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Abstract

protein expression levels.

Background: CD8+ T cells participate in airway hyperresponsiveness (AHR) and allergic pulmonary inflammation
that are characteristics of asthma. CXCL10 by binding to CXCR3 expressed preferentially on activated CD8+ T cells,
attracts T cells homing to the lung. We studied the contribution and limitation of CXCR3 to AHR and airway
inflanmation induced by ovalbumin (OVA) using CXCR3 knockout (KO) mice.

Methods: Mice were sensitized and challenged with OVA. Lung histopathological changes, AHR, cellular
composition and levels of inflammatory mediators in bronchoalveolar lavage (BAL) fluid, and lungs at mRNA and
protein levels, were compared between CXCR3 KO mice and wild type (WT) mice.

Results: Compared with the WT controls, CXCR3 KO mice showed less OVA-induced infiltration of inflammatory
cells around airways and vessels, and less mucus production. CXCR3 KO mice failed to develop significant AHR.
They also demonstrated significantly fewer CD8+ T and CD4+ T cells in BAL fluid, lower levels of TNFa and IL-4 in
lung tissue measured by real-time RT-PCR and in BAL fluid by ELISA, with significant elevation of IFNy mRNA and

Conclusions: We conclude that CXCR3 is crucial for AHR and airway inflammation by promoting recruitment of
more CD8+ T cells, as well as CD4+ T cells, and initiating release of proinflammatory mediators following OVA
sensitization and challenge. CXCR3 may represent a novel therapeutic target for asthma.
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Introduction

Asthma is characterized by the persistence of chronic
airway inflammation, which further leads to airway
hyperresponsiveness (AHR), and mucus hypersecretion.
Therefore, asthma treatment with inhaled corticoster-
oids (ICS) has been directed towards preventing and
suppressing inflammation. Asthma control defined by
international guidelines can be achieved and maintained
by ICS alone or in combination with long-acting 3, ago-
nist in the majority of asthma patients [1]. However, it
is estimated that 5-10% of patients with difficult-to-treat
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asthma are refractory to the current therapies, and long-
term use of ICS has been associated with side effects
[2,3]. Therefore, searching for new pharmacological
agents to meet these unmet clinical needs remains a
priority objective [4].

A key step in the initiation and progression of asthma
is the persistent recruitment of inflammatory cells into
the airways of asthma patients in response to allergen, a
process closely regulated by a variety of chemokines [5].
The expression of distinct chemokine receptors on infil-
trating cell populations, especially on lymphocytes and
eosinophils which are highly implicated in the pathogen-
esis of asthma, may represent a novel target for attenu-
ating the influx of these inflammatory cells into the
airways during the asthmatic process [6,7]. Because of
the complexity of the promiscuous chemokine system
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[7], it has been difficult to identify the specific role of a
single chemokine receptor in the asthmatic process.

Interferon-y inducible CXCL10, one of CXCR3
ligands, is abundantly expressed in bronchiolar epithelial
cells and airway smooth muscle cells of patients with
asthma. Upon binding to its specific CXCR3 ligand pre-
ferentially expressed on activated CD8+ T cells and
eosinophils [8,9], CXCL10 is a chemoattractant for acti-
vated T-cells and eosinophils into the inflamed sites
[7,9,10]. CXCL10 transgenic mice exhibited airway
hyperresponsiveness in an OVA-sensitized model [11].
An interaction of CXCL10/CXCR3 has been reported to
contribute to the migration of mast cells into airway
smooth muscle in asthma [3]. Increased numbers of
CXCR3+ T cells in blood have been reported to be asso-
ciated with asthma severity [12]. Furthermore, a two-
week course of oral prednisolone did not change the
number of peripheral blood CXCR3+ T cells in asthma
patients [13]. Recently, a small-molecule antagonist for
both CXCR3 and CCR5 has been reported to alleviate
some asthmatic responses after antigen exposure, such
as AHR and lung inflammation [14]. Taken together,
these findings indicate that CXCR3/CXCL10 axis may
play a pivotal role in the pathogenesis of asthma
through recruitment of T cells, as well as other inflam-
matory cells, into airways and lung parenchyma.

Elucidation of the precise role of CXCR3 in asthma
has been facilitated by the generation of CXCR3 knock-
out (KO) mice. In this study, we investigated the specific
contribution of CXCR3 in a model of ovalbumin
(OVA)-induced asthma using CXCR3 KO mice and WT
mice as control.

Materials and methods

Mouse model of OVA-induced airway inflammation

Mice line depleted of CXCR3 gene has been established
by gene targeting as described elsewhere [15]. CXCR3
KO mice (kindly gifted by Dr. Gerard, Harvard Univer-
sity) and WT mice (Experimental Animal Research Cen-
ter, Beijing, China) with C57BL/6 background
(backcrossed for more than 14 generations), were main-
tained in a pathogen-free mouse facility at Peking Union
Medical College Animal Care Center. Clean food and
water were supplied with free access. Gender-matched
mice aged 10-12 weeks (~20-22 grams of weight) were
used in the experiments.

Mice were given intraperitoneal injection on days 0
and 14 with 50 pg of OVA (Grade V, Sigma, MO)
absorbed to 2.25 mg Alum (Pierce) in 200 pl of sterile
saline. Ten days after the last sensitization, mice were
challenged with 1% aerosolized OVA for 20 minutes on
six consecutive days in a chamber using a PARI nebuli-
zer. Sham mice received aluminum hydroxide and were
exposed to 0.9% NaCl solution alone using the same

Page 2 of 8

protocol. Mice were sacrificed 24 hours after the last
aerosol challenge

All experiments were performed according to interna-
tional and institutional guidelines for animal care, and
approved by Peking Union Medical College Hospital
Ethics Committee for animal experimentation.

Histological analysis of lung tissue

The mice were sacrificed and the lungs were removed,
inflated to 25 cmH,O with 10% formalin and fixed over-
night, then embedded in paraffin, and sectioned at 5 pm as
described previously [16-18]. Lung sections were stained
with hematoxylin & eosin reagent. An index of histopatho-
logical change was evaluated by scoring the severity and
extent of the infiltration of inflammatory cells around air-
ways and vessels, and epithelial thickening according to
previously published methods [14,19,20]. Periodic acid-
Schiff reagent was used to stain the mucus-staining cells.
The pathological analysis was independently performed in
each mouse by two pathologists blinded to the genotype.

Bronchoalveolar lavage (BAL)

24 hours after the final aerosol challenge, mice were
killed and the trachea was cannulated by using 20-gauge
catheter. BAL was performed three times with 0.8 mL
of ice-cold PBS (pH 7.4) each. The BAL fluid was spun
at 1500 rpm for 5 min at 4°C, and supernatant was col-
lected and stored at -70°C until analyzed.

Labeling cells from BAL fluid

50 uL of 2 x 107/ml of cells recovered from BAL fluid
was used. 10 pL of blocking buffer was added to the
cells for 15 min on ice. After washing, cells were then
incubated with 50 pL of FITC-conjugated anti-CD4 Ab
and PE-conjugated anti-CD8 Ab or control mouse
IgG2b (BD PharMingen, San Diego, CA) for 1 hr on ice.
Cells were washed by PBS and fixed in PBS containing
2% formalin. Cells were subjected to flow cytometer
using a FACScan (Beckman Coulter, Germany) [16].

Determination of protein content in BAL Fluid

Total protein content in BAL fluid was assayed using
the BCA Protein Assay Kit (Thermo Fisher Scientific,
China) according to manufacturer’s instructions.

ELISA analysis of IL-4, IFNy, and CXCL10 in BAL fluid

The concentrations of IL-4, IFNy, and CXCL10 in BAL
fluid were determined by ELISA kits (R&D systems)
according to manufacturer’s recommendations.

Extraction of total RNA and quantitative real-time PCR
and analysis

Total RNA was extracted from whole lung using guani-
dine isothiocyanate methods and reverse-transcribed to
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c¢DNA using Omniscript Reverse Transcriptase (QIA-
GEN, Hilden, Germany). Quantitative real-time RT-PCR
amplification and analysis were carried out by using ABI
Prism 7700 sequence detector system (Perkin Elmer,
Germany). PCR was carried out with the TagMan Uni-
versal PCR Master Mix (PE Applied Biosystems) using 1
uL of ¢cDNA in a 20 pL final reaction volume.

Airway responsiveness
Airway responsiveness to inhaled methacholine (Mch)
was determined in mice 24 hours after the final aerosol
challenge. Airway resistance (RL) was

assessed as previously described for invasive analysis
of lung mechanics using a computer-controlled small
animal ventilator, Flexivent system (Scireq, Montreal,
PQ, Canada) [16,17]. Changes in tracheal pressure were
measured in response to challenge with saline, followed
by increasing concentrations of methacholine (3.125,
6.25, 12.5, and 25 mg/ml).

Statistics

Data are expressed as means + SEM. Comparisons were
carried out using one-way ANOVA followed by
unpaired Student’s ¢ test (Graph Pad Software Inc., San
Diego, CA). A value of P less than 0.05 was considered
significant.

Results

Airway inflammation in OVA-sensitized and -exposed
mice

To determine whether CXCR3 depletion affects the
antigen-induced infiltration of inflammatory cells into
airways, we estimated the cell subpopulations in BAL
fluid following antigen sensitization and challenge.
There was significantly less infiltration of total inflam-
matory cells, eosinophils, lymphocytes, and macrophages
into airways in OVA-sensitized and -challenged CXCR3
KO than in similarly treated-WT mice (Figure 1A). The
total protein content in BAL fluid, an index of perme-
ability of the endothelial-capillary barrier, was signifi-
cantly higher in OVA-sensitized and challenged WT
mice than in CXCR3 KO mice (Figure 1B).

Semiqualitative analysis of inflammation in the lung by
histopathology

The histopathology of lungs from CXCR3 KO and WT
mice after with or without OVA induction was reviewed
by a pathologist blinded to the origin of the tissue and
genotypes. We assessed the tissue for inflammation
around bronchus and vessel areas, epithelial thickening,
and mucous hypersecretion. There were no inflamma-
tory response around bronchial and vascular spaces, and
no mucus hypersecretion in sham mice (data not
shown).
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Figure 1 Difference of airway inflammation between CXCR3-
deficient mice and the WT controls. Mice were sensitized and
challenged with OVA as described in Material and Methods. A, Total
inflammatory cells and differential subpopulations in BAL fluid, n =
6-8 animals per group, *, p < 0.05 vs other groups, **, p < 0.01 vs
other groups. B, Protein concentrations in BAL fluid, n = 4-6 animals
per group, *, p < 0.05 vs other groups.

Compared with similarly-treated CXCR3 KO mice,
OVA-sensitized and challenged WT mice showed the typi-
cal pathological characteristics of allergic pulmonary
inflammation evidenced by thickened airway epithelium
and more inflammatory cells in the peribronchial area and
around vessles, in which the predominant cell types were
macrophages, lymphocytes, and eosinophils (Figure 2A and
2B). Consistent with lack of significant inflammation in the
airways, CXCR3 KO mice did not produce obvious mucus
secretion in the larger airways, whereas WT mice had
mucus hypersecretion in their lungs (Figure 2C and 2D).

We semi-quantitatively scored the histopathological
findings. There was a significant increase in inflamma-
tion scores in WT mice compared with CXCR3 KO
mice (2.48 + 0.17 vs 2.02 + 0.09, P = 0.045) (Figure 2E).

Although immunization and aerosol challenge with
OVA induced the elevation of total IgE and OVA-
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Figure 2 Effect of CXCR3 on airway inflammation and mucous
production. Mice were immunized and challenged with OVA.
Lungs were analyzed by H&E staining, scored for histopathological
changes in lung inflammation and thickened airway epithelium, and
by periodic acid-Schiff-staining for mucous production as described
in Materials and Methods. A-D, Representative photomicrographs of
hematoxylin- & eosin and periodic acid-Schiff-stained lung tissues. E,
Semiquantative analysis of histopathologic changes using a scoring
method as described in Materials and Methods, n = 5 animals per
group, *, p < 0.05.

specific-IgE in serum from both WT and CXCR3 KO
mice compared with the sham mice, there was no signif-
icant difference in total IgE and OVA-specific IgE
between WT mice and CXCR3 KO mice (data not
shown).

OVA-induced AHR

AHR is an endpoint of airway inflammation, and one of
key characteristics of asthma. Previous data has shown
that blockade of CXCR3 and CCR5 using a synthetic
small-molecule compound can significantly attenuate
antigen-induced AHR, as well as allergic pulmonary
inflammation [14]. We further addressed this question
by using CXCR3 KO mice. As shown in Figure 3, one-
way ANOVA demonstrated that sensitized and chal-
lenged WT mice developed significant increases in lung
resistance in response to increasing doses of inhaled
methacholine. However, sensitized and challenged
CXCR3 KO mice did not develop significant increases
in lung resistance in response to methacholine com-
pared with challenged but not sensitized control mice.
Particularly, airway responsiveness was significantly
higher in immunized and challenged WT mice com-
pared with the similarly-treated CXCR3 KO mice as
determined by unpaired t-test (p < 0.05).
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Figure 3 Effect of CXCR3 deficiency on airway responsiveness
to inhaled methacholine. Immunized and challenged WT mice
showed significantly higher airway responsiveness at 25 mg/ml
mechacholine than all other groups as determined by one-way
ANOVA, n = 8-12 animals per group. Note that airway
responsiveness was significantly higher in immunized and
challenged WT mice compared with the similarly-treated CXCR3 KO
mice as determined by unpaired t-test (p < 0.05).

OVA-induced infiltration of CD8+T cells in airways

The percentage and absolute numbers of CD8+ T cells
in BAL fluid from CXCR3 KO mice were significantly
decreased compared to that from WT mice after antigen
sensitization and exposure (3.3 + 0.3% vs 15.6 + 1.9%, p
= 0.003; 0.3 + 0.1 x 10* vs 2.3 + 0.3 x 10% p = 0.002)
(Figure 4). The percentage of CD4+ T cells was not sta-
tistically higher in BAL fluid recovered from WT mice
than from CXCR3 KO mice (28.5 + 1.5% vs 19.8 £
1.3%, p = 0.07), however, the absolute number of CD4+
T cells was significantly decreased in CXCR3 KO mice
(3.9 + 0.6 x 10* vs 1.6 + 0.5 x 10* p = 0.037) (Figure
4). These data demonstrate that trafficking of CD8+ T
cells, as well as CD4+ T cells, to the airways induced by
OVA was impaired by the absence of CXCR3.

mRNA expression of cytokines

The expression of IFNy mRNA in lungs by quantitative
real-time PCR was significantly inhibited in response to
OVA immunization and challenge in WT mice, but not
in CXCR3 KO mice. By contrast, mRNA expression of
TNFa in lung was significantly reduced in CXCR3 KO
mice (Figure 5). We did not find any difference in mRNA
expression of the other cytokines, including CXCL10,
KC, and TGFB1 (Figure 5). The mRNA expression of
these cytokines was significantly lower in sham mice in
comparison with OVA-immunized and challenged mice
of both mouse genotypes (data not shown).

Cytokine concentrations in BAL fluid

IL-4 concentration in BAL fluid was significantly higher
in OVA-immunized and challenged WT mice than that
in similarly treated-CXCR3 KO mice (Figure 6A),
whereas the level of IFNy in BAL fluid was significantly
higher in CXCR3 KO mice than in WT mice (Figure
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also support the importance of CXCR3 in the initiation
and progression of airway inflammation in asthma
[12,21,22]. Thus, the increased numbers of CXCR3+ T
cells in blood was reported to be associated with asthma
severity [12]. Data from mouse models of asthma sug-
gest that increases in recruitment of CXCR3+ T cells
homing to the lung may increase the severity of asth-
matic response [11]. Thus, blockade of CXCR3 may
represent a novel target for asthma treatment.

AHR is a key component of the murine model of
asthma. We showed that AHR was significantly abro-
gated in CXCR3 KO mice compared with the WT con-
trols. Our data demonstrated significantly less CD8+ T
cells, as well as CD4+ T cells, infiltrating airways of
CXCR3 KO mice that were immunized and challenged
with OVA. The explanation for the relative difference in
infiltration of CD8+ T and CD4+ T cells into the air-
ways between CXCR3 KO and WT mice in this model
may partly be attributed to the downstream effect of
CXCR3 activation. The association between CD8+ T
cells and AHR has been reported previously [23,24].
Mice lacking CD8+ T cells failed to develop AHR and
airway inflammation, suggesting a critical role for CD8+
T cells in the asthmatic responses [7,8]. The mechanism
by which CD8+ T cells mediates AHR and allergic
inflammation of airway may be due to accumulation of
effector CD8+ T cells and CD4+ IL4+ T cells in the
lung tissue [25,26]. Moreover, CD8+ T cells appear to
be essential for the influx of eosinophils into the lung in
respiratory virus infected mice [27]. Our data also
showed less infiltration of CD4+ T cells into lungs of
CXCR3 KO mice after OVA induction. Consistent with
our results, the previous studies have demonstrated that
CD4+ cells are required for eosinophilic lung inflamma-
tion in murine models of acute and chronic Th2-driven
airway inflammation [28,29]

The allergic inflammation of airways induced by OVA
is characterized by an increased number of Th2 cells,
that secrete Th2-type cytokines. IL-4, one of key Th2-
type cytokines, is highly relevant to the pathogenesis of
asthma [26,30]. IL-4 has also been shown to be impor-
tant for the functional activation of CD8+ T cells for
the subsequent development of AHR and airway inflam-
mation during the sensitization phase in a murine
model [26]. Consistent with this study, we did find a sig-
nificant elevation of IL-4 in the BAL fluid in OVA-sen-
sitized- and challenged WT mice; however, such an
elevation was substantially inhibited in similarly treated-
CXCR3 KO mice. There is evidence supporting the pre-
sence of Th2-like CD8+ T cells that produce IL-4 and
IL-5, not IFNy [31]. Our data also demonstrated that
more IL-4-producing CD4+ T cells were significantly
infiltrating the airways of OVA-immunized and chal-
lenged WT mice than in similarly-treated CXCR3 KO
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mice. IL-4 is important in regulating IgE synthesis.
However, there was no difference in total IgE and OVA-
specific IgE in serum between both mouse genotypes. It
is possible that other cytokines such as IL-13 are
involved in the induction of IgE production in our
model [32].

We also showed that induction of mRNA expression
of pro-inflammatory cytokine TNFa in the lungs was
significantly less in OVA-sensitized and challenged
CXCR3 KO mice than that in OVA-sensitized and chal-
lenged WT mice. This might be due to the reduced
accumulation of inflammatory cells in airways in
CXCR3 KO mice, such as macrophages and CD4+ T
cells, because there is evidence showing that monocytes
and CD4+ T cells have the capability to produce TNFa
[4].

There is evidence supporting an inhibitory effect of
IFNy on the full development of AHR [33-36]. In sup-
porting these observations, we demonstrated that IFNy
at both mRNA and protein levels was significantly lower
in OVA-sensitized and challenged WT mice than in
similarly treated CXCR3 KO mice. IFNy has been
shown to inhibit the production of Th2-cytokines (IL-4,
IL-5, and IL-13) from antigen-primed T-cells, partly by
skewing toward Thl-type cells [33]. However, our data
are somewhat inconsistent with the point that CXCL10-
CXCR3 interaction has been known to promote Thl
other than Th2 inflammation. However, the allergen-
induced asthmatic phenotype is not due to a single che-
mokine receptor, but other chemokine receptors, such
as CCR5 and CCR6, expressed on inflammatory cells
are also likely to be involved [21,37]. CCR5 preferen-
tially expressed on Th1l cells has been shown to be
upregulated upon OVA sensitization and exposure [14].
A small compound antagonizing both CCR5 and
CXCR3 has been shown to decrease Thl-like airway
inflammation in OVA-primed and exposed mice [14].

The observations presented in this study point to an
important role for CXCR3 in a murine allergic model of
asthma. However, it should be pointed out that CXCR3
KO mice showed only partial protection against OVA-
induced AHR and airway inflammation. Further studies
should be performed to determine how multiple chemo-
kine receptors expressed on inflammatory cells and lung
resident cells coordinately interact in a complex network
to contribute to asthma pathogenesis. Because several
chemokines share a single receptor, blockade of the che-
mokine receptor may represent a more effective way to
inhibit the effect of multiple chemokines than blocking
their production [5,38].

Conclusion
In conclusion, our study shows that CXCR3 regulates
OVA-induced allergic airway inflammation via
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recruitment of CD8+ T cells into the airways to trigger
the release of proinflammatory cytokines including
TNFo and IL-4 and inhibit the production of antiin-
flammatory mediators exemplified by IFNy. Our findings
suggest that designing an inhibitor specially targeting
CXCR3 may be helpful for the treatment of asthma.
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