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Abstract

hypertension.

Background: Stromal interaction molecule 1 (STIM1) is a newly discovered Ca®* sensor on the endoplasmic
reticulum which is an indispensable part in the activation of store-operated Ca®* channels (SOC). Recent studies
demonstrate that SOC of pulmonary smooth muscle cells (PASMCs) were upregulated by chronic hypoxia which
contribute to the enhanced pulmonary vasoconstriction and vascular remodeling. However, the exact role of STIM1
in the development of chronic hypoxic pulmonary hypertension(HPH) remains unclear.

Methods: In this study we investigated the cellular distribution and expression of STIM1 by immunofluorescence,
gRTPCR and Western blotting methods in Wistar rat distal intrapulmonary arteries under normal and chronic
hypobaric hypoxic conditions. In vitro, Wistar rat PASMCs were isolated and cultured. PASMCs were transfected with
siRNA targeting STIM1 gene by liposome. The expression of STIM1 protein was detected by Western blotting.
[H]-thymidine (PH]-TdR) incorporation were performed to detect PASMCs proliferation. The cell cycle was analyzed
by flow cytometry. The SOC-mediated Ca”* influx was calculated by Ca** fluorescence imaging and the nuclear
translocation of NFATc3 was determined by immunofluorescence and Western blot analysis of nuclear extracts.

Results: We found that during the development of HPH and the initiation of vascular remodeling, the mRNA and
protein expression levels of STIM1 significantly increased in the distal intrapulmonary arteries. Moderate hypoxia
significantly promotes PASMCs proliferation and cell cycle progression. Silencing of STIM1 significantly decreased
cellular proliferation and delayed the cell cycle progression induced by hypoxia. Silencing of STIM1 also significantly
decreased SOC-mediated Ca** influx and inhibited the nuclear translocation of NFATC3 in hypoxic PASMCs.

Conclusion: Our findings suggest that chronic hypobaric hypoxia upregulates the expression of STIM1 in the distal
intrapulmonary arteries which plays an important role in the hypoxia-induced PASMCs proliferation via
SOC/Ca**/NFAT pathway and may represent a novel therapeutic target for the prevention of hypoxia pulmonary
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Background

Chronic exposure to hypobaric hypoxia cause hypoxic
pulmonary hypertension (HPH), which is characterized
by pulmonary vasoconstriction (HPV) and vascular re-
modeling [1]. The relationship between Ca®* and HPH
has been throughly investigated. Hypoxia inhibits the Kv
channels, leading to cell membrane depolarization, and
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triggers Ca®" influx from the L-type Ca**channels. The
increased Ca”* levels cause pulmonary arterial smooth
muscle cells (PASMCs) to constrict and proliferate
which contributes to the development of pulmonary
hypertension [2-5]. However, recent studies suggested
that the store-operated Ca®* channel (SOC) in addition
to L-type Ca** channels are also involved in chronic
hypoxic pulmonary hypertension [6]. The activation of
SOC is triggered by a reduction in the concentration of
SR Ca®*, which can be depleted by inhibiting sarcoendo-
plasmic reticulum Ca®* ATPases with thapsigargin (TG)
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[7,8]. Recently, an RNAi-based screening approach
revealed that a novel membrane-spanning protein, stro-
mal interaction molecule 1 (STIM1), was required for
the activation of SOC [9,10]. STIM1 is a 90-kDa type-I
transmembrane Ca®*-binding protein with a luminal helix-
turn-helix EF-hand Ca®*-sensing module followed by a
sterile o motif (SAM) in the intraluminal NH,-terminal
region. Decreased binding of Ca** to the EF hand has been
shown to lead to the oligomerization of STIM1 followed by
translocation of the multimers to membrane-adjacent ER
areas where STIMI1 can activate Ca®" influx [9,11-13]. It
has been reported that STIM1 expressed in the pulmonary
arteries and played important roles in the activation of
SOC in rat PASMCs [14]. However, The functions of
STIM1 involved in HPH are still obscure. In this study, we
present in vivo and in vitro evidence showing that hypo-
baric upregulates the expression of STIM1 in rat distal
intrapulmonary arteries which plays an important role
in the hypoxia-induced PASMCs proliferation via SOC/
Ca”*/NFAT pathway and may represent a novel thera-
peutic target for the prevention of hypoxia pulmonary
hypertension.

Materials and methods

Animals

All of the protocols and surgical procedures were
approved by the Institutional Animal Use Committee of
the Third Military Medical University and were in ac-
cordance with the National Institutes of Health and the
American Physiological Society guidelines. Adult male
Wistar rats (6 — 7 weeks old, 220 — 250 g) were placed for
21 days in a chamber that was depressurised to 380 mmHg
with a 12-hour light-dark cycle. Age-matched controls
were maintained in normal room air. Each group con-
sisted of 15 experimental animals. The methods that were
used to isolate the rat lungs were similar to those previ-
ously reported [15]. In brief, prior to lung isolation, mean
pulmonary arterial pressures were measured as previously
described [16]. After euthanizing the rats, the thorax was
immediately opened and the heart and lungs were
removed. The hearts were dissected to remove the right
ventricle (RV) free wall and the left ventricle plus septum
(LV +S), and the weight ratio of RV/(LV + S) was used as
an index of RV hypertrophy. The distal intrapulmonary ar-
teries were dissected from the lungs and frozen in liquid
nitrogen for subsequent examination.

Morphological preparation and examination

The lungs was perfused with 4% paraformaldehyde
(PFA), inflated by infusion of 4% PFA at a constant pres-
sure of 25 cm H,O through the cannula inserted in the
trachea, fixed in 4% PFA overnight at 4°C and then em-
bedded in OCT, and subsequently cut into 10-um-thick
sections for hematoxylin and eosin staining. Following
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H&E staining, Images of individual pulmonary arteries
were captured using a digital camera, mounted on a
light microscope, and linked to a computer. the ratio of
vessel wall area to total area (WA%) and the ratio of
pulmonary arteriole wall thickness to vascular external
diameter (WT%) were measured using the Image-Pro
Plus 5.1 software.

Quantitative real-time polymerase chain reaction
(qRTPCR)

Total RNA from the intrapulmonary arteries (isolated as
mentioned above) was isolated using the RNA simple
Total RNA Kit (Tiangen), according to the manufac-
turer’s protocol. Then, the total RNA was reverse-
transcribed to ¢cDNA using the PrimeScript® RT reagent
kit (TAKARA). Real-time PCR was performed using the
SYBR® Premix Ex Taq" II kit (TAKARA). The primer
sequences for STIM1 were 5-CGTCCGCAACATCCA
CAAG-3' (forward) and 5-CCATAGGTCCTCCACGCT-3'
(reverse). The primer sequences for B-actin were 5-ACG
GTCAGGTCATCACTATC-3' (forward) and 5-TGCCA
CAGGATTCCATACC-3' (reverse). The amplification con-
ditions consisted of 1 cycle at 95°C for 30 s and 40 cycles of
95°C for 5 s, 60°C for 20 s, and 72°C for 15 s. Melting curve
analyses were performed at conditions of 95°C for 1 min
and then 55°C for 1 min, which were followed by 80 incre-
ments of +0.2°C at 10-s intervals. The relative concentra-
tions of each transcript were calculated using the standard
curve method.

Double-immunofluorescence staining

The isolated lungs were formaldehyde fixed (4% in PBS),
cryoprotected with 30% sucrose in PBS, embedded in
OCT media, and then frozen. Cryostat sections (10 pm)
were permeabilised and blocked for nonspecific binding
and then incubated in 0.2% gelatin in PBS with the fol-
lowing primary antibodies at 4°C overnight: mouse
monoclonal anti-STIM1 (1:100) (BD Bioscience) and
rabbit polyclonal anti-a-smooth muscle actin (1:250)
(ABcam). The secondary antibodies [anti-mouse Cy3
and anti-rabbit FITC (1:500) (Biyuntian, China)] were
prepared in 0.2% gelatin in PBS and were applied to the
sections for 1 h at 37°C. Nuclei were stained using DAPI
(1:1,000 in PBS; Biyuntian, China). Images were taken
using a confocal laser scanning microscope (Leica TCS
SP5, Germany).

Isolation and culture of PASMCs

For isolation of the PASMCs, the adventitia of freshly
excised distal (>4th generation) intrapulmonary arteries
from adult male Wistar rats were removed. Vascular seg-
ments were then cut open, and the endothelium was
removed by gently scraping the luminal surface of the
vessel. Rat PASMCs were cultured as previously
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described [17]. In brief, the arteries were allowed to re-
cover for 30 min in cold (4°C) physiological salt solution
(PSS) that contained 130 mM NaCl, 5 mM KCl, 1.2 mM
MgCl,, 10 mM HEPES, and 10 mM glucose. This was
followed by 20 min in reduced-Ca** PSS (20 uM CaCl,)
at room temperature. The tissue was then digested at
37°C for 20 min in reduced-Ca** PSS containing collage-
nase (type I, 1,750 U/ml), papain (9.5 U/ml), bovine
serum albumin (2 mg/ml), and dithiothreitol (1 mM).
Cells were grown in DMEM supplemented with 10%
FBS and were passaged at a 1:3 ratio with trypsin treat-
ment. The purity of the PASMCs in the primary cultures
was confirmed using the specific mAb against smooth
muscle a-actin. Cells that had been passaged 3 to 8
times and were at 80% confluence were used for all
experiments.

RNA interference

Small interfering RNA (siRNA) targeting STIM1 (siSTIM1)
were designed as previously described [18] and synthesised
by Genepharma. Scrambled (nonsense) siRNA (Gene-
pharma) was used as negative control siRNA. Cells were
transfected with siSTIM1 or Scrambled siRNA (final con-
centration of siRNA was 90 nM) (Invitrogen, Carlsbad, CA)
using Lipofectamine RNAIMAX (Invitrogen) according to
the manufacturer’s instructions. After 24 h, Cell growth was
arrested by replacing medium with serum-free DMEM for
24 h under normoxic conditions. Growth-arrested cells
were further incubated under either normoxic(21% O,) or
hypoxic conditions (3% O,) for 24 h.

Western blotting

Forty-eight hours after transfection, cells were collected
for protein isolation. The cultured cells were washed
twice with ice-cold PBS and lysed on ice in RIPA lysis
buffer containing freshly added protease and phosphat-
ase inhibitor cocktails. After 15 min of incubation, the
cell lysate was collected by centrifuging the cells for
5 min(16,000 x g) at 4°C. For nuclear and cytoplasmic
fractions, adherent cells were washed in PBS, and the
cytoplasmfraction was prepared by the addition of buffer
C (10 mM Tris, pH 7.6, 10 mM KCl, 1.5 mM MgCl,, 1%
(v/v) Triton X-100, 1 mM dithiothreitol, 0.2 mM NazVOy,,
0.4 mM phenyl-methylsulfonyl fluoride, 10 pg/ml leupep-
tin, and 0.2 mM NaF). After a 15-min incubation on ice,
lysates were spun for 5 min (10,000 x g) at 4°C. Super-
natant containing the cytoplasm fraction was saved, and
the pellet, containing the nuclear fraction, was washed
once with buffer C and resuspended in buffer N (20 mM
Tris, pH 7.6, 160 mM KCl, 1.5 mM MgCl,, 10% (v/v)
glycerol, 1 mM dithiothreitol, 0.2 mM NazVO,, 0.4 mM
phenylmethylsulfonyl fluoride, 10 pg/ml leupeptin, and
0.2 mM NaF). Nuclear lysates were incubated for 30 min
on a rotating platformat 4°C and spun (16,000 x g) for

Page 3 of 10

15 min at 4°C. The amount of total protein was deter-
mined using a BCA protein assay kit (Pierce, Rockford, IL,
USA). An equal amount of total protein (30-50 ug) was
loaded and separated by SDS-PAGE. The protein was
transferred to polyvinylidene difluoride membranes and
was then blocked and probed with the appropriate anti-
bodies. Monoclonal Abs against STIM1 (BD Bioscience),
Lamin B1 (Santa Cruz) and B-actin (Santa Cruz) or a poly-
clonal antibody against NFATc3 (Santa Cruz) were used as
primary Abs. The membranes were then washed for
15 min 3 times and incubated with horseradish peroxidase-
conjugated goat anti-rabbit or anti-mouse IgG for 1 h.
Bound antibodies were detected using an enhanced chemi-
luminescence system following the manufacturer’s instruc-
tions. Densitometric signals were quantified by Quantity
One software.

Determination of cell proliferation

PASMC proliferation was quantified by [3H]-thymidine
incorporation, as described previously [19]. Briefly,
1 pCi/well [3H]-thymidine was added for the final
6 hours of cell culture, after which the cells were
removed from the wells with trypsin digestion. The
incorporated [3H]-thymidine was precipitated with 10%
trichloroacetic acid and counted using a liquid scintilla-
tion counter. The experiments were repeated three times
and results from five wells per experiment were deter-
mined and expressed as the average of the counts.

Cell cycle and DNA analyses

PASMCs were harvested by trypsin-EDTA treatment
and were fixed in 70% ethanol. The ethanol was
removed, and the cells were incubated in PBS containing
RNase at 37°C for 30 min. Next, the cells were stained
with propidium iodide (50 pg/ml) and suspended in PBS
for 30 min on ice. DNA fluorescence was measured by
flow cytometry using an EPICS XL cytometer (Beckman
Coulter, CA).

Measurement of SOCE

The [Ca®']li in PASMCs was measured using the
Ca**-sensitive fluorescent indicator fluo-4/AM. Cells were
loaded with fluo-4 at 37°C for 30 min using a Ca>*-free
physiological salt solution (D-HANKS) containing 5 uM
fluo-4/AM. The fluo-4-loaded cells were then perfused
with a Ca**-free physiological salt solution containing the
following components: 0.5 mM EGTA (Sigma Chemical,
St Louis, MO)to chelate residual Ca**, 5 uM nifedipine
(Sigma Chemical, St Louis, MO) to prevent calcium entry
through L-type voltage-operated Ca** channels (VOCC),
and 10 pM cyclopiazonic acid (CPA; Sigma Chemical) to
deplete SR Ca* stores. The [Ca®*]i was determined before
and after the restoration of extracellular [Ca*'] to 2.5 mM.
SOCE was evaluated by measuring the peak increase in
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[Ca®*]i caused by the restoration of extracellular Ca%* in
the continued presence of nifedipine and CPA.

Immunofluorescence microscopy

Cells were fixed for 30 min at room temperature with
4% formaldehyde in Dulbecco's phosphate-buffered
saline (DPBS). Next, the cells were incubated with 0.2%
Triton X-100 in DPBS for 15 min at room temperature.
The cells were blocked with blocking solution (10% goat
serum in DPBS) for 1 h and then incubated with the
primary antibodies (NFATc3, sc-8321, Santa Cruz
Biotechnology, Santa Cruz, CA, USA) for 1 h at room
temperature followed by the fluorescent-conjugated
secondary antibody (FITC-conjugated AffiniPure goat
anti-rabbit IgG, Beijing Zhongshan Golden Bridge Bio-
logical Technology Company, Beijing, China) for 90 min
at room temperature. Nuclear staining was performed
using DAPI (Biyuntian, China). The fluorescence was
examined using a Leica laser scanning confocal micro-
scope (Leica TCS SP5, Germany).

Statistical methods

Numerical data were expressed as the means+ SEM.
The SPSS10.0 software was used for the statistical ana-
lysis. An ANOVA was used with Scheffe’s multiple com-
parison tests for multiple groups and student’s ¢-test was
used for two groups. P values < 0.05 were regarded as
statistically significant.

Results

Morphological characteristics and alterations

The mean pulmonary arterial pressures were 18.5+
2.3 mmHg and 31.5+3.7 mmHg for the controls and
the animals exposed to hypoxic conditions for 21 days,
respectively (p < 0.05, n = 10). Furthermore, the ventricu-
lar weight measurements revealed the RV/(LV + S) ratios
to be 0.26 £ 0.02 for control rats and 0.42 + 0.03 for rats
exposed to hypoxia for 21 days (p <0.05, n=10). The
histological H&E staining demonstrated that the ratio of
pulmonary arteriole wall thickness to vascular external
diameter (WT%) were 16.2 +5.2 and 34.8 + 7.4 for the
control and rats exposed to hypoxia for 21 days respec-
tively (p <0.05, n=3). The ratio of vessel wall area to
total area (WA%) were 29.7 +7.9 and 56.2 + 8.8 for the
control and rats exposed to hypoxia for 21 days respec-
tively (p < 0.05, n = 3). These data indicated that the wall
area and wall thickness percentages were significantly
increased in the hypoxia-treated group compared to the
control group (Figure 1).

Effects of hypoxia on the expression of STIM1 in rat distal
intrapulmonary arteries

To detect the effects that hypoxia had on the expression
of STIM1 in rat distal intrapulmonary arteries, real-time
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RT-PCR and western blotting were done with total RNA
and cytosolic protein extracts from rat distal intrapul-
monary arteries. Localization of STIM1 and SMaA-
positive cells in rat small pulmonary arteries was done
by double-immunofluorescence staining to determine
the spatial distribution and cellular localization. Com-
pared with the control groups, the expression of
STIM1 mRNA and protein increased significantly in
the distal intrapulmonary of animals in the 21-day
hypoxia treatment group (Figure 2).

Silencing of STIM1 significantly inhibites PASMCs
proliferation under hypoxia

STIM1 protein expression in PASMCs of siNT group was
not significantly different compared with the untreated
group. In contrast, siSTIM1 treatment significantly reduced
STIM1 protein expression, as compared to siNT treatment
or no treatment (P<0.01) (Figure 3A and B). Next, we
investigated the effect of the STIM1 siRNA treatment on
PASMCs proliferation under hypoxic conditions. After
24 hours of 3% oxygen treatment, there was a significant
increase in PASMCs proliferation, as measured by [3H]-
thymidine (3H-TdR) incorporation. Meanwhile, Silencing
of STIM1 significantly inhibited hypoxia induced PASMCs
proliferation. In addition, there were no significant diffe-
rences between siNT-treated group and control group
(Figure 3C).

Silencing of STIM1 significantly reduces the cell cycle
progression of PASMCs under hypoxia

As PASMCs proliferation was significantly inhibited by
STIM1 siRNA treatment, we investigated whether this
inhibition could be due to an alteration in cell cycle pro-
gression. Flow cytometry was performed to analyse the
phases of the cell cycle for each group. We found that
treatment with 3% O, significantly increased PASMCs
cell cycle progression, while Silencing of STIM1 signifi-
cantly inhibited cell cycle progression under hypoxic
conditions (Figure 3D).

Figure 1 H&E-stained sections of small pulmonary arteries from
the lungs of control rats (N) and rats exposed to hypobaric
hypoxia for 21 days (CH). The results show representative sections
from at least three rats per group for each time point. Scale

bar=10 pm.
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Figure 2 The effects of chronic hypoxia on STIM1T mRNA and protein expression. Representative Western blot images (A) and summarized
data (B) for STIM1 proteins in distal (>4th generation) intrapulmonary arteries from control rats (N) and rats exposed to hypobaric hypoxia for

21 days (CH). f-actin was used as a loading control. Graph shows protein expression of STIMT normalized to an average level in N. The results are
expressed as the mean = SEM for five experiments *: P < 0.05 compared to the N group. (C) STIM1 (red) and a-smooth muscle actin (ACTA2)
(green) immunofluorescence staining in small pulmonary arteries from N and CH. Nuclei are counterstained with DAPI (blue). Scale bar =10 um.
The results shown are from a single experiment and are representative of three separate experiments. (D) Analysis of STIM1 mRNA expression in

distal (>4th generation) intrapulmonary arteries from N and CH. Parallel amplification of the rat housekeeping B-actin gene was used as an
internal control. The results are expressed as the mean + SEM for five experiments. *: P < 0.05 compared to the N group.

Silencing of STIM1 inhibits hypoxia-induced enhancement
of SOC/[Ca**]i in PASMCs

As hypoxia-induced PASMCs proliferation is typically
associated with extracellular Ca** influx through SOC, we
investigated whether the anti-proliferative effects of
STIMI silencing were related to changes in SOC/[Ca**]i
as a result of hypoxia. Hypoxia was found to induce a sig-
nificant increase in peak [Ca®']i levels (P<0.05) in
PASMCs compared to cells from normoxic conditions.
The silencing of STIM1 markedly inhibited the hypoxia-
induced increase in SOC-mediated Ca®* influx (P < 0.05).
These results suggest that STIM1 silencing may exert its
anti-proliferative effect by inhibiting the activation of the
SOC/[Ca®*]i pathway under hypoxic conditions (Figure 4.

Silencing of STIM1 inhibits hypoxia-induced NFATc3
nuclear translocation

In normoxic-treated PASMCs, NFATc3 immunostaining in
the nucleus was weak which suggested that NFATc3 levels
in the nucleus were low and that there was a lack of signifi-
cant nuclear translocation. Hypoxia treatment significantly
stimulated the nuclear translocation of NFATc3, which was
indicated by strong NFATc3 staining in the nucleus. More-
over, the silencing of STIMI1 significantly attenuated
the nuclear translocation of NFATc3 induced by hypoxia
(Figure 5A). That silencing of STIM1 inhibits hypoxia-
induced NFATc3 nuclear translocation was confirmed by
western blot analysis of nuclear extracts(Figure 5B).

Discussion

Continuous or intermittent hypobaric hypoxia can lead to
long-term contraction of the pulmonary artery and struc-
tural changes in the pulmonary vascular wall known as
hypoxic pulmonary vessel remodelling (HPVR) [20].
HPVR is characterised by thickening of small pulmonary
artery wall and muscularizing of pulmonary arteriole,
which can result in sustained high pulmonary artery
pressure and right ventricular hypertrophy [21]. It has be-
come clear that pulmonary vascular smooth muscle cells
(PASMCs) are closely related to the development of
pulmonary hypertension, which are regulated by intracel-
lular Ca** concentrations and calmodulin (CaM) [1]. The
intracellular Ca** concentration has also been suggested
to regulate gene expression and cellular proliferation
[2,6,22-25]. Intracellular calcium levels in PASMCs are
mainly regulated by extracellular calcium influx and the
release of intracellular calcium stores. Chelation of extra-
cellular calcium in human PASMCs can significantly
inhibit serum or growth-factor induced cell proliferation.
The intracellular levels of calcium were significantly higher
in proliferating PASMCs than resting PASMCs [26]. These
results suggested that a continuous inflow of extracellular
calcium is necessary for cell proliferation. The calcium
channels found at the plasma membrane, which mediate
the influx of extracellular calcium, include voltage-
dependent calcium channels (VDCC), receptor-operated
calcium channels (ROC), and store-operated calcium
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Figure 3 The effect of STIM1 silencing on rat PASMC proliferation and cell cycle progression under hypoxia. (A). Western blot showing
STIM1 and {3-actin protein expression from untreated control PASMCs (Control) and PASMCs treated with transfection-nontargeted siRNA (siNT) or
SiRNA targeted to STIM1 (siSTIM1). (B). Mean ratios of STIM1 protein expression relative to that of 3-actin, as measured by Western blotting in
Control, siNT, and siSTIMT PASMCs. *: P < 0.05 compared to the Control group and the siNT group. The results are expressed as the mean + SEM
of four experiments. (C)After transfection with STIM1 siRNA, PASMCs were cultured in hypoxic conditions for 24 hours. [3H]-thymidine (3H-TdR)
incorporation was measured to detect PASMC proliferation. (D) PASMCs were harvested for flow cytometry-based cell cycle analysis. PASMCs
were either left untreated under normoxic conditions (N), left untreated under hypoxic conditions (HCON), treated with nontargeted siRNA under
hypoxic conditions (HsiNT), or treated with siRNA targeted to STIM1 under hypoxic conditions (HsiSTIM1). *:P < 0.05 compared with the Control
group and #:P < 0.05 compared with the HCON and HsiNT group. The results are expressed as the mean + SEM of three experiments.

channels (SOC). VDCCs are regulated by membrane
potential, while SOCs are activated by the depletion of
intracellular calcium stores. ROCs can activate G
proteins and phospholipase C (PLC), which then hydro-
lyse phosphatidylinositol 4,5 bisphosphate (PIP2) to
generate 1, 4, 5 - trisphosphate (IP3) and diacylglycerol
(DAG). IP3 acts on the endoplasmic reticulum (ER) or
the sarcoplasmic reticulum (SR) to cause Ca®* to be
released from calcium stores and to activate SOC [7,8].
Previous studies have suggested that hypoxia can sup-
press voltage-dependent potassium channels (Kv) and
cause cell membrane depolarisation and the activation
of VDCCs. Increased concentrations of intracellular
calcium ions can lead to pulmonary vasoconstriction
and vascular remodelling [2-5]. However, recent evi-
dence has also indicated that SOCs also play a very im-
portant role in the pathogenesis of hypoxic pulmonary
hypertension. Vera et al have reported that Ni** known
as SOC blocker can significantly inhibit the prolifera-
tion of cultured PASMCs [27,28]. Meanwhile, Lin et al
showed that PASMC SOCs are upregulated by chronic

hypoxia and contribute to the enhanced vascular tone
in hypoxic pulmonary hypertension [6].

The molecular composition and the mechanisms be-
hind the activation of SOCs remained enigmatic for al-
most 20 years [28,29]. Then, in 2005, using an RNA
interference-based high-throughput screen in Drosophila
S2 cells with 170 genes, Roos et al. [9] identified the
gene for STIM1 as being required for thapsigargin-
induced SOC entry. In addition, SOC were not activated
in human T cells and HEK293 cells upon the depletion
of intracellular calcium stores when STIM1 was silenced.
Liou et al. [10] also used an RNA interference-based
high-throughput screen in Hela cells with 2,304 genes to
identify STIM1 as the key factor necessary to activate
SOCs. These experiments indicated that STIM1 was a
SOC-specific gene that regulated SOC activity, and the
results of these studies indicated that STIM1 may be a
novel target for SOC-related diseases. Recently, Lu et al.
[14] reported that expression of STIM1 was greater in
distal than proximal PASMCs, which may account for
the reason why HPV is greater in distal than proximal
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pulmonary arteries. However, the role of STIM1 in the
development of chronic hypoxic pulmonary hyperten-
sion especially the relationship between hypoxia induced
PASMCs proliferation and STIM1 remains obscure.
Therefore, we investigated STIM1 expression level in
the distal intrapulmonary vasculature of normal rats and
animals exposed to chronic hypoxia. The results demon-
strated that a significant upregulation of STIM1 expres-
sion was associated with chronic hypoxia-induced
PASMC hyperproliferation in the distal intrapulmonary

vasculature. Our data indicate that STIM1 protein may
be involved in the regulation of hypoxic pulmonary
vascular remodelling.

In addition, we used STIM1-specific siRNA to silence
the STIM1 expression in rat PASMCs under conditions of
hypoxia to investigate the role of STIM1 in the regulation
of hypoxia-induced PASMC proliferation. We found that
the knockdown of STIM1 expression in PASMCs by RNA
interference was highly specific and could be quantitated
at the protein level. STIM1 knockdown markedly inhibited
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Figure 5 The effect of STIM1 silencing on hypoxia-induced nuclear translocation of NFATc3 in PASMCs. NFATc3 staining was visualised
by confocal microscopy and immunofluorescence. The primary antibody against NFATc3 was detected using a FITC-conjugated AffiniPure goat
anti-rabbit IgG secondary antibody (green). The slides were counterstained with the nuclear dye DAPI (blue). (A): Immunofluorescence image of
NFATc3 in PASMCs: PASMCs were either left untreated under normoxic conditions (N), left untreated under hypoxic conditions (HCON), treated
with nontargeted siRNA under hypoxic conditions (HsiNT), or treated with siRNA targeted to STIM1 under hypoxic conditions (HsiSTIM1).
Representative Western blot images (B) and summarized data (C) for NFATc3 nuclear levels, Lamin BT was used as a loading control. *:P < 0.05
compared with the Control group and #:P < 0.05 compared with the HCON and HsiNT group. The results are expressed as the mean + SEM of

three separate experiments.

SOCE, as measured by the peak [Ca®']i response to the
restoration of extracellular Ca**. These findings are con-
sistent with those of other smooth muscles [30,31], inclu-
ding the murine aorta, the human airway, the coronary
artery, and the saphenous vein, and confirm that STIM1
contributes significantly to SOCE in pulmonary smooth
muscle. Moreover, STIM1 silencing not only inhibited
PASMC:s proliferation but also reduced the cell cycle pro-
gression induced by hypoxia. These results demonstrate
that STIM1 is a critical regulator of hypoxia-induced
PASMC:s proliferation.

Nuclear factor of activated T cells (NFAT)
Ca**-dependent transcription factor. Elevated levels of
intracellular Ca®* increase the activity of the Ca**-
calmodulin-dependent phosphatase calcineurin. Activated
calcineurin dephosphorylates multiple serine residues
within the regulatory region of the NFAT molecule to in-
duce a conformational change in NFAT that exposes nu-
clear localisation signals and allows for NFAT nuclear
import and the subsequent regulation of gene transcrip-
tion [32]. The NFAT transcription factor family is com-
posed of four well-characterised members including
NFATcl (NFAT2/c), NFATc2 (NFAT1/p), NEATc3

is a

(NFAT4/x), and NFATc4 (NFAT3) [33]. The NFATc3 iso-
form has specifically been implicated in vasculature devel-
opment, the maintenance of a contractile phenotype, and
the regulation of vascular smooth muscle cell (VSMC)
contractility. Recently, Sergio et al. [34] reported that
chronic hypoxia induced NFAT transcriptional activity
and NFATc3 nuclear translocation in mouse pulmonary
arteries. Wang et al. [35] reported that hypoxia-induced
NFAT nuclear translocation via the up-regulation of
TRPC1 as well as increased SOC-mediated Ca®* influx
and the inhibition of the SOC/Ca®*/NFAT pathway was
involved in the anti-proliferative effect of sildenafil on
PASMCs. These results highlight the important role that
the SOC/Ca**/NFATc3 pathway plays during the develop-
ment of hypoxic pulmonary hypertension. In this study,
we hypothesised that STIM1 knockdown would inhibit
the proliferation of PASMCs under hypoxia via the inhib-
ition of the SOC/Ca**'NFATc3 pathway. By observing the
effect of STIM1 knockdown on PASMC SOC-mediated
Ca** influx and NFATc3 nuclear translocation under hyp-
oxic conditions, we found that hypoxia could increase
SOC-mediated Ca®* influx and promote NFATc3 nuclear
translocation. Thus, STIM1 silencing could significantly
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inhibit SOC-mediated Ca®* influx and NFATc3 nuclear
translocation. These results indicate that STIM1 is an es-
sential regulator of the SOC/Ca**/NFAT pathway, which
plays an important role in hypoxia-induced PASMC
proliferation.

In summary, this report presents in vivo and in vitro evi-
dence to indicate that STIM1 may be involved in the
development of hypoxic pulmonary vessel remodelling. As
hypoxia induces PASMCs proliferation through a STIM1-
dependent mechanism and the SOC/Ca**/NFAT pathway,
STIM1 may represent a novel therapeutic target for the
prevention of hypoxic pulmonary hypertension.
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