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Abstract

patients.

Background: Prostacyclin analogs are potent vasodilators and possess anti-inflammatory properties. However, the
effect of prostacyclin on extracellular matrix (ECM) in COPD is not well known. Collagen fibrils and proteoglycans
are essential ECM components in the lung and fibroblasts are key players in regulating the homeostasis of ECM
proteins. The aim was to study the synthesis of prostacyclin and its effect on fibroblast activity and ECM production,
and in particular collagen | and the collagen-associated proteoglycans biglycan and decorin.

Methods: Parenchymal lung fibroblasts were isolated from lungs from COPD patients (GOLD stage IV) and from
lungs and transbronchial biopsies from control subjects. The prostacyclin analog iloprost was used to study the
effect of prostacyclin on ECM protein synthesis, migration, proliferation and contractile capacity of fibroblasts.

Results: TGF-B; stimulation significantly increased prostacyclin synthesis in fibroblasts from COPD patients
(p<0.01), but showed no effect on fibroblasts from control subjects. Collagen | synthesis was decreased by iloprost
in both control and COPD fibroblasts (p < 0.05). Conversely, iloprost significantly altered biglycan and decorin
synthesis in control fibroblasts, but iloprost displayed no effect on these proteoglycans in COPD fibroblasts.
Proliferation rate was reduced (p < 0.05) and contractile capacity was increased in COPD fibroblasts (p < 0.05)
compared to control fibroblasts. lloprost decreased proliferative rate in control fibroblasts (p < 0.05), whereas
iloprost attenuated contraction capacity in both COPD (p < 0.01) and control fibroblasts (p < 0.05).

Conclusions: lloprost reduced collagen | synthesis and fibroblast contractility but did not affect the collagen-
associated proteoglycans or proliferation rate in fibroblasts from COPD patients. Enhanced prostacyclin production
could lead to improper collagen network fibrillogenesis and a more emphysematous lung structure in severe COPD

Keywords: Chronic obstructive pulmonary disease, Collagen |, Fibroblast, Prostacyclin, Proteoglycans, Decorin,
Biglycan, Proliferation, Fibroblast gel contraction, Transforming growth factor 3

Background

COPD is a chronic obstructive lung disorder with
emphysematous lesions in the distal lung. The patho-
physiology of COPD is complex and involves airway in-
flammation and structural changes of the pulmonary
system [1]. Alterations in vascular and parenchymal
structures may impair gas exchange in alveoli [2] and in-
volve systemic complications, as pulmonary hyperten-
sion, that is associated with increased disease severity
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and mortality [3]. Prostacyclin is a key mediator in regu-
lating vascular tone and prostacyclin analogs such as ilo-
prost, are frequently prescribed to decrease pulmonary
arterial pressure, as they are potent vasodilators and pos-
sess anti-inflammatory properties [4]. Iloprost treatment
has been shown to have favorable acute effects on gas
exchange and lung function in a small subset of COPD
patients [5,6]. Prostacyclin is formed from arachidonic
acid by the cyclooxygenase (COX) pathway and prosta-
glandin I synthase [7] and binds to prostacyclin (IP)
receptors, which activate adenylyl cyclase and generating
increased cAMP levels in target cells [8]. Prostacyclin
has been implicated to play a major role in tissue repair
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and remodeling processes by inhibiting profibrotic
responses of fibroblasts [9,10]. However, contrasting pro-
cesses have been described in COPD, such as a degrad-
ation of the extra cellular matrix (ECM) in parenchymal
compartments, but enhanced deposition of ECM in
bronchioles [11]. Collagen fibrils and the specific
collagen-associated proteoglycans decorin and biglycan
are essential ECM proteins, having both organizational
and structural roles in the network of the pulmonary
architecture [12]. Collagen I is the predominant fibrillar
collagen in the lung and binds to decorin [13]. Fibro-
blasts are the main source of alveolar connective tissue
and are key players in regulating the homeostasis of
ECM [12] by constituting a rich source of growth factors
and inflammatory mediators, including prostacyclin [14].
Abnormal fibroblast activation may therefore cause
pathological tissue remodeling [12]. However, little is
known regarding the synthesis and the effect of prosta-
cyclin on the ECM and collagen network organization in
COPD. A decreased production of prostacyclin has been
correlated to increased fibroblast activity in lung fibrosis
[15,16], implicating that prostacyclin could be involved
in on-going remodeling processes in COPD. The aim
was therefore to study the synthesis of prostacyclin and
its effect on ECM production and collagen network in
pulmonary fibroblasts. Other markers of fibroblast activ-
ity, such as proliferation rate, contractility and migration
capacity were also investigated. Primary distal lung fibro-
blasts obtained from patients with COPD and control
subjects were used in this study. Changes in ECM were
assessed by the production of collagen I and the
collagen-associated proteoglycans decorin and biglycan
after stimulations with the prostacyclin analog iloprost.
Transforming growth factor (TGF)-B;, known as a gen-
eral inducer of remodeling [12], was added to stimulate
fibroblast activity and mimic remodeling processes.

Methods

Study subjects

Patients (n =7) suffering from very severe COPD (spiro-
metric GOLD stage IV) who were undergoing lung
transplantation at Lund University Hospital 2006-2008
were included in this study [17]. The patients had quit
smoking at least 6 months before the lung transplant-
ation. All patients were given glucocorticoids on a regu-
lar basis and in combination with other medicines.
Control subjects were recruited from two different
sources. First, lung explants from healthy donors (n =4)
with no history of lung disease [18] could be included in
this study as no matched recipients were available. Sec-
ond, non-smokers (n=5) with no history of smoking or
other lung diseases were included in the study [19]
(Table 1). Written consent was obtained from all partici-
pants or from the closest relative in the present study.
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Table 1 Control subjects and COPD patients in the study

Characteristics Controls COPD

No. 5+4° 7

Age (range) 28" (24-34) 62 (53-66)
Pack years (range) 0 40 (25-60)
Gender, M/F in% 33/67 29/71

Lung function

FEV, 42" (3.3-54) 053 (04-08)
FEV,% predicted 102.2" (84-116) 193 (14-24)
FVC 51" 4.2-62) 18 (13-25)
FEV,/FVC ratio 82" (71-93) 29 (20-35)
DLCO - 14 (14-15)°
DLCO% predicted - 27 (21-42)°

“Values are only from five of the control subjects. The other four subjects were
lung donors with no former history of lung disease. Of the lung donors, three
out of four had the age interval 46-65 years old and one between 31-45 years
old and one of them was an ex-smoker with 7.5 pack years. There were no
other lung function parameters available for these individuals. *Values from
three patients. Data is presented as mean (range).

The study was approved by the Swedish Research Ethical
Committee in Lund (FEK 213/2005, FEK 91/2006 and
FEK 413/2008).

Lung explants and primary distal lung fibroblast cultures

Parenchymal (distal) lung fibroblast cultures were iso-
lated from lung explants from COPD patients after lung
transplantation as previously described [17]. Control
lung fibroblasts were isolated from lung explants from
donors after lung transplantation [18] and from trans-
bronchial biopsy samples from control subjects as previ-
ously described [19]. Importantly, alveolar parenchymal
specimens from lung explants were collected 2-3 cm
from the pleura in the lower lobes, equivalent to the lo-
cation where the transbronchial biopsies were obtained.
Vessels and small airways were removed from the per-
ipheral lung tissues. From biopsy and explant samples of
similar size, cultures of primary fibroblast-like cells were
established. Briefly, transbronchial biopsies and paren-
chymal specimens were transferred to cell culture
medium immediately after sampling. Parenchymal pieces
from biopsies and parenchymal specimens were cut into
small pieces that were allowed to adhere to the plastic of
cell culture flasks for 4 h and were then kept in cell cul-
ture medium in 37°C cell incubators until there were
outgrowths of cells with morphology typical for fibro-
blasts, i.e. cells had a spindle-like shape and several pro-
trusions. Primary fibroblasts were cultured in Dulbecco’s
Modified Eagle’s Medium (DMEM) supplemented with
10% fetal Clone III serum (Hyclone, Logan, UT, US), 1%
L-glutamine, 0.5% gentamicin and 5 ug/ml amphotericin
B (all from Gibco BRL, Paisley, UK). The fibroblast cul-
tures were stained with specific antibodies to verify the
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mesenchymal identity and to estimate the purity, as pre-
viously described [17-19]. Isolated primary fibroblasts
were split 1:2 at expansions and were used in passages
4-7 for further experiments.

Immunocytochemistry and immunohistochemistry
Fibroblasts (7000 cells/well) grown overnight on cham-
ber slides were fixed in 4% paraformaldehyde. The lung
tissue explants were fixed in 4% buffered formalin,
embedded in paraffin and sectioned in 5 pm thick sec-
tions for further analysis. The lung tissue sections
were pretreated by heat induced antigen retrieval and
non-specific binding was blocked with 5% BSA in TBS.
The fixated cells and the lung sections were incubated
with a mouse anti-human monoclonal antibody to IP
receptor (ab60706, Abcam, Cambridge, MA, US) over
night at 4°C and further incubated with a corresponding
secondary antibody conjugated with Alexa fluorocrome
488 (Molecular Probes, Eugene, OR, US) in TBS solu-
tion containing 1% goat serum (Vector Laboratories,
Burlingame CA, US). The nuclei were visualized with
DAPI (Invitrogen Corp, Carlsbad, CA, US). Image analyses
were performed with Nikon Eclipse microscope, camera
Nikon DS-QilMc and software program NIS-Elements AR
3.0 (Nikon, Tokyo, Japan).

Analysis of prostacyclin and TGF-B, synthesis

Prostacyclin synthesis was measured in the fibroblast
medium as the stable prostacyclin metabolite 6-keto
PGF;, by a commercially available enzyme immune
assay kit (Cayman Chemicals, Limhamn, Sweden). De-
tection limit for 6-keto PGF;, was 6 pg/mL. TGF-p;
production was measured in the cell culture medium by
a commercially available ELISA kit for activated human
TGEF-B; (R&D Systems, Abingdon, England). Detection
limit for TGF-B; was 4.6 pg/mL.

Analysis of collagen | and proteoglycan synthesis

Collagen I synthesis was analyzed in the cell culture
medium by measuring the newly synthesis of the N-
terminal propeptide of type I procollagen (PINP) by a
commercial radio immune assay kit (Orion Diagnostica,
Espoo, Finland). Briefly, lung fibroblasts were cultured in
6-well plates. Cells were pretreated with the COX inhibi-
tor indomethacin (3 pM) (to avoid interactions with en-
dogenously produced prostanoids) for 10 min and then
stimulated with iloprost (1000 nM) (Cayman Chemicals,
Limhamn, Sweden) in combination with TGF-; (10 ng/
ml) (R&D Systems, Abingdon, England) for 24 hours in
duplicates. Detection limit was 2 pg/L. Proteoglycan pro-
duction in fibroblasts was determined as previously
described [20,21]. Briefly, lung fibroblasts were cultured
in 6-well plates. Cells were incubated in low sulphate
DMEM (Gibco BRL, Paisley, UK), pretreated with the
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COX inhibitor indomethacin (3 pM) for 10 min and
then stimulated with different concentrations of iloprost
(10, 100 or 1000 nM) (Cayman Chemicals, Limhamn,
Sweden) in combination with TGF-f; (10 ng/ml) (R&D
Systems, Abingdon, England) in sulfate**-containing
DMEM for 24 hours in duplicates. Cell medium with
0.4% serum was used as a control of basal activity.
Proteoglycan synthesis was quantified by [**S]-sulfate
incorporation into glycosoaminoglycan side-chains
measured on a scintillation counter (Wallac; Perkin Ellmer,
Boston, MA, US). Individual proteoglycans were separated
by ion exchanger DEAE52 and SDS-PAGE and then
quantified using densitometry. The various proteogly-
cans have previously been identified by mass spectrom-
etry [22]. Proteoglycan production in the medium was
related to the total amount of protein in the corre-
sponding cell layer. The amount of proteins in the cell
lysate was analyzed by a commercially available protein
assay, which constitutes a colorimetric assay with BSA
as a standard reference for measuring total protein
concentrations (Bio-Rad Laboratories, Hercules, CA, US).
The concentration of 10 ng/ml TGF-$ was chosen since
this concentration has previously been shown to induce a
stable and long lasting production of proteoglycans in
lung fibroblasts [23].

Cell proliferation

Cell proliferation rate was determined as previously
described [24]. Cells were plated in 96-well plates
(Cellstar, Monroe, NC) for 6 hours and then stimulated
(5 wells/stimulation) with medium containing 0.4%
serum, indomethacin (3 uM) and iloprost (100 nM) for
24 and 48 hours. 10% serum was used as a positive
control. Cells were fixated in 1% glutaraldehyde
(Sigma-Aldrich, St. Louis, MO, US) stained with 0.1%
crystal violet (Sigma-Aldrich, St. Louis, MO, US) and
incubated over night with 1% Triton X (Merck, Darmstadt,
Germany). Changes in proliferation rate were quantified
with a spectrophotometer plate reader at absorbance
595 nm. This method has been shown to be equivalent to
cell counting with a Coulter counter [25]. All proliferation
experiments are the mean of quintuplicate.

Migration assay

Migration of cultured fibroblasts was analyzed as previ-
ously described [26]. Fibroblasts (30,000 cells) were cul-
tured within a cloning cylinder for 6 hours in medium
with 0.4% serum. The cylinder was removed and the
cells were stimulated with medium containing 0.4%
serum, indomethacin (3 pM) and iloprost (100 nM). 10%
serum was used as a positive control. The fibroblasts
were allowed to migrate for 24 h. The cells were fixed
with 1% glutaraldehyde and then stained with 0.5%
crystal violet for 2 hours. Migration capacity was then



Larsson-Callerfelt et al. Respiratory Research 2013, 14:21
http://respiratory-research.com/content/14/1/21

measured and analyzed with Nikon Eclipse microscope,
camera Nikon DXm1200C and software program NIS-
Elements AR 3.0 (Nikon, Tokyo, Japan). All migration
assays are the mean of triplicates.

Fibroblast gel contraction assay

The gels were prepared as previously described [18]
using a modified form of a previous protocol [27].
Briefly, 96-well cell culture plates (Cellstar, Monroe, NC)
were coated with 1% BSA overnight and were then
washed with PBS. Fibroblasts, suspended in DMEM
(1,000,000 cells/ml), were added to collagen type I solu-
tion (PureCol, Inamed Biomaterials, Fremont, CA) in
the relation 1:9 (v/v). The final cell density was 100,000
cells/ml. Indomethacin (3 pM) and iloprost (1000 nM)
were added to cell suspensions immediately before they
were mixed with the collagen solution. 100 pl cells in
collagen solution were added to each well and the colla-
gen gels were polymerized for 1 hour at 37°C. After
polymerization, 100 ul of DMEM supplemented with
0.4% serum and 1% glutamine was gently added to each
well. Gels were released with a spatula 4 hours after
polymerization and were then photographed with a cam-
era (Sony, Tokyo, Japan). The gel area at this point was
used as the initial area. The gel area was then monitored
over time and compared to the initial area after 48 hours.
All gel contraction experiments are the mean of
triplicates.

Data analysis and statistical procedures

Data are shown for individual subjects in absolute values
and presented as median. The non-parametric Mann
Whitney test or Wilcoxon signed rank test was used to
compare statistical differences between two groups. One
or two way repeated measurement ANOVA on ranks
followed by the non-parametric post hoc test Dunn was
used to compare differences between more than two
groups. Differences were considered to be statistically
significant at p < 0.05. All analyses were performed using
GraphPad Prism 5.0 (San Diego, USA).

Results

Study subjects

Characteristics of all included control subjects (n=9)
and COPD patients (n=7) are shown in Table 1. Pre-
dicted FEV; was 102.2% (84-116) in control subjects and
19.3% (14-24) in COPD patients. All the COPD patients
were classified as spirometric GOLD stage IV according
to the GOLD guidelines. Eight controls were non-
smokers, one control was an ex-smoker and all the
COPD patients were ex-smokers. Primary distal fibro-
blast cultures were obtained from all control subjects
and patients. As we tried to get as much information as
possible from this limited set of well-characterized lung
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fibroblasts, the fibroblast numbers used from the differ-
ent control and patient groups are written for each indi-
vidual experiment.

Presence of the IP receptor in lung tissue and lung
fibroblasts

Immune positivity for the IP receptor was observed in
epithelial, subepithelial and parenchymal cells in lung
explants from control subjects (Figure 1A, B) and
patients with COPD (Figure 1D, E). Both distal lung
fibroblasts from control subjects (Figure 1C) and patients
with COPD (Figure 1F) expressed the IP receptor. To
confirm the specificity of primary antibody binding,
isotype controls were used (Figure 1G and H).

Prostacyclin and TGF-f; production from distal lung
fibroblasts

The stable prostacyclin metabolite 6-keto PGF;, was
2.9-fold increased in COPD fibroblasts after stimulation
with TGF-B; (10 ng/ml) (n=7, p=0.007, Figure 2A).
TGEF-fB; did not alter prostacyclin production in fibroblasts
from healthy controls (n=9) and prostacyclin synthesis
after TGF-P; stimulation was significantly higher (p < 0.05)
in lung fibroblasts from patients with COPD compared to
control subjects (Figure 2A). There was no significant
difference in the production of endogenously derived
TGF-p; in fibroblast medium from control subjects (n=9)
or COPD patients (n = 7) (Figure 2B).

lloprost reduces collagen | synthesis in distal lung
fibroblasts

Collagen I synthesis was significantly reduced by iloprost
(1000 nM) in lung fibroblasts obtained from control
subjects (n=5, p<0.05, Figure 3A) and patients with
COPD (n=7, p<0.05, Figure 3B). Addition of TGF-p;
enhanced collagen I synthesis in fibroblasts from both
control subjects (p <0.05) and COPD patients (p < 0.05).
Subsequently, treatment with iloprost decreased collagen
I production after TGF-B; stimulation in fibroblasts
from both controls (p <0.05, Figure 3A) and COPD
patients (p <0.05, Figure 3B). However, there were no
significant differences in collagen I synthesis before or
after stimulation with TGF-3; between fibroblasts from
control subjects and COPD patients. Pretreatment with
the COX inhibitor indomethacin did not affect the colla-
gen I synthesis (data not shown).

lloprost alters proteoglycan production in fibroblasts
from control subjects

Further studies were performed to evaluate if iloprost
also affected the collagen-associated proteoglycans bigly-
can and decorin. There were no differences in either
decorin or biglycan synthesis between fibroblasts from
control subjects (n =7) and patients with COPD (n =7).
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Figure 1 The IP receptor is expressed by epithelial cells and fibroblasts in the lung. Representative staining is shown in bronchial lung
tissue (A), parencyhmal lung tissue (B), and distal lung fibroblasts in vitro (C) from control subjects and bronchial lung tissue (D), parenchymal
lung tissue (E) and distal lung fibroblasts in vitro (F) from patients with COPD. Panel (G) and (H) show isotype-matched control IgG. Scale bars are
indicated as 10 um in Figure 1 A, B, D, E and G and 50 um in panel 1 C, F and H.

Addition of TGF-B; (10 ng/ml) did not change the dec-
orin production (Figure 4C and 4D), whereas TGF-f;
enhanced the production of biglycan 6.6-fold in fibro-
blasts from control subjects (p <0.01; Figure 5C) and
3.0-fold in fibroblasts from COPD patients (p < 0.05;
Figure 5D) and the biglycan production after TGF-f;
stimulation was significantly higher in fibroblasts from
control subjects compared to fibroblast from COPD
patients (p <0.05). Pretreatment with indomethacin did
not affect proteoglycan production in lung fibroblasts
from either control subjects or COPD patients (data not
shown). Iloprost (100 nM and 1000 nM) significantly
enhanced the synthesis of decorin (Figure 4A) and bigly-
can (Figure 5A) in fibroblasts from control subjects. Fur-
thermore, after TGF-p; treatment, iloprost significantly
attenuated the synthesis of both decorin (Figure 4C) and
biglycan (Figure 5C) in fibroblasts from control subjects.
However, in fibroblasts from COPD patients there was
no significant effect of iloprost treatment on either dec-
orin (Figure 4B and D) or biglycan (Figure 5B and 5D)
production before or after TGE-f; stimulation.

Effect of iloprost on migratory capacity and proliferation
rate

Iloprost (100 nM) significantly decreased the proliferative
rate in fibroblasts from control subjects (n =7, p <0.05),
whereas iloprost had no effect on proliferation rate in
fibroblasts from COPD patients (n=7) (Figure 6A).
However, fibroblasts from COPD patients showed a
reduced proliferative rate compared to control fibroblasts
(p <0.05). Although, there was a tendency to reduced

migration capacity after iloprost treatment, iloprost
(100 nM) did not significantly affect the migratory
capacity in either fibroblasts from COPD patients (n =4)
or control subjects (n=4) (Figure 6B). Fibroblasts from
COPD patients showed a reduced migratory capacity
(866 + 145 vs 1309 + 31; p < 0.05) compared to fibroblasts
from COPD patients.

Effect of iloprost on contractile capacity

Iloprost (1000 nM) attenuated the contractile capacity in
fibroblasts from both COPD patients (n=7, p<0.01)
and control subjects (n=9, p<0.05). Importantly,
fibroblasts from COPD patients showed a more con-
tractile phenotype then fibroblasts from control subjects
(p < 0.05) (Figure 7).

Discussion

In the present study we show that distal lung fibroblasts
respond to prostacyclin, and that prostacyclin may alter
fibroblast activity and thereby remodeling processes.
Interestingly, lung fibroblasts from patients with COPD
had a higher synthesis of prostacyclin compared to
control fibroblasts. The prostacyclin analog iloprost
decreased collagen I synthesis and contractile capacity in
both fibroblasts from control subjects and COPD,
whereas alterations in proteoglycan production and
proliferative rate were only present in fibroblasts from
control subjects. The present data implicate an import-
ant issue that severe COPD patients may have a reduced
repair mechanism in the ECM structure of the collagen
network in the distal lung. Previous studies support our
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Figure 2 A. Prostacyclin production is increased in COPD
fibroblasts after TGF-B, stimulation. Prostacyclin synthesis was
measured as 6-keto PGF,4 in the supernatant from distal lung
fibroblasts from control subjects (n=9) and patients with COPD
(n=7). Cells were stimulated with TGF-3; (10 ng/ml) in 0.4%
fibroblast medium. Data are presented as median with individual
values and median values are represented as a line. *p < 0.05,

**p < 0.01. Statistical analysis is performed with Mann Whitney test
to compare differences between control and COPD fibroblasts and
Wilcoxon paired rank sum test is used to analyze differences within
the control and COPD fibroblasts after TGF-@3; stimulation. B. There
is no difference in endogenous TGF-f3; production in control or
COPD fibroblasts. TGF-3; production measured in supernatant from
distal lung fibroblasts from control subjects (n=9) and patients with
COPD (n=7). Data are presented as median with individual values
and median values are represented as a line. Statistical analysis is
performed with Mann Whitney test to compare differences between
control and COPD fibroblasts.

findings that changes in ECM synthesis are involved in
pathologic conditions of COPD [17] and that fibroblasts
from COPD patients may have a reduced or defective
capacity of tissue repair [17,18,28]. Conversely, in this
study, fibroblasts from COPD patients showed not only
an altered production of prostacyclin and proteoglycans,
but also a general decrease in proliferative rate and mi-
gratory capacity and an increased contractile phenotype
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compared to fibroblasts from control subjects. The cap-
acity of fibroblasts to respond to an injury through the
production or inhibition of mediators as TGF-p; and
prostacyclin may determine the nature of the repair
responses involving ECM homeostasis. Notably, TGF-[3;
is involved in remodeling processes in COPD through
an activation of fibroblasts and induction of ECM pro-
duction and may regulate proteoglycan synthesis
[17,29]. TGF-B; expression has previously been shown
to be increased in central airways [30] and in peripheral
blood [31] from COPD patients. Also, fibroblasts from
peribronchiolar areas of lung tissue from patients with
severe emphysema have increased production of TGF-p;
[32]. However, in our study, we could not detect any sig-
nificant differences in TGF-f; synthesis between distal
fibroblasts obtained from COPD patients and control
subjects, indicating that the synthesis of TGF-f; may be
dependent on cellular origin and also location in the
lung. In the present study, we could show that TGF-f3;
increased the production of the ECM proteins collagen I
and biglycan in distal lung fibroblasts derived from both
controls and COPD patients. However, there was no dif-
ference in collagen I synthesis between fibroblasts from
control and COPD patients. Corresponding with our
data, Krimmer et al did not detect any differences in fi-
brillar collagen between non-COPD and COPD fibro-
blasts after TGF-B; stimulation; neither did cigarette
smoke extract affect the fibroblast ability to deposit col-
lagen [33]. Noordhoek et al did also not find any differ-
ences in collagen I synthesis between parenchymal
fibroblasts from patients with mild emphysema and
patients with severe emphysema [34], implicating that
collagen I synthesis probably is preserved in fibroblasts
from COPD patients. Interestingly, in the present study,
prostacyclin synthesis was significantly increased after
TGEF-B; stimulation in distal lung fibroblast from COPD
patients. In line with these findings, TGF-f; stimulation
increased both COX expression and enhanced prosta-
cyclin synthesis in a human lung fibroblast cell line [35].
In contrast, decreased levels of prostacyclin production
have been found in distal lung fibroblasts from patients
with interstitial pulmonary fibrosis [15]. These data
imply that alterations in the levels of prostacyclin may
be a marker of ongoing remodeling processes. Prosta-
cyclin has previously been associated with tissue repair
and remodeling processes by inhibiting profibrotic
responses of fibroblasts [9,10,36] and attenuating pul-
monary fibrosis in animal models [16,37]. In the present
study, the prostacyclin analog iloprost reduced collagen
synthesis and subsequently attenuated the increased col-
lagen production in response to TGF-p;. These results
correspond to other findings where prostacyclin down
regulated collagen synthesis in rat cardiac fibroblasts
[38]. Nonetheless, we could not detect any significant
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Figure 3 Collagen synthesis is enhanced by TGF-B, in control and COPD fibroblasts and attenuated by iloprost treatment. Collagen |
production was measured as the propeptide of type | procollagen (PINP) in the supernatant from distal lung fibroblasts from control subjects
(n=5; A) and patients with COPD (n=7; B). Cells were stimulated with iloprost (1000 nM) and TGF-3; (10 ng/ml) in 0.4% fibroblast medium
pretreated with indomethacin (3 uM). Data are presented as median with individual values and median values are represented as a line. *p < 0.05.
Statistical analysis is performed with Mann Whitney t-test to compare differences between control and COPD fibroblasts and Wilcoxon paired
rank sum test is used to analyze differences within the control and COPD fibroblasts.
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differences in collagen I production between fibroblasts
from COPD patients or control subjects after iloprost
treatment. Conversely, in the present study, iloprost
balanced the changes in collagen I synthesis by altering
the production of the collagen-associated proteoglycans

decorin and biglycan in fibroblasts from control sub-
jects, but iloprost had no effect on these proteoglycans
in fibroblasts from COPD patients. Decorin is thought
to be a negative regulator of TGF-B; by binding and
neutralizing significant amounts of this growth factor

Figure 4 Decorin production is altered by iloprost in fibroblasts from control subjects but not from COPD patients. Decorin production
in distal lung fibroblasts from control subjects (n=7; A) and patients with COPD (n=7; B). Cells were stimulated with iloprost (10, 100 or 1000
nM) and in combination with TGF-3; (10 ng/ml) in 0.4% fibroblast medium pretreated with indomethacin (3 uM). Changes in decorin production
after TGF-(3; stimulation are expressed as fold change compared to non-stimulated fibroblasts in 0.4% medium from control subjects (C) and
COPD patients (D). Data are presented as median with individual values and median values are represented as a line. *p < 0.05; **p < 0.01.
Statistical analysis is performed with ANOVA on ranks followed by a post hoc test to compare differences between control and COPD fibroblasts
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Figure 5 Biglycan production is altered by iloprost in fibroblasts from control subjects but not from COPD patients. Biglycan production
in distal lung fibroblasts from control subjects (n=7; A) and patients with COPD (n=7; B). Cells were stimulated with iloprost (10, 100 or 1000
nM) and in combination with TGF-3; (10 ng/ml) in 0.4% fibroblast medium pretreated with indomethacin (3 uM). Changes in biglycan

production after TGF-3; stimulation are expressed as fold change compared to non-stimulated fibroblasts in 0.4% medium from control subjects
(€) and COPD patients (D). Data are presented as median with individual values and median values are represented as a line. *p < 0.05; **p < 0.01.
"5 <005 and "p < 0,01 indicate significant differences in biglycan production after TGF-B3, stimulation compared to basal levels. *p < 0.05 indicate
significant difference in biglycan synthesis after TGF-3; stimulation between control and COPD fibroblasts. Statistical analysis is performed with
ANOVA on ranks followed by a post hoc test to compare differences between control and COPD fibroblasts and within the control and COPD
fibroblasts after iloprost and TGF-3; stimulation.
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Figure 6 lloprost treatment did not change migration capacity or proliferative rate in control or COPD fibroblasts. Proliferative rate of
distal lung fibroblasts from control subjects (n=7) and patients with COPD (n=7) (A). All proliferation experiments are the mean of quintuplicate.
Cells were stimulated with iloprost (100 nM) in fibroblast medium containing 0.4% serum pretreated with indomethacin (3 uM). Fibroblast
medium containing 10% serum was used as internal control. Migration capacity in distal lung fibroblasts from control subjects (n =4) and
patients with COPD (n=4), *p < 0.05 (B). All migration assays are the mean of triplicates. Data are presented as median with individual values and
median values are represented as a line. Statistical analysis is performed with Mann Whitney test to compare differences between control and
COPD fibroblasts and Wilcoxon paired rank sum test is used to analyze differences within the control and COPD fibroblasts after

iloprost stimulation.
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Figure 7 lloprost reduced fibroblast gel contractions in control
and COPD fibroblasts. Fibroblast gel contractions were performed
with lung fibroblasts from control subjects (n =8) and patients with
COPD (n=7). Cells were stimulated with iloprost (1000 nM) in
fibroblast medium containing 0.4% serum and indomethacin (3 uM).
All gel contraction experiments are the mean of triplicates and
measured after 48 h. Data are presented as median with individual
values and median values are represented as a line. *p < 0.05;

**p < 0.01. Statistical analysis is performed with Mann Whitney test
to compare differences between control and COPD fibroblasts and
Wilcoxon paired rank sum test is used to analyze differences within
the control and COPD fibroblasts after iloprost stimulation.

[39]. Decorin and biglycan also shape and complement
the collagen fibril structure, and decorin mediates the
binding of collagen fibers [40]. Our data indicate that
fibroblasts from COPD patients may have a defective re-
pair mechanism in the collagen network fibrillogenesis.
Thus, high levels of prostacyclin could generate reduced
collagen synthesis that is not regulated and stabilized by
decorin or biglycan, which thereby may accelerate the
formation of emphysematous tissue in COPD. In line
with the findings of Hallgren et al [17], we found that
biglycan synthesis was reduced by the distally-derived
fibroblasts from severe COPD patients, whereas there
were no differences in decorin synthesis before or after
TGEF-B; stimulation between COPD and control fibro-
blasts. However, decorin synthesis has been shown to be
decreased in distal fibroblasts from patients with severe
emphysema [34] and decorin gene expression has also
been shown to be decreased in centrally-derived lung
fibroblasts from patients with severe COPD [41].
Decreased decorin and biglycan expressions have also
been shown in peribronchiolar areas in patients with se-
vere pulmonary emphysema [17,32]. One explanation to
these findings could be that decorin is regulated differ-
ently at mRNA levels and protein levels with a higher
turnover rate at protein levels [21]. Mice that lack dec-
orin have dysfunctional collagen fibrils with reduced
tensile strength [42] and show altered lung mechanical
properties, as enhanced lung compliance [43]. Subse-
quently, decorin has been shown to reduce lung fibrosis
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induced by TGF-p; [44]. Hypothetically, taken all these
data together, fibroblasts from COPD patients may have
an imbalance in the regulatory properties of the collagen
network homeostasis, indicating that proteoglycan pro-
duction is dysregulated in the collagen network assembly
in response to iloprost or TGF-f;. Matrix metalloprotei-
nases (MMPs) are essential for the degradation of ECM,
and MMP-9 has been shown to be upregulated in severe
COPD [45]. Notably, MMP-9 release appears to be re-
sistant to glucocorticoid therapy [45]. Interestingly,
prostacyclin treatment attenuated MMP-9 synthesis in
mesangial cells [46] and in an animal model of cigarette
smoke induced emphysema [47]. Unfortunately, we
could not detect any MMP-9 synthesis in the present
study. Importantly, distally-derived fibroblasts from se-
vere COPD patients demonstrated a more contractile
phenotype in this study, probably due to enhanced
ROCKI activity [18], than fibroblasts from control sub-
jects, and treatment with iloprost attenuated the con-
tractile capacity to the same level as fibroblasts from
control subjects in the present study. The inhibitory ef-
fect of prostacyclin analogs on fibroblast gel contrac-
tions has previously been shown in healthy lung
fibroblasts and the response was mediated through
cAMP activation of PKA [48]. Proliferative rate was
decreased by iloprost in control fibroblast, whereas
COPD patients had a generally reduced proliferative rate
that was not affected by iloprost treatment. Fibroblasts
from COPD patients have also previously been reported
to have reduced proliferative capacity [17,49], which
may contribute to the emphysema formation in the dis-
tal COPD lung. In the present study, control fibroblasts
were obtained from healthy subjects of mixed age.
Changes in ECM components in this study may reflect
ongoing natural aging processes [50] and it has been
shown that aging processes in the lung may occur inde-
pendently of emphysema formation related to COPD
pathogenesis [51]. We could not detect any differences
in studied parameters due to age within the control
group; neither could we detect any differences in studied
parameters due to different sampling techniques, trans-
bronchial biopsies versus lung explants, implicating that
the alterations presented in this study is probably linked
to disease, and not to aging. Despite the limited numbers
of observations in the present study, we could support
the findings in a parallel study published by Hallgren et
al [17] that the different sampling techniques and the
age distribution in the two study populations did not
interfere with the obtained results. Medical treatments
may also influence the fibroblasts obtained from the
COPD patients. It would have been an advantage if we
had lung function data from all the controls. On the
other hand, the donor lungs from the healthy individuals
had been judged by the clinicians to be suitable for lung
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transplantation and we received the lungs due to the fact
that they could not find any matching recipients at the
moment. It is well known that smoking and ex-smoking
may have an impact on fibroblast function. However, the
fibroblasts obtained from the former smoker lung did
not differ from the other fibroblast controls in the stud-
ied parameters, neither could Hallgren et al. find any dif-
ferences [18]. Studies on smokers and patients in
different GOLD stages will be performed in the future to
further investigate the importance of prostacyclin in re-
modeling processes.

Conclusions

Iloprost reduced collagen I synthesis and fibroblast con-
tractility but did not affect the collagen-associated pro-
teoglycans or proliferative capacity in fibroblasts from
COPD patients. In addition, fibroblasts from COPD
patients had a reduced proliferative rate and migration,
decreased biglycan synthesis and an increased contractile
capacity compared to fibroblasts from control subjects.
Our data imply that COPD patients may have an altered
fibroblast function and defect repair mechanism in the
ECM structure of the collagen network assembly. Due to
the altered fibroblast function, patients with COPD may
not be able to maintain normal tissue repair capacity.
The prostacyclin analog iloprost appears to promote an
anti-fibrotic phenotype with reduced collagen synthesis
in pulmonary fibroblasts that may enhance the severity
of emphysema formation in COPD. These findings
should be considered when administrating iloprost to
patients with severe COPD.
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