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TLR4 signalling in pulmonary stromal cells is critical
for inflammation and immunity in the airways
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Abstract

Inflammation of the airways, which is often associated with life-threatening infection by Gram-negative bacteria or
presence of endotoxin in the bioaerosol, is still a major cause of severe airway diseases. Moreover, inhaled
endotoxin may play an important role in the development and progression of airway inflammation in asthma.
Pathologic changes induced by endotoxin inhalation include bronchospasm, airflow obstruction, recruitment of
inflanmatory cells, injury of the alveolar epithelium, and disruption of pulmonary capillary integrity leading to
protein rich fluid leak in the alveolar space. Mammalian Toll-like receptors (TLRs) are important signalling receptors
in innate host defense. Among these receptors, TLR4 plays a critical role in the response to endotoxin.

Lungs are a complex compartmentalized organ with separate barriers, namely the alveolar-capillary barrier, the
microvascular endothelium, and the alveolar epithelium. An emerging theme in the field of lung immunology is
that structural cells (SCs) of the airways such as epithelial cells (ECs), endothelial cells, fibroblasts and other stromal
cells produce activating cytokines that determine the quantity and quality of the lung immune response. This
review focuses on the role of TLR4 in the innate and adaptive immune functions of the pulmonary SCs.
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TLRs and TLR4 signalling at a glance

Cytokines that stimulate the innate immune response are
not constitutively expressed but must be called into play
by specific signals that alert the host to invading micro-
organisms. Mammalian Toll-like receptors (TLRs) are
similar in structure and function to the Drosophila Toll
protein [1]. The cytoplasmic domain of this transmem-
brane protein is similar to that of the mammalian IL-1
receptor, suggesting that both Toll and mammalian TLRs
share similar signal-transduction pathways via a MyD88-
dependent pathway that ultimately involves the NF-xB
family of transcriptional factors. NF-xB serves as a master
switch, transactivating various cytokines that are involved
in the innate and transition to adaptive immunity [2].
Medzhitov and colleagues were the first to characterize a
human TLR, TLR4 [3]. The constitutively active mutant of
TLR4, when transfected into human cell lines, activates
NE-xB and stimulates the expression of the proinflamma-
tory cytokines IL-1, -6, and -8. In addition, TLR4 signal
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transduction and NF-xB transactivation induces expres-
sion of IL-12p40, as well as CD80 and CD86, costimula-
tory molecules that link innate and adaptive immune
responses by activating antigen-specific responses by naive
T cells. The response to lipopolysaccharide (LPS), a cell
wall component of Gram-negative bacteria, is initiated
upon its interaction with TLR4 in conjunction with the
accessory molecules MD-2 and soluble or membrane-
bound CD14 [4]. The response is then transduced via the
interleukin (IL)-1 receptor signalling complex, which
includes two essential adaptor proteins, myeloid differen-
tiation (MyD)88 and tumor necrosis factor receptor-
associated factor (TRAF)6 as well as the serine-threonine
kinase known as IL-1R-associated kinase (IRAK). Other
components involved in this signalling pathway include
mitogen-activated protein kinases (MAPKSs) such as extra-
cellular signal-regulated kinase 1/2 (ERK1/2), c-Jun
N-terminal kinase (Jnk), and p38 kinase (p38) [5,6]. This
signal transduction pathway further coordinates the induc-
tion of multiple genes encoding inflammatory mediators
and co-stimulatory molecules [7]. A detailed description of
the TLR signalling has been reviewed recently [8].
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Noulin et al [9] analyzed the role of TLR signalling and
the contribution of different cell types in response to aero-
genic LPS. They focused on the role of the common TLR
and IL-1R adaptor molecule, the MyD88. Absence of
MyD88 confers resistance to systemic endotoxin-induced
shock [10], although there is evidence that LPS can use
MyD88-independent signalling pathways [11]. In particu-
lar, other adaptor proteins such as TIR domain-containing
adaptor inducing IEN-B (TRIF)3 [12,13] and TRIF-related
adaptor molecule (TRAM) [14,15] have been implicated in
some responses to LPS resulting in IFN type I-dependent
expression of costimulatory molecules. TRAM is thought
to act as a link between TRIF and TLR4, like Toll/IL-1R
domain-containing adaptor protein (TIRAP) bridging
MyD88 to TLR4. MyD88 and TIRAP are involved in early
activation of NF-xB and MAPK [16-19], whereas TRIF
and TRAM are critical for late activation of NF-xB as well
as the activation of IRF-3 [15,20]. A recent work on
macrophages/dendritic cells (DC) suggests that no path-
way other than MyD88-dependent or TRIF-dependent
pathways exists in response to LPS in TLR4-mediated sig-
nalling [21], whereas a third pathway independent of
TLR4 possibly exists [22]. Noulin et al demonstrated that
MyD88 is indeed essential for the LPS-induced acute pul-
monary inflammation response, whereas TRIF is dispensa-
ble. Accordingly, Guillot et al [23] showed that ECs
response to LPS involves at least the signal-transducing
molecules MyD88, IRAK, and TRAF6 and activation of
the transcription factor NF-xB. Also MAPKs appear to be
important mediators of this cell activation process as three
of these kinases (p38, Jnk, and ERK1/2) are selectively acti-
vated in a time-dependent manner by LPS (Figure 1).

TLR4 expression in pulmonary stromal cells
Various studies have provided evidence that TLR4 plays a
critical role in myeloid cells [24-26], but recent reports
suggest that a LPS signalling system also exists in cells of
epithelial origin. TLR4 is expressed in intestinal [27,28],
renal [29], colonic, and gingival epithelia [30]. In the lung,
TLR4 expression has been demonstrated in alveolar and
bronchial epithelial and vascular endothelial cells
[23,31,32].

Sha et al demonstrated that ECs express mRNA for all
TLR and that several known TLR ligands activate epithe-
lial cells to express chemokines, cytokines, and host
defense molecules, including acute phase proteins and
complement proteins. Moreover the expression of these
receptors may be increased by cell activation. Among the
induced genes were macrophage inflammatory protein
(MIP)-30a. and granulocyte macrophage-colony-stimulating
factor (GM-CSF), which would be expected to recruit and
activate immature DCs that might be important in early
triggering of adaptive immune responses. Guillot et al [23]
demonstrated by reverse transcription-PCR and/or
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Figure 1 TLR4 signalling. Of all the radioresistant stromal cells (SCs),
epithelial cells (ECs) that line the airways are the most likely to mediate
the effects of LPS, given their exposed position, their known and
confirmed expression of TLR4 and their activation of TLR4 dependent
signalling cascades upon exposure to TLR4 ligands (LPS, DAMPs, HDM).
The intracellular compartmentalization of TLR4 may prevent
“inopportune” activation of pulmonary ECs. Whereas TRL4 signalling
via MyD88 is essential for the LPS-induced acute pulmonary
inflammation response, TRL4 signalling via TRIF is dispensable [9].
MyD88 and TIRAP are involved in early activation of NF-xB and MAPK,
whereas TRIF and TRAM are critical for late activation of NF-xB as well
as the activation of IRF-3 [9]. There is no consensus about the
expression and role of CD14 in LPS-induced lung epithelial activation.

immunoblot that TLR4 and the accessory molecule MD-2
are constitutively expressed in distinct human alveolar and
bronchial ECs. Based on flow cytometry experiments, they
showed that is unlikely that LPS might recruit TLR4 to
the cell surface upon cell activation. However, it can not
be excluded that inflammatory mediators such as cyto-
kines or bioactive lipids might be able to induce TLR4
relocalization. Intracellular compartmentalization of TLR4
allowed nevertheless LPS to strongly induce the secretion
of proinflammatory mediators. Epithelial activation by LPS
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does not alter TLR4 expression at the mRNA or protein
level or alter its intracellular localization. In agreement
with the absence of TLR4 expression on the cell surface of
pulmonary ECs, it was also relevant to notice that addition
of a blocking anti-TLR4 antibody in the extracellular med-
ium had no effect on activation by LPS as assessed by the
measurement of IL-8 secretion. One can speculate that
the intracellular compartmentalization of TLR4 may pre-
vent “inopportune” activation of pulmonary ECs due to a
regular exposure to air containing trace amounts of LPS
and as a consequence a chronic inflammatory state (Figure
1). In the context of this distinctive cell distribution, TLR4
signalling may therefore be triggered only upon exposure
to a high amount of free or bacteria-associated LPS as
occurs in occupational or infectious diseases [33,34]. Sub-
sequently the pulmonary epithelium may then participate
in the local innate response through the secretion of cyto-
kines and antimicrobial peptides. Interestingly, before the
identification of TLR4 as an essential participant in LPS
signalling, Wright and colleagues [35] showed that LPS is
rapidly delivered from the plasma membrane to an intra-
cellular site and that agents that block vesicular transport
alter cell responses to LPS. Moreover Vasselon et al. [36]
demonstrated that monomeric LPS crosses the cell mem-
brane and traffics within the cytoplasm independently of
membrane CD14, while aggregates of LPS are internalized
in association with CD14. However, Guillot et al [23] failed
to detect CD14 protein expression in human primary
polarized bronchial ECs using confocal microscopy, and
no CD14 protein staining could be detected in lung
epithelial samples. A similar result was observed using the
pulmonary EC line A549 but was not seen with BEAS-2B
cells, which express a low level of CD14. Thus, these data
do not currently dissipate the debate that exists concern-
ing the expression and role of CD14 in LPS-induced lung
epithelial activation. Several authors proposed that these
cells are CD14-negative [37,38], while others demon-
strated both CD14 mRNA and cell surface protein in
human airway ECs [33,39,40]. In fact, these contradictory
results may be explained by distinct basal activation or dif-
ferentiation state of the ECs used throughout these
investigations.

Expression of TLR4 in non-BM cells appears to be
essential for neutrophil recruitment to the lungs follow-
ing systemic LPS administration [32]. Andonegui et al.
[32], showed that TLR4-deficient neutrophils were
sequestered in capillaries of mice expressing TLR4 in
non-BM cells within 4 h of intraperitoneal injection of
LPS, and the authors speculated that TLR4 expression in
the endothelium was required for this recruitment.

Endotoxin sensing by pulmonary stromal cells
As depicted above, LPS signalling through TLR4 in pul-
monary ECs involves at least the signal-transducing
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molecules MyD88, IRAK, and TRAF6 and activation of
the transcription factor NF-xB [23]. Noulin et al. [9]
showed that inhaled endotoxin-induced acute broncho-
constriction, TNF, IL-12p40, and KC production, protein
leak, and neutrophil recruitment in the lung are abro-
gated in mice deficient for the adaptor molecule MyD88.
MyD88 is involved in TLR, but also in IRAK-1-mediated
IL-1R and -18R signalling. A role for IL-1 and IL-18
pathways in this response was excluded, as bronchocon-
striction, inflammation, and protein leak were normal in
IL-1R1 and caspase-1 (ICE)-deficient mice. Furthermore,
using bone marrow chimera, it was shown that non-
bone-marrow (BM)-derived radioresistant resident cells,
probably ECs, were involved in sensing LPS to mediate
the bronchoconstriction response, whereas the secretion
of TNF and IL-12p40 in alveolar space was dependent on
bone marrow-derived cells.

To determine the role of respiratory ECs in the inflam-
matory response to inhaled endotoxin, Skerrett et al. [41]
selectively inhibited NF-xB activation in the respiratory
epithelium using a mutant IxB-o construct that func-
tioned as a dominant negative inhibitor of NF-xB translo-
cation (dnlxB-a). They developed two lines of transgenic
mice in which expression of dnlxB-o was targeted to the
distal airway epithelium using the human surfactant apo-
protein C promoter. Transgene expression was localized
to the epithelium of the terminal bronchioles and alveoli.
After inhalation of LPS, nuclear translocation of NF-xB
was evident in bronchiolar epithelium of nontransgenic
but not of transgenic mice. This defect was associated
with impaired neutrophilic lung inflammation 4 h after
LPS challenge and diminished levels of TNF-a, IL-1f,
macrophage inflammatory protein-2, and KC in lung
homogenates. Expression of TNF-o within bronchiolar
ECs and of VCAM-1 within peribronchiolar endothelial
cells was reduced in transgenic animals. Thus targeted
inhibition of NF-xB activation in distal airway ECs
impaired the inflammatory response to inhaled LPS.
Furthermore, Poynter et al. [42] reported that targeted
expression of a dominant negative IxB-a in proximal air-
way ECs under the control of the rat CC10 promoter
exhibited impaired airway inflammation in association
with reduced levels of MIP-2 and TNF-o in BAL fluid
after nasal challenge with LPS. The results of Skerrett et
al. [41] and those of Poynter et al. [42] suggest that NF-xB
activation in respiratory ECs contributes to the lung
inflammatory response to inhaled LPS through the induc-
tion of proinflammatory cytokines, which in turn act to
upregulate the expression of adhesion molecules on the
vascular endothelium. Accordingly, we recently showed,
using TLR4 chimeric mice [43], that the expression of
TLR4 on SCs was crucial to recruit neutrophils and mono-
cytes in response to LPS. This effect was likely to be
mediated by several chemokines and by growth factors for
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neutrophils (KC, granulocyte colony-stimulating factor (G-
CSF)), monocytes and DCs (C-C chemokine ligand-2
(CCL2), and CCL20). More than 70% of DCs recruited to
the airways in response to LPS were inflammatory DCs as
they expressed high levels of CD11b. These inflammatory
DCs have been shown to derive from Ly6Chi blood mono-
cytes, and to be recruited by the chemokine CCL2 under
inflammatory conditions. Interestingly, we have observed
an upregulation of CCL2 in the airways following LPS and
house dust mite (HDM) administration [44,45]. The LPS-
and the HDM-induced recruitment of inflammatory cells
to the airways was abolished when SCs did not express
TLR4 [43] (Figure 2). This result obtained with HDM was
somewhat unexpected as, until very recently, it was
unknown whether relevant environmental allergens
such as HDM would be able to trigger TLRs. Phipps et al
convincingly reported that the effects induced by HDM
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were reduced in MyD88”~ and TLR4”~ mice [46]. Using
dynamic imaging of freshly explanted tracheal samples, we
observed that LPS and HDM inhalation induced a rapid
scanning behavior of tracheal MHCII"&" DCs that
depended on TLR4 expression by SCs. Such a scanning
behaviour is typical of activated DCs and helps them to
probe the mucosa for incoming antigens. Moreover,
in response to LPS or HDM, TLR4" SCs produced DC-
activating cytokines such as GM-CSF in the airways. This
cytokine is likely to be involved in airway DC maturation,
leading to their subsequent migration to the mediastinal
lymph nodes, a process necessary for the activation of
naive T cells and the initiation of immune responses. This
necessity of TLR4 expression in the initiation of Th2
responses in the airways was recently confirmed by Tan et
al. in a similar chimeric mouse model [47]. It is important
to note that the expression of TLRs by stromal cells is
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Figure 2 Consequences of TLR4 activation on pulmonary SCs. TLR4 signalling on SCs is required for early chemokine production and
neutrophil and DC recruitment to the lungs, and direct bonchoconstriction, whereas robust cytokine production (IL-1, IL-6, IL-12p40, TNFe, etc.)
is dependent of BM-derived cells. Moreover, the TLR4 signalling on pulmonary ECs induces a Th2 polarizing response, via the induction of Th2-
inducing DCs.
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crucial in the control of immune response to a wide vari-
ety of antigens. Indeed, using MyD88 chimeric mice,
Hajar et al. observed an important role of MyD88 in the
early recruitment of inflammatory cells and in the control
of bacterial infection [48].

TLR4 signalling in pulmonary SCs polarizes the
pulmonary immune response

In addition to their involvement in innate immune
responses, the airway epithelium is also capable of driving
the exacerbation of established allergic airway diseases by
the production of pro-Th2 cytokines and chemokines
such as IL-4, IL-13, TSLP, and TARC/CCL17 [49,50].
DCs, which densely line the airways, are critically
involved in the pathogenesis of allergic diseases and are
known to be potent inducers of CD4 T cell differentia-
tion, expansion, and polarization [51,52]. However, the
mechanism by which immature pulmonary DCs undergo
maturation and become effector T cell-inducing antigen
presenting cells (APCs) is unclear.

Using bone marrow chimeric mice to restrict TLR4 sig-
nalling to either the SC compartment (SC'HPC") or the
hematopoietic cell (HPC) compartment (SCHPC™), we
showed that TLR4 expression on lung radioresistant SCs,
but not on DCs, is necessary and sufficient for DC activa-
tion in the lung and for priming of Th2 responses to
HDM [43]. TLR4 triggering on SCs induced the activation
of airway WT DCs as read out by CD86 and CD40 expres-
sion [53]. Moreover, in a WT animal exposed to LPS, DCs
that had migrated to the draining lymph nodes were able
to induce effector T cell responses characterized by the
production of IL-17A and IFN-g. It was however intri-
guing to see that in chimeric mice lacking TLR4 expres-
sion on stromal cells, WT DCs in the airways were no
longer able to induce affector T cell differentiation. The
same held true when HDM was used instead of LPS. It is
therefore very likely that TLR4-expressing stromal cells
release factors that instruct airway DCs to induce a parti-
cular type of immune response. Such factors might include
cytokines such as GM-CSF, known to induce DC activa-
tion [54], or other cytokines such as TSLP or IL-33 which
might contribute to set the stage for Th2 response devel-
opment [55,56]. In agreement with this, the absence of
TLR4 on structural cells, but not on hematopoietic cells,
prevented the development of HDM-driven allergic airway
inflammation and the production of Th2 cytokines by
mediastinal lymph node T cells. Interestingly, in the same
mice, the levels of instructing cytokines were severely
impaired. Interestingly, inhalation of a TLR4 antagonist to
target ECs suppressed the salient features of asthma,
including bronchial hyperreactivity. In a similar way, Th2
sensitization to inhaled ovalbumin (OVA), an antigen
often used to induce asthma features in mice but often
criticized for its content in LPS, seems to depend on
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recognition by stromal TLR4. When it comes to LPS, it is
generally approved that the concentration of LPS deter-
mined the type of immune response induced, with high
concentrations (LPS"e) inducing Th1 responses and low
concentrations (LPS'") inducing Th2 responses [57,58]. A
recent study reported that using contaminated OVA con-
taminated with high levels of LPS, the stromal recognition
of LPS by TLR4 led to a robust Th2 response, indicating
that in the presence of higher concentrations of LPS, stro-
mal cell expression of TLR4 is sufficient for Th2 sensitiza-
tion [47]. In view of these results, one can wonder about
the level of contamination of allergen preparation such as
HDM extracts. When addressing this issue in our experi-
ments showing a crucial role for stromal TLR4 expression
in Th2 responses to HDM [43], we found that the degree
of endotoxin contamination of HDM extract was in the
subnanogram range, far below the dose previously
reported to promote TH2 responses to OVA [57]. If HDM
extracts contain such a low level of LPS contamination,
why are they triggering TLR4? A very elegant study by
Trompette et al. showed that Der p 2, one major allergen
of the house dust mite Dermatophagoides pteronyssinus,
was found to enhance the response of mouse bronchial
ECs to endotoxin by acting as an MD2-like chaperone
that promotes TLR4 signalling [59], providing an explana-
tion to the profound proallergic innate response to HDM.

Altogether, these studies demonstrate that stromal cell
TLR4 signalling is critically involved in Th2 but not Thl
sensitization to inhaled allergen [47]. Stromal TLR4 sig-
nalling leads to the maturation of Th2-inducing DCs that
fail to produce proinflammatory cytokines or to upregu-
late the Th1-inducing Notch ligand Delta-4. Following
intranasal administration of LPS or HDM into the air-
ways, stromal cells upregulate mRNA expression or
synthesis of TSLP, suggesting a stromal cell-dependent
instruction of DCs in the priming of allergic Th2
responses (Figure 2).

TLR4 signalling in non-infectious lung injury

The TLRs have well-established roles as pattern recogni-
tion receptors in acute infection [1,11]. More recent
work has focused on the observation that the inflamma-
tory response after trauma, hemorrhage, and ischemia-
reperfusion injury has many similar features as that after
acute infection [60,61]. Recently, Baudoin [61] reviewed
these findings. For example, mice with TLR-4 mutations
are resistant to both lipopolysaccharide and have an
increased survival after experimental hemorrhagic shock
[62]. Better survival has also been reported in experimen-
tal orthopaedic trauma and ischemia-reperfusion injury
to the heart and lungs [60]. Experiments using TLR4 chi-
meric mice indicate that expression of functioning TLR
on both marrow derived, immune cells and parenchymal
tissue is necessary for noninfectious injury to occur [63].
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Despite early suggestions that endotoxin mediate nonin-
fectious tissue injury, it is now clear that TLR-4 can be
activated by several ligands that are not derived from
microbes [64] (Figure 2). These include high mobility
group box 1 (HMGB1), a DNA-binding protein with
proinflammatory properties, heparan sulfate, low-molecu-
lar-weight hyaluronan, fibrinogen, and heat shock proteins
(HSPs). All these endogenous molecules are produced by
or released from cells that are either severely stressed or
dying and are called damage associated molecular pattern
molecules (DAMPs). The release and sensing of these
molecules would provide a mechanism for innate immune
activation that is both independent and complementary to
that produced by microbes alone. This is likely to amplify
the immune response to infection in any body area where
significant tissue injury occurs.

However, in some situations, the innate immune
response, which evolved to limit the spread of infection,
could become damaging. Ventilator-associated lung injury
may be an example of such a situation [65]. Animals venti-
lated with elevated tidal volumes develop an acute lung
injury that is characterized by the appearance within the
lungs of acute inflammatory cells and the local production
of proinflammatory mediators [66]. This may be caused by
ventilator-induced activation of the innate immune system
by the TLR-4 receptor. In a series of experiments with
wild and TLR4-deficient mice, Hu et al showed that the
acute lung injury, induced by ventilation, is reduced in ani-
mals that lack the Toll-like 4 receptor [65]. In the deficient
animals, neutrophil accumulation was reduced as was the
lung expression of TLR protein. In addition, in isolated
lung preparations, they demonstrated that TLR-4 expres-
sion on both acute inflammatory cells and lung parenchy-
mal cells was necessary for lung injury to develop. The
results support and extend another recent publication on
the effect of mechanical ventilation in TLR-4-deficient
mice. In that study, TLR-4 knockouts were protected
against the proinflammatory actions of mechanical ventila-
tion [67]. However TLRs may also protect against acute
lung injury in other situations. TLR2”"TLR4”~ dual knock-
out mice were more sensitive to both bleomycin and
hyperoxia-induced acute lung injury and had increased
mortality compared with wild-type controls [68].

Conclusion

TLR4 signalling on SCs contributes to the lung inflam-
matory response to inhaled LPS through the induction
of proinflammatory cytokines/chemokines, which in
turn act to upregulate the expression of adhesion mole-
cules on the vascular endothelium. TLR4 signalling on
SCs is required for early chemokine production and
neutrophil recruitment to the lungs, and direct boncho-
constriction. Moreover, the TLR4 signalling on pulmon-
ary ECs induces a Th2 response by instructing airway
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DCs. The data reported in this review support the idea
that a therapeutic strategy blocking TLR4 receptors
might be effective in some forms of infectious and non
infectious human lung diseases.
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