasing the intercept vj and vice-versa. This
means that samples from the posterior distributions give
linear transformations of chronological ages intersecting
at middle ages, as shown in Figure 5(b) for Groups H
and SC. In other words, uncertainty about biological age
is higher at young and old ages than at middle ages,
which is what we would expect from the distribution of
measurements shown in Figure 1.
With the exception of Group C (continuous-green

ellipse) for which there is small overlap, unhealthy groups
do not overlap with Group H indicating that biological
ageing differs from chronological ageing.
If we consider Group A (continuous-red ellipse) versus

Group SA (dashed-red ellipse), Group C versus Group SC
(dashed-green ellipse), and Group AC (continuous-cyan
ellipse) versus Group SAC (dashed-cyan ellipse), we can

see that the ellipses do not overlap (considerably) and that
the centre of the smoking ellipse is closer to the upper-
right corner than the centre of the non-smoking ellipse,
which means that smoking in addition to having lung dis-
ease(s) induces significant increase in ageing with respect
to having lung disease(s) alone. The fact that Group S
(dashed-blue ellipse) does not overlap with Groups SA,
SC and SAC and is closer to the lower-left corner signifies
that this increase in ageing is not due to smoking alone
but is a truly combined effect. We can therefore conclude
that the combination of smoking with lung disease(s) has
more severe effect on ageing than lung disease(s) alone.
Lack of overlap despite the very small number of avail-
able measurements, which causes considerable spread of
some of these distributions, makes us confident about this
conclusion.
Comparison of Groups A and C with Group AC and

comparison of Groups SA and SC with Group SAC reveal
the effect of co-occurrence of asthma and COPD versus
either disease. Unlike the non-smoking case for which
the large overlap does not enable us to draw conclusions,
in the smoking case the posterior distributions indicate
substantial increase in ageing in the co-occurrence of the
diseases.

Analysis of posterior distributions p(uja + vj|{ln|cn = j})
Figure 6(a) shows the standard deviations of p(uja +
vj|{ln|cn = j}). As discussed above, the standard devi-
ations, and therefore uncertainties about the estimated
effects, are lower at middle ages for which more mea-
surements are available. Figure 6(b-f ) show the posterior
distributions p(uja + vj|{ln|cn = j}) at ages 20, 45, 55,
65 and 80 years: the length between two starts equals
2×1.96 times the standard deviation. Figure 7 illustrates
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Figure 5 Posterior distributions p(uj , vj|{ln|cn = j}). (a): Contour plots of the posterior distributions p(uj , vj|{ln|cn = j}). For each group, we show
an ellipse centred at the mean and enclosing 95% of the distribution. (b): Linear transformation of chronological age a, uja + vj , for 100 pairs (uj , vj)
sampled from p(uj , vj|{ln|cn = j}) for Groups H (continuous blue) and SC (dashed-green), showing that uncertainty is higher at young and old ages
and lower at middle ages.
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the behaviour of the posterior distributions every 5 years:
each rectangle is centred at the mean and its length equals
2×1.96 times the standard deviation.
From these figures we can see that, at the extreme ages

of 20 and 80 years for which the standard deviations are
higher, some of the general conclusions made in the pre-
vious section are no longer valid. More specifically, at age
20 there is considerable overlap between Groups A and
SA, between Groups C and SC, and between Groups AC
and SAC. Therefore, it is not possible to deduce from the
posterior distributions that the combination of smoking
with lung disease(s) has more severe effect on ageing than
smoking or lung disease(s) alone at this early age. Sim-
ilarly, we cannot make conclusions about co-occurrence
of asthma and COPD versus either disease. At age 80,
Groups AC and SAC are significantly different, as are
Groups S and SAC, so that we can conclude that the com-
bination of smoking with asthma-COPD (with asthma-
COPD we indicate co-occurrence of asthma and COPD)
has more severe effect on ageing. However, this is not the
case for asthma and COPD alone. Furthermore, we cannot
conclude that the combined effect of asthma and COPD
is higher than the single effects. By looking at the other
ages, we can see that the full set of statements made in the
previous section is valid for the age range 50–60.
Notice that the difference between Groups H and S is

already significant at age 30. This shows that at young
ages the model is considering FEV1 measurements only
to determine smokers’ biological age, as desired (see
discussion of Figure 3 above).
This age-specific analysis has enabled us to determine

at which ages the general statements about differences
in groups made in the previous section are valid. How-
ever, it also reveals an important difference between
younger and older ages, namely that, with the excep-
tion of Groups A and C, means distances of unhealthy
groups from Group H are substantially higher at older
ages. Thus the effects of most combinations of factors
seem to increase with age.
In Table 3 we give the estimated number of years that are

added to chronological age (means ±1× standard devi-
ations) for the age range 45–64. From the table we can
make a final interesting observation: at age 50 the effect
of combined smoking with asthma-COPD seems more
severe than additive. Indeed, when considering 1.96 times
the standard deviation, the sum of the maximum num-
bers of years added to chronological age in Groups S and
AC is 23.8, whist the minimum number of years added in
Group SAC is 23.6.

Discussion
To date, biological age of the lungs has been used at
the individual level to investigate its effectiveness in
motivating smokers to quit. In this paper, we have used

biological age of the lungs at the population level to
analyse the average effects of smoking, asthma and
COPD on the health status of the respiratory system. As
for the individual level case, knowing how much older,
on average, the lungs of individuals that smoke and/or
have lung disease(s) look relative to the healthy popu-
lation enables a more immediate understanding of the
impact of these factors on the health status of the lungs.
However, with this work we have shown that modelling
lung function through biological age has additional
benefits.
Such a modelling enables to properly combine multiple

types of measurement to obtain amore precise estimate of
the health status of the respiratory system. We have seen
that our approach correctly deals with the case in which
lung function differences are not evident in one type
of measurement.
Such a modelling also enables parameter shar-

ing for characterization over large age ranges and
of co-occurrences of factors with little data. We
obtained results that are in agreement with the liter-
ature (see the next section) using a small amount of
data. Furthermore, we could compare cases that have
not been previously analysed, as non-smokers with
asthma and COPD versus smokers with asthma and
COPD.
By treating the parameters that model smoking and

lung diseases as random variables, we could obtain uncer-
tainty in the estimated effects of such factors on the
lungs.
Finally, such a modelling enables more immediate inter-

pretation and comparison of results within and among
different studies than approaches expressing effects in
spirometric values. Whilst we did not show that in this
paper, the following examples can clarify this point. Sup-
pose that Studies A and B find that FEV1 mean value at
age 60 in the healthy population is respectively 2.75 and
2.5 litres, and that both studies find that FEV1 mean value
at age 60 in the smoking population is 2.25 litres. One
has to consider the mean values of the healthy popula-
tions to understand that Study A estimates that smoking
has a stronger effect than Study B. On the other hand, this
would be immediately evident if biological age was used,
since the estimated number of years added to chrono-
logical age in smokers in Study A would be higher than
in Study B. As another example, consider investigating
whether the effect of smoking on pulmonary function in
females and males is different (published results on this
subject are controversial [21-27]). Whilst our analysis was
restricted to females, males can be easily included in the
model e.g. by having separate sets of parameters b, u
and v so that only noise covariances are shared between
genders. Similarly to the previous example, if spiromet-
ric values are compared as in current studies, the values
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Figure 6 Posterior distributions p(uja + vj|{ln|cn = j}). (a): Standard deviations of the posterior distributions p(uja + vj|{ln|cn = j}). (b-f):
Posterior distributions p(uja + vj|{ln|cn = j}) for ages a = 20, 45, 55, 65 and 80 years. The length between two starts equals 2×1.96 times the
standard deviation. The legend in (b) is valid for all plots.
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Figure 7 Posterior distributions p(uja + vj|{ln|cn = j}) over all ages. Posterior distributions p(uja + vj|{ln|cn = j}) for age a in the range 20–80
years at 5-year step-size. Each rectangle is centred at the mean and its length equals 2×1.96 times the standard deviation.

of healthy males and females need to be considered to
understand whether the impact of smoking is gender spe-
cific, whilst this is not the case if biological age is used, as
biological age is a measure that is relative to the healthy
population.
One limitation of the proposed model is that it

does not account for longitudinal and twin structure,
so that we had to exclude many datapoints from the
analysis. We are currently investigating an extension
that incorporates both types of structure by adding
Gaussian terms which are shared across ages and
twins.
The choice of modelling biological age as a linear trans-

formation of chronological age, as defined in (2), was
motivated by simplicity and supported by Figure 2(d).
This figure indicates that smokers’ biological age is
well described as a linear transformation and makes
it reasonable to expect that linear or piecewise linear
transformations should be valid transformations for the
other groups too. As the size of our dataset was too
small to enable reliable estimation of piecewise linear

transformations, we restricted ourselves to linear ones.
However, piecewise linear transformations would be wor-
thy of investigation in studies in which more datapoints
are available.
The form of nonlinearity in (3) enabled us to describe

lung function decline in adulthood quite accurately whilst
keeping the model relatively simple. However, it would
be worthy to also consider the more flexible case in
which the form is estimated, particularly when consider-
ing other types of measurement in addition/replacement
to FEV1 and FVC. Somework in this direction, specifically
addressing complex lung function growth in young indi-
viduals, has been done in [18] and in [16], which proposed
the model of [28]. We are currently investigating mod-
elling lung function decline with Gaussian radial basis
functions.
Treating b as deterministic rather than random

enabled us to use simple numerical integration for
inference, avoiding the need to develop more complex
approximation schemes. It is reasonable to assume that a
posterior on b would be highly peaked (as is the posterior
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Table 3 Estimated number of years added to chronological age

Age 45 Age 46 Age 47 Age 48 Age 49 Age 50 Age 51 Age 52 Age 53 Age 54

Group A 6.6±1.7 6.6±1.7 6.6±1.6 6.6±1.5 6.6±1.5 6.6±1.4 6.7±1.4 6.7±1.4 6.7±1.4 6.7±1.4

Group C 5.3±4.8 5.4±4.6 5.5±4.4 5.5±4.3 5.6±4.1 5.7±4.0 5.7±3.9 5.8±3.8 5.9±3.7 5.9±3.6

Group AC 8.0±3.7 8.2±3.6 8.4±3.6 8.5±3.6 8.7±3.5 8.8±3.5 9.0±3.6 9.2±3.6 9.3±3.7 9.5±3.7

Group S 5.9±0.8 6.1±0.8 6.2±0.8 6.3±0.7 6.5±0.7 6.6±0.7 6.7±0.7 6.9±0.7 7.0±0.7 7.1±0.8

Group SA 15.7±4.2 15.9±4.1 16.2±3.9 16.4±3.8 16.6±3.6 16.8±3.5 17.0±3.4 17.2±3.4 17.5±3.3 17.7±3.3

Group SC 16.9±2.2 16.9±2.1 17.0±2.1 17.1±2.1 17.1±2.0 17.2±2.0 17.2±2.0 17.3±2.1 17.4±2.1 17.4±2.1

Group SAC 27.0±2.8 27.5±2.8 28.0±2.8 28.5±2.8 29.0±2.9 29.5±3.0 29.9±3.1 30.4±3.1 30.9±3.3 31.4±3.4

Age 55 Age 56 Age 57 Age 58 Age 59 Age 60 Age 61 Age 62 Age 63 Age 64

Group A 6.7±1.4 6.7±1.4 6.7±1.4 6.7±1.5 6.7±1.5 6.8±1.6 6.8±1.7 6.8±1.7 6.8±1.8 6.8±1.9

Group C 6.0±3.6 6.1±3.5 6.1±3.5 6.2±3.6 6.3±3.6 6.3±3.7 6.4±3.7 6.5±3.9 6.5±4.0 6.6±4.1

Group AC 9.7±3.8 9.8±3.9 10.0±4.0 10.2±4.1 10.3±4.3 10.5±4.4 10.6±4.5 10.8±4.7 11.0±4.9 11.1±5.0

Group S 7.3±0.8 7.4±0.8 7.6±0.8 7.7±0.9 7.8±0.9 8.0±0.9 8.1±1.0 8.2±1.0 8.4±1.1 8.5±1.1

Group SA 17.9±3.3 18.1±3.3 18.3±3.3 18.5±3.4 18.7±3.5 19.0±3.6 19.2±3.7 19.4±3.9 19.6±4.0 19.8±4.2

Group SC 17.5±2.2 17.5±2.3 17.6±2.3 17.7±2.4 17.7±2.5 17.8±2.6 17.8±2.7 17.9±2.8 18.0±2.9 18.0±3.0

Group SAC 31.9±3.5 32.4±3.6 32.9±3.7 33.4±3.9 33.9±4.0 34.4±4.2 34.8±4.3 35.3±4.5 35.8±4.6 36.3±4.8

Number of years added to chronological age (means ±1× standard deviations) by the combinations of smoking, asthma and COPD as estimated by the proposed model.
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of u1, v1, p(u1, v1|{ln|cn = 1}), computed from the same
individuals) and therefore that this choice had minor
impact on the estimated uncertainties.
Finally, we would like to notice that, whilst the proposed

model can also provide single individuals with biological
age, such a usage of the model would require a careful
analysis on how to set the measurement noise covari-
ance �l, as the maximum likelihood approach used in this
paper could be suboptimal.

Conclusions
We have introduced a probabilistic model based on
the concept of biological age to analyse the effects of
smoking, asthma and COPD on female lung function.
Our approach enabled us to make statements over large
age ranges and about co-occurrence of factors with
little data.
We have found that co-occurrence of smoking with

asthma or COPD or combined asthma and COPD has
more severe effect on ageing than smoking, asthma,
COPD or combined asthma and COPD alone. This is
in agreement with the findings in [29], that suggest that
the rate of decline of lung function is faster in smok-
ers with emphysema than in ex-smokers with emphy-
sema. This is also in line with the results in [4,20,30],
which show that smoking has a strong additional age-
ing effect on individuals with asthma. To the best of our

knowledge, results on co-occurrence of smoking with
combined asthma and COPD have not been previously
reported.
We have also found that co-occurrence of asthma and

COPD has a more detrimental effect on the lungs than
asthma or COPD alone. This is in line with recent studies
that indicate a reduced quality of life in individuals with
both asthma and COPD with respect to individuals that
have only either disease [31-33].
By analysing differences among ages, we could conclude

that, with the exception of asthma and COPD alone, the
effects of the combinations of factors increase with age
and therefore are more severe at older ages. This is in
agreement with other studies, for example [4], in which it
is shown that the effects of smoking and combined smok-
ing with asthma increase with age, whilst the effect of
asthma is constant.
At age 50 for which the standard deviations are lower,

our model estimated that the average number of years
±1× the standard deviations added to chronologi-
cal age by the factors are approximately as follows.
Asthma: 6.6±1.4; COPD: 5.7±4.0; asthma-COPD:
8.8±3.5; smoking: 6.6±0.7; smoking-asthma: 16.8±3.5;
smoking-COPD: 17.2±2.0; smoking-asthma-COPD:
29.5±3.0.
The software implementing the model can be down-

loaded at the first author’s webpage.

Appendix
Below we describe how to estimate the model parameters b, σ 2

ã and �l and the posterior distributions p(uj, vj|{ln|cn =
j}) and p(uja + vj|{ln|cn = j}). In order to avoid underflow/overflow problems, computations were performed in
log-scale.

Parameter learning
As explained above, the parameter set b was estimated from the healthy group (Group H) only to make sure that it
describes lung function decline in the absence of smoking, asthma and COPD. We learned the two subsets of b corre-
sponding to FEV1 and FVC separately using ordinary least squares. We then fixed b and estimated parameters σ 2

ã and
�l using an Expectation Maximization (EM) approach [34]. More specifically, the EM approach consisted of iterating
the following two steps until convergence:

• E-Step: Perform inference on p(ã1, . . . , ãN ,u1 . . . ,u8, v1, . . . , v8|l1, . . . , lN ) to compute the quantities required to
perform the M-Step.

• M-Step: Find the values of σ 2
ã and �l that maximize the expectation of the complete data log-likelihood

argmax
σ 2
ã ,�l

〈
log p(l1, . . . , lN , ã1, . . . , ãN ,u1 . . . ,u8, v1, . . . , v8)

〉
p(ã1,...,ãN ,u1...,u8,v1,...,v8|l1,...,lN )

,

where 〈·〉p(·) denotes averaging with respect to p(·) and p(ã1, . . . , ãN ,u1 . . . ,u8, v1, . . . , v8|l1, . . . , lN ) is computed
using the values of σ 2

ã and �l estimated in the previous iteration.

The part of the expectation of the complete data log-likelihood that depends on σ 2
ã and �l is given by

∑
j

∑
{n|cn=j}

[ 〈
log p(ln|ãn)〉p(ãn|{ln′ |cn′=j}) + 〈

log p(ãn|uj, vj)
〉
p(ãn,uj ,vj|{ln′ |cn′=j})

]
. (4)



Chiappa et al. Respiratory Research 2013, 14:60 Page 13 of 15
http://respiratory-research.com/content/14/1/60

We excluded the parameter set b from the EM approach as we found that otherwise the nonlinearity in FEV1 and
FVC decline with age of healthy individuals would be transferred to the biological age (through high noise variance σ 2

ã )
so that b would not represent normal lung function decline.

M-Step: Updates for σ 2
ã

Setting to zero the derivative of (4) with respect to σ 2
ã

∑
j

∑
{n|cn=j}

〈
∂ log p(ãn|uj, vj)

∂σ 2
ã

〉
p(ãn,uj ,vj|{ln′ |cn′=j})

∝ −N +
∑
j

∑
{n|cn=j}

〈(
ãn − ujan − vj

)2〉
p(ãn,uj ,vj|{ln′ |cn′=j})

σ 2
ã

,

we obtain the optimal σ 2
ã

σ 2
ã = 1

N
∑
j

∑
{n|cn=j}

( 〈
(ãn)2

〉 + 〈
u2j

〉
(an)2 +

〈
v2j

〉
− 2

〈
ãnuj

〉
an − 2

〈
ãnvj

〉 + 2
〈
ujvj

〉
an

)
,

where the required moments are estimated as explained below.

M-Step: Updates for�l

Setting to zero the derivative of (4) with respect to �−1
l

∑
j

∑
{n|cn=j}

〈
∂ log p(ln|ãn)

∂�−1
l

〉
p(ãn|{ln′ |cn′=j})

∝ N�l −
∑
j

∑
{n|cn=j}

〈(
l̃n−b2ãn−b3(ãn)2)

(
l̃n−b2ãn−b3(ãn)2

)T〉
p(ãn|{ln′ |cn′=j}),

where l̃n = ln − b1 − b4 log hn, we obtain the optimal �l

�l = 1
N

∑
j

∑
{n|cn=j}

[
l̃n(l̃n)T − 〈

ãn
〉
(l̃nbT2 + b2(l̃n)T) − 〈

(ãn)2
〉 (
l̃nbT3 + b3(l̃n)T − b2bT2

)

+ 〈
(ãn)3

〉
(b2bT3 + b3bT2) + 〈

(ãn)4
〉
b3bT3

]
.

E-Step: Inference on p(ã1, . . . , ãN, u1 . . . , u8, v1, . . . , v8|l1, . . . , lN)

The marginal likelihood can be estimated as

p(l1:N ) =
∏
j
p({ln|cn = j}) =

∏
j

∫
uj ,vj

[ pj︷ ︸︸ ︷∏
{n|cn=j}

p(ln|uj, vj)
]
p(uj)p(vj)

=
∏
j

∫
uj ,vj

[ ∏
{n|cn=j}

∫
ãn

p(ln, ãn|uj, vj)
]
p(uj)p(vj)

=
∏
j

∫
uj ,vj

[ ∏
{n|cn=j}

∫
ãn

p(ln|ãn)p(ãn|uj, vj)
]
p(uj)p(vj)

=
∏
j

∫
uj ,vj

[ ∏
{n|cn=j}

∫
ãn

N (b1 + b2ãn + b3(ãn)2 + b4 log hn,�l)N (ujan + vj, σ 2
ã )

]
p(uj)p(vj) ,

where the required integrations are computed numerically.
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Then the posterior distribution p(ãn,uj, vj|{ln′ |cn′ = j}) can be estimated as

p(ãn,uj, vj|{ln′ |cn′ = j}) = p(ãn,uj, vj, {ln′ |cn′ = j})
p({ln′ |cn′ = j})

=
p(ãn,uj, vj, ln)

∏
{n′|n′ �=n,cn′=j} p(l

n′ |uj, vj)
p({ln′ |cn′ = j})

= p(ln|ãn)p(ãn|uj, vj)p(uj)p(vj)pj
p(ln|uj, vj)p({ln′ |cn′ = j}) . (5)

From this distribution, the moments required for the parameter updates, namely 〈ãn〉, 〈(ãn)2〉, 〈(ãn)3〉, 〈(ãn)4〉, 〈ãnuj〉,〈
ãnvj

〉
,
〈
u2j

〉
,
〈
v2j

〉
and

〈
ujvj

〉
, are computed by numerical integration.

Approximation
The EM approach for learning σ 2

ã and �l described above is time consuming. A comparison of this approach with an
approximation in which uj and vj are considered as deterministic did not show any difference in the learned values of
σ 2
ã and �l. We therefore used this approximation for the presented results.
In this alterative approach, the updates for σ 2

ã and �l in the M-Step are similar to the ones above in which the optimal
values of uj and vj are used and p(ãn,uj, vj|{ln′ |cn′ = j}) becomes p(ãn|ln), computed as p(ln|ãn)p(ãn)/ ∫

ãn p(l
n|ãn)p(ãn).

The optimal values of uj and vj are learned by setting to zero

∑
{n|cn=j}

〈
∂ log p(ãn)

∂uj

〉
p(ãn|ln)

∝
∑

{n|cn=j}

( 〈
ãn

〉
p(ãn|ln) − ujan − vj

)
an ,

∑
{n|cn=j}

〈
∂ log p(ãn)

∂vj

〉
p(ãn|ln)

∝
∑

{n|cn=j}

( 〈
ãn

〉
p(ãn|ln) − ujan − vj

)
,

that is, by solving the following linear system:

( ∑
{n|cn=j}(an)2

∑
{n|cn=j} an∑

{n|cn=j} an Nj

) (
uj
vj

)
=

( ∑
{n|cn=j} 〈ãn〉p(ãn|ln) an∑

{n|cn=j} 〈ãn〉p(ãn|ln)
)

,

where Nj indicates the number of measurements belonging to Group j.

Computing the effects of smoking, asthma and COPD
The posteriors distributions p(uj, vj|{ln|cn = j}) can be computed from (5) by numerical integration over ãn. The pos-
teriors distributions p(uja + vj|{ln|cn = j}) can be computed from p(uj, vj|{ln|cn = j}) using the formula of linear
transformation of random variables and numerical integration. However, as we found numerically that p(uj, vj|{ln|cn =
j}) are Gaussian, p(uja + vj|{ln|cn = j}) can be computed more simply using the formula of linear transformation of
Gaussian random variables. A transformation of p(uj, vj|{ln|cn = j}) was performed to correct the small deviation of the
mean of p(u1, v1|{ln|cn = 1}) from (1,0).
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