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Abstract

fibroblast behaviors that could contribute to fibrosis.
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Background: IGF-1 is elevated in pulmonary fibrosis and acute lung injury, where fibroblast activation is a
prominent feature. We previously demonstrated that blockade of IGF pathway in murine model of lung fibrosis
improved outcome and decreased fibrosis. We now expand that study to examine effects of IGF pathway on lung

Methods: We first examined mice that express aSMA promoter upstream of GFP reporter treated with A12, a
blocking antibody to IGF-1 receptor, after bleomycin induced lung injury. We then examined the effect of IGF-1
alone, or in combination with the pro-fibrotic cytokine TGF(3 on expression of markers of myofibroblast activation
in vitro, including aSMA, collagen al, type 1, collagen al, type Ill, and TGF{ expression.

Results: After bleomycin injury, we found decreased number of aSMA-GFP + cells in A12 treated mice, validated by
aSMA immunofluorescent staining. We found that IGF-1, alone or in combination with TGF-3, did not affect aSMA
RNA expression, promoter activity, or protein levels when fibroblasts were cultured on stiff substrate. IGF-1
stimulated ColTal and Col3al expression on stiff substrate. In contrast, IGF-1 treatment on soft substrate resulted in
upregulation of aSMA gene and protein expression, as well as Collal and Col3al transcripts. In conclusion, IGF-1
stimulates differentiation of fibroblasts into a myofibroblast phenotype in a soft matrix environment and has a
modest effect on aSMA stress fiber organization in mouse lung fibroblasts.

Introduction

Insulin-like growth factor-1 (IGF-1) plays an important
role in the development and homeostasis of many organs.
IGF-1 acts as an important survival factor for various cells
by inhibiting apoptosis and inducing cellular proliferation
[1-3]. However, IGF-1 has also been implicated in disease
states where pathologic fibrosis is the predominant feature.
For example, in patients with systemic sclerosis (SSc),
serum IGF-1 level is elevated in those with more severe
skin involvement and pulmonary fibrosis [4]. Moreover, af-
fected skin from subjects with SSc show 1.9 fold higher
levels of IGF-1 mRNA expression compared to normal
controls [4]. In the murine bleomycin lung injury model,
IGF-1 mRNA was increased three to four fold over control
in pulmonary fibrosis [5]. IGF-1 immunostaining was in-
creased in lung tissues from patients with fibroproliferative
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ARDS [6] and IGF-1 levels were elevated in the broncho-
alveolar lavage fluid (BALF) of patients with early ARDS
[7]. We showed that IGF-1 provided a pro-survival signal
to lung fibroblasts but not epithelial cells [8]. We further
showed that blockade of the IGF-1 pathway in the
murine bleomycin lung injury model hastened reso-
lution of pulmonary fibrosis and increased fibroblast
apoptosis [8]. In this study, we ask whether IGF-1 ac-
tivates the myofibroblast phenotype. In addition to its
role in cell survival, IGF-1 can alter gene expression
and lead to phenotypic changes in fibroblasts [9-12].
The myofibroblast phenotype confers a number of
important functional changes that play an important
role in lung injury and repair [13,14]. We hypothesize
that the IGF-1 pathway increases fibrosis in lung in-
jury by activating fibroblasts to the aSMA-expressing
myofibroblast phenotype.

© 2013 Hung et al, licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
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Materials and methods

Cells and reagents

Recombinant IGF-1 and TGF-f1 were purchased from
R&D Systems (Minneapolis, MN). Function-blocking anti-
body to the human IGF-1 receptor (A12) and keyhole lim-
pet hemocyanin (KLH) isotype control antibody were a
generous gift from Dale Ludwig (ImClone Systems)
[15,16]. A12 inhibits type 1 IGF receptor signaling in
murine and human tissues and does not cross-react with
the insulin receptor [15]. We verified that our preparation
of A12 was endotoxin-free by Limulus Amebocyte Lysate
assay (Cambrex BioScience). For detection of aSMA by
Western blot, antibody to aSMA (mouse IgG) was pur-
chased from Sigma-Aldrich (clone 1A4). Horseradish
peroxidase-conjugated anti-mouse IgG were purchased
from Zymed (San Francisco, CA).

Bleomycin-induced lung injury

Animal protocol was approved by University of Washington
Institutional Animal Care and Use Committee. Transgenic
mice that express aSMA promoter upstream of GFP re-
porter construct on a C57Bl6 background (aSMA-GFP
mice) were a generous gift from Dr. Jen-Yue Tsai
(National Eye Institute, NIH) [17]. Mice underwent
intratracheal bleomycin instillation (0.032U/mouse, SICOR
Pharmaceuticals, Inc., Irvine, CA) as previously described
[8]. Mice (n=4/group) received injections of either A12
(40 mg/kg) or KLH isotype control antibody intraperitone-
ally on d7 following bleomycin instillation and then twice
weekly. The mice were sacrificed 21 days after bleomycin
instillation. The right lungs were inflated to 25 cm H20
pressure, fixed with paraformaldehyde and paraffin embed-
ded. 5 pm thick sections were deparaffinized, rehydrated.
For quantification of GFP (+) cells, right middle lobe sec-
tions were systematically scanned in a microscope using
10x objective. Total number of GFP positive cells and
DAPI positive cells were quantified in each successive field
(NIH Image], v1.410). The mean score of all the fields was
used for each mouse. For quantification of aSMA (+) cells,
rehydrated right lung sections underwent heat antigen re-
trieval in buffer (Dako Target Retrieval Solution), incu-
bated in blocking solution overnight at 4C, and then
immunostained with Cy3-conjugated anti-aSMA antibody
(Sigma-Aldrich clone 1A4, 1:200) for 1 hr at room
temperature. The sections were counterstained with DAPI
and mounted for visualization (Invitrogen Prolong Gold).
Five predetermined fields were examined on each slide
with 10x objective. The degree of aSMA staining was
expressed as the ratio of red Cy3 staining area to
DAPI staining area (NIH Image], v1.410). Airway and
vascular-associated aSMA were masked in the image
analysis. For confocal microscopy, bleomycin-injured
mouse lungs from «SMA-GFP mice were inflated with 4%
paraformaldehyde and fixed for 2 hours, submerged in
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18% sucrose at 4C overnight, and embedded and frozen in
OCT. Frozen sections were immunostained for aSMA
(Cy3-conjugated anti-aSMA, Sigma-Aldrich clone 1A4,
1:200) and visualized under confocal microscopy.

In vitro IGF-1 studies
Mouse lung fibroblasts (MLF) isolated from C57/Bl6 or
aSMA-GFP mice were maintained in DMEM with 10%
FBS, 100 U/ml penicillin, 100 U/ml streptomycin and
5 mM glutamate at 37°C in 5% CO, as previously de-
scribed [18]. For some studies, MLF were isolated from
C57/Bl6 mice three days after intratracheal instillation
with saline (control) or bleomycin (n=3 mice/group).
Unless otherwise indicated, experiments used MLF from
C57/Bl6 wildtype mice. Cells were used between pas-
sages 2-5. MLF were grown to subconfluence and then
plated either in 6-well tissue culture plates (Falcon) or 6-
well tissue culture plates coated with collagen matrix
(1 mg/ml). To test the effect of a soft extracellular matrix
on fibroblast response to IGF-1, we employed a collagen I
gel matrix at a final concentration of 1 mg/ml, which
has been previously described to have an elastic modulus
of <100 Pa [19]. We mixed Collagen I (3 mg/ml) (BD
Biosciences), MCDB (2X), and DMEM (with or with-
out resuspended MLF) in 1:1:1 ratio. Immediately fol-
lowing mixing, the pH of the mixture was adjusted to
neutral using 1 M NaOH. The mixture was allowed
to gelatinize at room temperature for 1 hour.
Following attachment, cells were serum-starved over-
night and treated with IGF-1 (100 ng/ml), TGF-B1
(10 ng/ml or 1 ng/ml), or IGF-1 (100 ng/ml)/TGEF-p1
(10 ng/ml) for 24 hr, with the presence of A12 (40 pg/ml)
or PI3 kinase inhibitor LY294002 (Calbiochem, 50 uM) in
some experiments. Controls were serum-free media alone,
and with A12 or LY294002 in experiments where the in-
hibitors were used. Parallel cultures were used for im-
munofluorescence studies, protein analysis, RNA analysis
and promoter activity. All experiments were performed in
triplicate, and repeated at least 3 times.

Real-time PCR

Total RNA was isolated from MLF using Qiagen
RNeasy Mini Kit per manufacturer’s specifications
after treatment with the indicated growth factors. RNA
quality was verified using Agilent Bioanalyzer. Total
RNA was reverse-transcribed to cDNA using Applied
Biosystems High-Capacity ¢cDNA Archive Kit. Real-
time PCR was done using ABI7900HT with the use
of pre-designed primer and probes (ABI TagMan
Gene Expression Assays) for Hprt (Mm00446968_m1),
and Acta2 (Mm01546133_m1), Collal (Mm00801666_gl),
Col3a1 (Mm01254476_m1), and Tgfbl (Mm00441724._m1).
Analysis was done using MS Excel calculating RQ by
2-DDCT.
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aSMA promoter activity

MLEF isolated from aSMA-GFP mice were washed with
PBS, trypsinized and fixed in paraformaldehyde. Flow cy-
tometry (3000 cells per treatment group) was performed
using the Guava PCA System (Guava Technologies,
Hayward, CA) with the Guava ExpressPlus program and
data analyzed using CellQuest 2.0 (BD Biosciences).

Western blot analysis

To assess aSMA protein expression, cells were washed
in PBS and lysed in buffer containing 100 mM Tri-HCl
(pH 7.4), 150 mM NaCl, 1 mM CaCl,, 0.1% SDS, 1%
Triton-X, 0.1% NP-40, and protease inhibitor cocktail
tablet (Roche). Protein concentrations were determined
by the BCA assay (Pierce). Equal amounts of protein
were separated by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE), and electrophoretically
transferred to PVDF membrane. Membranes were blocked
with 5% nonfat dry milk/0.05% Tween-20/PBS for 1 hr at
room temperature, incubated with mouse anti-aSMA IgG
(1:20,000), rabbit anti-Collagen I IgG (GeneTex, 1:5,000), or
rabbit anti-Collagen III IgG (Rockland, 1:5,000) overnight
at 4°C, washed with 0.1% Tween-20/PBS, incubated
with horseradish peroxidase-conjugated goat anti-mouse
IgG (1:10,000) for 1 hr, washed with 0.1% Tween-20/PBS
and then developed with enhanced chemiluminescence
(ECL) technique (Amersham, England). Densitometric
analysis of relative band intensities was performed by ana-
lyzing scanned blots with NIH Image ] (version 1.410).
Values are normalized to GAPDH control and presented
as relative intensities compared to control (serum-free
condition).

aSMA and filamentous actin (F-actin) Co-staining

To assess aSMA fiber organization, primary MLF at P1
were treated with IGF-1 (100 ng/ml), TGF-B1 (10 ng/ml)
or IGF-1/TGF-B1 (100 ng/ml and 10 ng/ml, respectively)
for 24 hr, then fixed with 4% paraformaldehyde at RT x10
min followed by permeabilization with 0.5% Triton-X100
in PBS at RT x 3 min. The fixed cells were blocked in 1%
BSA in PBS x 20 min at RT and incubated with primary
antibody to aSMA (Abcam, rabbit IgG) overnight at 4°C,
then incubated with Alexa488-conjugated secondary anti-
body (Invitrogen, goat anti-rabbit IgG), followed by incu-
bation with Alexa 564-conjugated phalloidin (5 units/ml,
Invitrogen) at RT for 20 min for F-actin staining. Nuclei
were counterstained with DAPI. Ten to twelve random
fields (20x) per treatment condition were analyzed for
cells staining for aSMA stress fibers (green) and F-actin fi-
bers (red). The total number of F-actin staining cells per
field was counted. Of the F-actin + cells counted, the num-
ber of aSMA stress fiber + cells were counted. Results are
presented as percentage of aSMA stress fiber + cells out of
the total number of F-actin + cells. Imaging was performed
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with the assistance of the Lynn and Mike Garvey Cell Im-
aging Laboratory at the UW Institute for Stem Cell and Re-
generative Medicine. Images were obtained using a Nikon
TiE inverted widefield fluorescence microscope and ana-
lyzed by NIH Image] (version 1.410).

Statistical analysis

Means of more than two groups of data were compared
using one-way analysis of variance (ANOVA) for analysis
of one independent variable or two way ANOVA, for ana-
lysis of two independent variables, followed by Tukey’s
honestly significant difference (HSD) post hoc test. Stu-
dent T-test was used for comparison of parametric data.
All tests were two-tailed and p values < 0.05 were consid-
ered significant. Statistical analysis was performed using
GraphPad Prism for Macintosh version 4.0c (GraphPad
Software).

Results

Blockade of IGF-1 pathway in vivo decreases aSMA
expression after injury

We previously demonstrated that IGF-1 is upregulated
in patients with acute lung injury and in mice following
bleomycin-induced lung injury [7,8]. Furthermore, IGF-1
receptor blockade hastened resolution of fibrosis in
mouse model of injury [8]. To determine whether IGF-1
blockade attenuates myofibroblast activation, we examined
aSMA-GFP transgenic mice after bleomycin-induced lung
injury with or without A12 antibody (IGF-1R antibody)
treatment. Representative H&E images from bleomycin in-
jured aSMA-GFP transgenic mice show decreased fibrotic
regions in the peribronchiolar regions following bleomycin
injury (Figure 1A). aSMA immunostaining shows co-
localization of «SMA with GEP expression, demonstrating
GFP expression as a reliable surrogate for aSMA expres-
sion following bleomycin injury in this transgenic model
(Figure 1B). Following bleomycin-induced lung injury, we
found significantly fewer GFP positive cells (as a marker of
aSMA expression) (Figure 1C) in the A12 treated group.
Interestingly, the most striking difference visually between
the two groups was in areas of relatively normal architec-
ture (a, b). To validate our findings in GFP, we im-
munostained lung sections for aSMA. We also found
decreased aSMA expression in bleomycin-injured lungs
that were treated with A12, consistent with our GFP find-
ings (Figure 1D). In uninjured mice treated with A12
alone, there was no difference in GFP expression (not
shown).

Effect of IGF-1 treatment on aSMA promoter activity

In addition to an effect on cell survival, another poten-
tial explanation for decreased GFP (aSMA+) cells is a
direct effect of IGF-1 blockade on fibroblast aSMA
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Figure 1 Decreased aSMA promoter activity and aSMA protein expression in bleomycin-injured mice treated with IGF-1 receptor
blocking antibody (A12). (A) Representative H&E sections of aSMA-GFP mice at day 21 after bleomycin injury. Fibrotic regions of lung
parenchyma are indicated by (f§) and normal lung parenchyma are indicated by (n). (B) aSMA immunostaining of bleomycin-injured lung in
an aSMA-GFP mouse. Note the overlap of aSMA staining (red) with aSMA-GFP expression (green) in the peribronchiolar fibrotic region indicated
by (R). Scale bars represent 100 um. (C) (Left) Representative fluorescent images of aSMA-GFP mice treated with A12 (b and d) showed less
aSMA promoter activity as indicated by GFP (green) positive cells, compared to control mice (a and ¢) at d21 after bleomycin instillation.

(Right) Percentage of aSMA-GFP + cells/total number of DAPI + cells, quantification by NIH ImageJ (n =4 mice/group, mean + SEM). (D) (Left)
Representative images of aSMA staining by immunofluorescent microscopy of the same A12-treated mice (b and d) compared to control mice
(a and ) at d21 after bleomycin instillation. Large airways and vasculature staining for aSMA, indicated by an asterisk (¥), were masked in the
analysis. Interstitial staining, indicated by an arrow ([§), was included in the analysis. (Right) Ratio of aSMA staining area per DAPI +area (n=4
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expression. Therefore, we asked whether IGF-1 affected
fibroblast aSMA expression alone or synergistically with
pro-fibrotic cytokine TGF-B1, and whether this effect
can be blocked by treatment with the IGF-1 receptor-
blocking antibody A12.

First, we evaluated aSMA promoter activity (measured
by mean GFP intensity) in MLF isolated from aSMA-
GFP mice. TGF-B1 but not IGF-1 increased aSMA pro-
moter activity, and no synergistic effect was seen with
IGF-1 and TGF-B1 co-stimulation (Figure 2). These re-
sults suggest IGF-1 does not regulate aSMA promoter
activity in MLF either alone, or synergistically with TGE-
B1, a cytokine known to upregulate aSMA RNA expres-
sion in the conditions tested.

Effect of IGF-1 treatment on transcription of
myofibroblast markers

Next, we assessed the role of IGF-1 on aSMA mRNA
expression by real-time PCR. MLF grown on tissue-
culture plate or collagen I-coated tissue culture plates
(stiff substrates) were treated with IGF-1, TGF-B1 or
combination of IGF-1 and TGF-P1 to assess for synergy.
As expected, treatment with positive control TGF-p1 in-
creased Acta2 expression (Figure 3A). However, IGF-1
did not increase Acta2 expression. Co-incubation of
IGF-1 and TGF-P1 did not alter the TGF-B1 induced
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Acta2 expression. Finally, treatment of cells with A12
did not change Acta2 expression in any of the condi-
tions, including TGF-B1 treatment (Additional file 1:
Figure S1). We further confirmed that MLF isolated
from bleomycin-injured mice did not respond differently
to cytokine stimulation than MLF from uninjured mice:
MLF isolated from bleomycin-injured mice and treated
with IGF-1 did not increase aSMA RNA expression
(Figure 3C).

aSMA expression is one of several changes observed
with fibroblast activation. Activated fibroblasts may also
increase TGF-P1 expression and synthesis of extracellu-
lar matrix proteins such as collagen al, type I and colla-
gen al, type III. Therefore, we measured transcriptional
changes in these genes after treatment with IGF-1, TGF-
B1, or both. As expected, treatment with TGF-pf1 in-
creased Collal expression. Interestingly, IGF-1 treatment
led to a 1.5 fold increase in Collal expression over
serum-free control at 24 hours (Figure 3A) and the effect
was inhibited by A12 (Additional file 1: Figure S1). IGF-1
treatment also led to a 1.5 fold increase in Col3al
expression.

The effect of IGF-1 treatment on MLF is not mediated
through interaction with TGF-B1. No significant synergy
was seen between IGF-1 and TGF-f1, and IGF-1 block-
ade with Al12 did not affect TGF-f1 stimulated MLF

Green Fluorescence (GRN-HLog)

— Serum-free
A Indicated cytokine
g IGF-1 3 TGF-p 3 IGF-1/TGF-f
& 8 &
Sw Ew v
8 y 8 ; 8™
° g’ \ = el ) = e F
g ¥ ¥
* ! Iy c ?l." : .llrl o A !-". 'llll
ohi iz us e 4 ohienun 1 madt® b I P b
100 10! 102 103 w0t 100 10! 102 103 10t 100 10! 102 103 10%

Green Fluorescence (GRN-HLog)

B Flow Cytometry - GFP
o 1500
Q
c
@
Q
g, o
o - ns
5 000
=5
I
3
O 500
c
@
[}
=
0

Green Fluorescence (GRN-HLog)

SF IGF TGF IGF/TGF

Figure 2 Effect of IGF-1 on aSMA promoter activity in aSMA-GFP transgenic mice. (A) MLF from aSMA-GFP mice were treated with IGF-1
(100 ng/ml), TGFB (10 ng/ml), or both on tissue culture plate for 24 hr. Control group was maintained in serum-free media. Representative
histogram of each treatment condition overlaying control group histogram is shown. (B) Bar graph summarizing the mean green fluorescence
of each treatment condition. 3000 cells/condition analyzed. *p < 0.05 compared to serum-free control.
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Figure 3 Effect of matrix stiffness on response to IGF-1 treatment. (A) MLF on tissue culture plate or collagen I-coated tissue culture plate
ng/ml) or IGF/TGFB (100 ng/ml and 1 ng/ml, respectively), or serum-free media
(negative control) for 24 hr. (B) MLF on collagen | (1 mg/ml) hydrogel (soft substrate) were treated with IGF-1 (100 ng/ml), IGF-1

(100 ng/ml) with A12 (40 ug/ml) or PI3 kinase inhibitor LY294002 (Ly, 50 uM) for 24 h. (C) MLF isolated from bleomycin-injured C57BI6
mice were treated with the indicated cytokine. Real time PCR analyses of myofibroblast markers Acta2, Collal, and Col3al were performed. Data were
normalized to HPRT expression. Y-axis represents fold increase compared to serum-free control (n = 3, mean + SEM, *p < 0.05 compared to

(Additional file 1: Figure S1). Moreover, IGF-1 treatment
no effect on Tgfbl expression in MLF (Additional file 2:
Figure S2). Similarly, bleomycin did not affect MLF
responsiveness to IGF-1 stimulation iz vitro as similar re-
sults were obtained using MLF isolated from bleomycin-
injured lungs (Figure 3C).

Effect of IGF-1 treatment on aSMA and matrix protein
expression

Similar to findings with RNA expression, IGF-1 treat-
ment on stiff substrate did not increase «SMA protein
expression in MLFs after 24 hr (Figure 4A and C). TGF-
B1 treatment on stiff substrate increased aSMA protein
expression, but the addition of IGF-1 had no synergistic
effect. Similarly, MLF isolated from bleomycin-injured
mice did not show increased aSMA protein expression
with IGF-1 treatment compared to MLF isolated from
control mice (data not shown). In addition to aSMA,
we also assessed in vitro expression of matrix proteins
Col I and III. Consistent with our findings in Collal

and Col3al transcriptional activity, MLF treated with
IGF-1 demonstrated increased Col I and III expres-
sion (Figure 4B and C).

Effect of IGF-1 on stress fiber formation

The percentage of cells staining for F-actin fibers (as in-
dicated by phalloidin staining) and the intensity of F-
actin fiber staining did not significantly change with
IGF-1 treatment. However, IGF-1 treatment modestly in-
creased the percentage of cells with aSMA-containing
stress fibers compared to serum-free control (33% vs
19.5%, p=0.05) (Figure 5). Furthermore, this increase
was blocked by A12. As expected, TGF-PB1 treatment in-
creased the percentage of aSMA stress fiber positive
fibroblasts and the intensity of phalloidin staining. How-
ever, there was no further increase in the percentage of
fibroblasts with aSMA-containing stress fibers with the
addition of IGF-1 to TGFEp treatment. A12 had no effect
on TGF-B1-mediated increase in aSMA-containing stress
fibers (Figure 5).



Hung et al. Respiratory Research 2013, 14:102
http://respiratory-research.com/content/14/1/102

Page 7 of 11

SF IGF TGF I/T

oSMA & == -

GAPDH " e "™a

Densitometry - «SMA

C B 25 5
E20 4
o15 3
2 1.04 2
“"OSH 1

SF IGF TGF IT 0 SF

D

SF IGF TGF I/T

OSMA e v w— —

(n =3, mean + SEM).

Protein expression on stiff substrate

Densitometry - Col |

aSMA expression on soft substrate

Figure 4 Effect of IGF-1 on protein expression in soft and stiff substrates. (A-B) MLF on tissue culture plate (stiff substrate) were stimulated
with IGF-1, TGF-B1, or IGF-1/TGF-B1 for 24 hr. Representative Western blots of aSMA, Col |, and Col Ill with GAPDH loading control are shown.
(C) Densitometry after normalization to loading control. (D) MLF cultured on soft matrix and treated with IGF, TGF-B1, or IGF/ TGF-31 for 24 hr.
Representative Western blots of aSMA with GAPDH loading control are shown. (E) Densitometry after normalization to loading control

B
Col lll

Col | #= &' wm

SF IGF TGF
P

/T

GAPDH e s o e

Densitometry - Col llI

ﬂﬁmﬁ

SF IGF TGF T

0.51
0.0

IGF TGF T

Densitometry

E

1

Intensity Relative to Control
N

04

SF IGF TGF T

Role of matrix stiffness in response to IGF stimulation

Since MLF rapidly differentiate into myofibroblasts when
grown on tissue culture plastic, we questioned whether the
high level of baseline myofibroblast activation obscured
the effects of IGF-1 on aSMA expression. Therefore, we
cultured MLF on collagen I gel matrix (soft substrate) and
asked whether IGF-1 increased myofibroblast activation in
these conditions. In contrast to MLF grown on tissue
culture plastic, MLF grown on soft substrate up-regulated
Acta?2 expression in response to IGF-1 (Figure 3B). Like-
wise, MLF grown on soft substrate significantly in-
creased aSMA protein expression in response to IGF-1
(Figure 4D,E). IGF-1 treatment also increased Collal and
Col3al expression on soft substrate (Figure 3B). Treat-
ment with TGF-f1, alone or in combination with IGF-1,
resulted in a 2-fold increase in «SMA protein expression
without synergistic effect with IGF-1 (Figure 4D,E). To en-
sure the soft biomechanical property of the collagen I gel
substrate, rather than the presence of Collagen I in the

substrate, was responsible for the effect of IGF-1 on
aSMA, Col I and III, we also assessed the effect of IGF-1
on MLF cultured on collagen I-coated tissue culture
plates. Similar to our findings in uncoated tissue culture
plates, IGF-1 treatment had no effect on Acta2 expression
and stimulated Co/lal and Col3al transcriptional activity
(Figure 3A). Furthermore, the effect of IGF-1 on soft
matrix was blocked by treatment with A12 blocking anti-
body (Figure 3B). We previously examined the signal
transduction pathway activated by IGF-1 in MLEF, and
found that IGF-1 treatment led to phosphorylation of
IRS-2 but not IRS-1, and phosphorylation of Akt [8]. The
PI3-kinase pathwayis thus the likely pathway involved in
IGF-1 signaling. When MLF grown on soft substrate
was treated with PI3-kinase inhibitor Ly294002, the ef-
fect of IGF-1 on MLF was also blocked (Figure 3B).
Together, these data suggest that the mechanical prop-
erties of the matrix modulate the response of MLF to
IGF-1 stimulation.
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Discussion

IGF-1 has been reported to activate fibroblasts into the
myofibroblast phenotype [9,12,20-22]. We previously
demonstrated that IGF-1 provided an important pro-
survival signal to fibroblasts in lung injury [8]. We now
demonstrate in aSMA-GFP mice that IGF-1 pathway
blockade decreases aSMA + fibroblasts after bleomycin
lung injury. In addition to an effect on cell survival, we
asked whether IGF-1 induces fibroblast differentiation
into myofibroblasts, which may also explain the observed
decrease in GFP +and aSMA + cells in our lung injury
model with IGF-1 blockade.

Myofibroblasts are specialized fibroblasts that exhibit a
contractile phenotype as a result of increased stress fiber
formation, aSMA expression, development of mature
focal adhesions, and enhanced extracellular matrix de-
position [9,23-25]. The phenotypic transformation confers
a number of important functional changes that play an

important role in lung injury and repair [13,14]. Expres-
sion of aSMA, considered a hallmark of the myofibroblast
phenotype, contributes to the contractile phenotype that
plays an important role in fibrosis [26,27].

Previous studies on the effect of IGF-1 on myofibroblast
differentiation and aSMA expression have shown con-
flicting results. In one study, human fetal lung fibroblasts
treated with IGF-1 increased aSMA and collagen I synthe-
sis [11]. In another study, human colonic fibroblast
cell lines treated with IGF-1 showed a small increase in
aSMA expression that was significantly less than the up-
regulation induced by TGF-B1 [12]. Similarly, IGF-1 treat-
ment did not increase aSMA expression in primary
human corneal fibroblasts [12,21]. Direct comparison of
different studies is complicated by the fact that fibroblasts
from different species, organs and stages of develop-
ment respond differently to fibrogenic stimuli [28-30].
Moreover, recent studies show that extracellular
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biomechanical properties (i.e. matrix stiffness) regulate
myofibroblast differentiation and modulate response to
profibrotic cytokines such as TGF-B1 [31-34]. Our data
suggest IGF-1 is a profibrotic cytokine under soft
extracellular matrix conditions, inducing expression of
Acta2, Collal, and Col3al. On stiff substrates, IGF-1
had no effect on aSMA gene or protein expression,
alone or synergistically with TGF-f1. On the other
hand, the effect of IGF-1 on Col I and III gene and pro-
tein expression is maintained in both stiff and soft
matrices. We previously demonstrated that IGF-1
stimulation of MLF induced IRS-2 and Akt phosphor-
ylation, suggesting that IRS-2 and PI3 kinase are the
major pathways activated by IGF-1 under the condi-
tions tested [8]. In our present study, administration of
PI3 kinase inhibitor blocked up-regulation of aSMA,
Col I and III in IGF-1-treated MLFs, supporting our
previous finding that PI3 kinase is an important down-
stream pathway in IGF-1-stimulated MLF.

We also investigated whether IGF-1 acted synergistic-
ally with TGF-B1, a common profibrotic cytokine. In some
studies, TGF-P1 treatment of fibroblasts increased IGF-1
expression [12,21], raising the possibility of an autocrine
effect of IGF-1 on aSMA expression. However, in our ex-
periments, co-stimulation with IGF-1 and TGF-p1 did not
enhance TGF-Bl-mediated aSMA expression, and A12
treatment did not block TGF-f1-induced «SMA expres-
sion. Additionally, IGF-1 treatment did not alter TGF-1
gene expression in MLF. Together, our data suggest the
TGF-p1-mediated changes are independent of the IGF-1
pathway.

An interesting finding in our present study is that
IGF-1 exerts differential effects on MLF depending on
the stiffness of the extracellular matrix. IGF-1 directly
up-regulates Col I and III expression in both soft and
hard matrices. This finding is consistent with our previ-
ously published in vivo findings where IGF-1 blockade
led to decreased fibrosis as measured by hydroxyproline
content at day 21 after bleomycin injury [8]. On the
other hand, IGF-1 only regulates aSMA expression in
soft matrix conditions. Liu and Tschumerplin previously
demonstrated by atomic force microscopy that normal
lung parenchyma constitute a soft matrix environment
for fibroblasts whereas established fibrotic regions are
significantly stiffer [35]. We previously demonstrated a
significant increase in IGF-1 mRNA expression during
early lung injury in mouse model [8] and increased IGF-
1 in bronchoalveolar lavage fluid in early ARDS [7]. We
also found that IGF-1 receptor mRNA expression profile
is similar to IGF-1 after bleomycin injury (unpublished).
Together, these data implicate a temporal influence on
the pro-fibrotic function of IGF-1. In early injury, prior
to scar formation, IGF-1 may act as a pro-fibrotic cyto-
kine on resident fibroblasts that reside in a compliant
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extracellular matrix, inducing aSMA expression and col-
lagen deposition by fibroblasts. Later in injury, IGF-1 ex-
erts anti-apoptotic effects on activated myofibroblasts
and enhances collagen deposition. Thus, in our in vivo
model, the decrease in aSMA-GEP + cells observed at
day 21 with IGF-1 blockade may be due to decreased
myofibroblast differentiation during the early phase of in-
jury and increased apoptosis of fibrogenic myofibroblasts
during the resolution phase.

We also found an increase in percentage of fibroblasts
exhibiting aSMA-containing stress fibers. These results
suggest that IGF-1 promotes the assembly of pre-formed
aSMA units into filamentous form (stress fibers), rather
than inducing expression of aSMA. Currently, the only
demonstrated stimulus for the recruitment of cytosolic
aSMA units into stress fibers is mechanical tension me-
diated by the formation of super-mature focal adhesions
[36]. As previously shown, incorporation of aSMA into
stress fibers enhances the contractility of myofibroblasts
[27], which contributes to the restrictive phenotype seen
in fibrotic lung diseases.

Our study has several important limitations. Fibro-
blasts cultured on stiff substrates such as tissue culture
plates invariably become activated, potentially masking a
true effect IGF-1 may have on myofibroblast differenti-
ation. Evaluation of the IGF-1 pathway on substrates that
mimic the physiologic stiffness of fibrotic lung (~20 kPa
Young’s modulus) will be needed to fully assess whether
IGF-1 also directly induces the myofibroblast phenotype
in stiff lung matrix [31,33,35,37]. Additionally, evaluation
of the IGF-1 pathway in vitro isolates fibroblasts from
their native extracellular matrix and surrounding cellular
environment. Cell-matrix interactions and non-fibroblast
cellular mediators of myofibroblast differentiation where
IGF-1 may also exert its profibrotic effect are absent in
our in vitro studies. While the presence of collagen I in
the growth substrate did not affect MLF responsiveness to
IGE-1 treatment in our studies, we cannot exclude the
possibility that the observed effects in collagen I gels were
due to the three-dimensional substrate versus a two-
dimensional substrate.

In summary, IGF-1 blockade decreased myofibroblasts
after bleomycin lung injury in aSMA-GFP reporter mice.
IGF-1 plays a complex role in lung myofibroblast activa-
tion. IGF-1 regulates a«SMA expression only in soft sub-
strates while it enhances expression of other myofibroblast
markers such as Collal and Col3al in soft and stiff sub-
strates. We conclude that IGF-1 stimulates myofibroblast
differentiation by activating aSMA expression and matrix
synthesis. Furthermore, the role of IGF-1 in fibroblast
activation is dependent on the biomechanical proper-
ties of the extracellular matrix. Our present study
highlights the complex biology of fibrosis where the
pro-fibrotic effects of different growth factors are
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dependent on the time course of injury and repair as
well as the biomechanical properties of the extracellu-
lar matrix.

Additional files

Additional file 1: Figure S1. Effect of A12 on cytokine treatment in
stiff substrate. MLF on tissue culture plate were stimulated with IGF-1,
TGF-B1 (10 ng/ml), or IGF-1/ TGF-B1 for 24 or 48 hr with or without A12
(40 pg/ml). Negative control is serum free media. Real time PCR analysis
of myofibroblast markers Acta2 and Collal was performed. Data were
normalized to HPRT expression. Y-axis represents fold increase compared
to serum-free control (n=3, *p<0.05 compared to serum-free control,
**p<0.05 compared to no A12, # not significant compared to no A12).

Additional file 2: Figure S2. Treatment with IGF-1 did not affect Tgfb1
gene expression. MLF on tissue culture plate, soft substrate, or from
bleomycin-injured lungs were stimulated with IGF-1, TGF-B1 (10 ng/ml),
or IGF-1/TGF-B1 for 24 hr. Negative control is serum free media. Real
time PCR analysis of TgfbT was performed. Data were normalized to
HPRT expression. Y-axis represents fold increase compared to serum-free
control (n=3, mean+SEM).
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